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Abstract
The stability of pressure driven modes such as the 1/1 internal kink is known to depend sensi-

tively on a multitude of physical effects such as toroidal rotation, kinetic effects due to thermal

and suprathermal particle species and finite Larmor radius effects. Presently available models

do not take into account these combined effects in a consistent way. This thesis presents the

derivation of a novel kinetic magnetohydrodynamic (MHD) model utilizing a kinetic pressure

closure which incorporates all of these physical mechanisms and can in particular be used to

study the interplay of important centrifugal and kinetic effects in strongly rotating plasmas.

The kinetic-MHD model is based on an original derivation of a consistent set of guiding-centre

equations allowing for sonic flow. Important higher-order Larmor radius corrections to the

guiding-centre coordinates, which are conventionally discarded, are discussed in detail for

two applications: The first application concerns neutral beam injection (NBI) heating. It is

shown that higher-order (Baños drift) corrections affect the expected resonances of particles

with resonant magnetic perturbations (RMP), as well as the estimated NBI driven current in

slowing-down simulations in a MAST-like equilibrium by up to 8%. As a second application,

the full expression for the gyroviscous contribution to the pressure tensor is obtained from

guiding-centre theory. Higher-order guiding-centre corrections are shown to lead to a non-

circular Larmor motion of the particle around its guiding-centre which result in off-diagonal

components of the pressure tensor. The derived expression for the pressure tensor in terms of

the guiding-centre distribution function is used to formulate a consistent linear kinetic-MHD

model with kinetic closure for the pressure. The proposed kinetic-MHD model allows for

strong flows and includes centrifugal as well as diamagnetic flows. The model also includes a

drift-kinetic form of the quasi-neutrality equation, and allows the effects of a parallel electric

field on global MHD modes to be studied self-consistently. Pressure closure of the kinetic-

MHD model is obtained from a solution of the guiding-centre equations, thus taking into

account finite orbit-width effects and particle-wave interactions such as precession resonance.

The benefits of the pressure closure approach over an approach following current-closure

are discussed. It is shown that due to several convenient cancellations, the pressure closure

approach can be based on first-order guiding-centre equations while an equivalent model

formulated in terms of current closure would require second-order corrections to be retained.

Thus, the benefits and the efficiency of a formulation of kinetic-MHD models with pressure

closure over alternative models based on current closure are demonstrated.

Keywords: MHD stability, internal kink, guiding-centre theory, strong rotation, kinetic-MHD,

finite Larmor-radius, Baños drift, diamagnetic flow
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Zusammenfassung
Es ist bekannt, dass die Stabilität von druckgetriebenen Modi wie dem 1/1 “Internal Kink”

empfindlich von mehreren physikalischen Mechanismen abhängt, einschliesslich der Toroidal-

rotation, kinetischer Effekte bedingt durch thermische und superthermische Partikelarten und

endliche Larmor-Radius-Effekte. Die verfügbaren Modelle berücksichtigen diese kombinier-

ten Effekte nicht in konsistenter Art und Weise. Diese Dissertation präsentiert die Herleitung

eines neuartigen kinetischen Magnetohydrodynamik (MHD)-Modells unter Verwendung ei-

ner kinetischen Druck-Schliessung der Impulsgleichungen, welches all diese physikalischen

Effekte berücksichtigt und zur Untersuchung des Zusammenspiels wichtiger zentrifugaler

und kinetischer Effekte in rotierenden Plasmen verwendet werden kann. Das kinetische

MHD-Modell basiert auf einer neuen Herleitung konsistenter Gleichungen für die Leitzentren

(guiding-centres) mit Flussgeschwindigkeiten in Höhe der Schallgeschwindigkeit. Wichtige

Larmor-Radius-Korrekturen höherer Ordnung werden im Detail in zwei Anwendungen disku-

tiert: Die erste Anwendung betrifft die Neutrale-Partikelstrahl-Injektion (NBI). Es wird gezeigt,

dass (Baños-Drift) Korrekturen die erwarteten Resonanzen von Partikeln mit resonanten ma-

gnetischen Störungen (RMP) beeinflussen, sowie den geschätzten NBI-induzierten Strom

in einem MAST-ähnlichen Gleichgewicht um bis zu 8% ändern können. Als zweite Anwen-

dung wird der gyroviskose Beitrag zum Drucktensor aus der Leitzentrumstheorie hergeleitet.

Korrekturen höherer Ordnung führen zu Abweichungen von einer kreisförmigen Larmor-

Bewegung des Partikels um sein Leitzentrum, welche in nicht-diagonalen Komponenten des

Drucktensors resultieren. Der hergeleitete Ausdruck für den Drucktensor wird verwendet,

um ein konsistentes, lineares kinetisches MHD-Modell mit kinetischer Druckschliessung zu

formulieren. Das Modell berücksichtigt sowohl zentrifugale als auch diamagnetische Effek-

te. Eine drift-kinetische Quasi-Neutralitätsgleichung ermöglicht es, die Auswirkungen eines

parallelen elektrischen Feldes auf globale MHD-Modi zu untersuchen. Druckschliessung der

Impulsgleichung wird durch die Lösung der Leitzentrengleichungen unter Berücksichtigung

endlicher Bahnbreiteneffekte (finite orbit width) und Partikel-Wellen-Wechselwirkungen, wie

etwa Präzessionsresonanzen, erreicht. Die Vorteile des Druckschliessungsansatzes gegenüber

einer Stromschliessung werden diskutiert. Es wird gezeigt, dass unter dem Druckschlies-

sungsansatz Leitzentrums-Gleichungen erster Ordnung ausreichend sind, wohingegen ein

vergleichbares Modell basierend auf einer Stromschliessung Korrekturen zweiter Ordnung

erfordern würde. Dies zeigt die Vorteile und die Effizienz einer Formulierung des kinetischen

MHD-Modells mit Druckschliessung der Impulsgleichung gegenüber alternativen Modellen

basierend auf einer Stromschliessung auf.
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1 Ideal MHD and beyond

1.1 Introduction

The central goal of the continued international research effort in fusion-oriented plasma

physics is the stable confinement of plasmas at temperatures and pressures at which fusion

reactions can take place [Fre07]. A plasma is an electrically conducting, neutral gas of electrons

and ions, with a very low electrical resistivity. The best candidate for a fusion reaction achiev-

able on Earth is the deuterium-tritium (DT) reaction, which occurs at temperatures of around

150 million degrees Celsius [OKWZ16]. One of the most promising candidate devices for the

confinement of plasmas at these temperatures is the tokamak: A device in which external

coils generate strong magnetic fields to keep the plasma magnetically confined, schematically

shown in Figure 5.1.

It has been proven experimentally that the temperatures and pressures required for fusion

reactions to take place can be created and sustained in tokamak devices. In 1991, a large-

scale DT experiment conducted at the Joint European Torus (JET) experiment in Culham, UK,

achieved up to 1.7 MW of fusion power production in a short pulse of around 2 s [Reb92]. A later

DT campaign in JET, in 1997, achieved over 16 MW in fusion power, for about 1 s [KGG+99].

A longer duration of sustained fusion power of over 4 MW over a duration of over 5 s in

JET are reported in [J+99]. Despite these experimental achievements, the ultimate goal of a

commercial use of fusion for electricity generation has not been attained at present.

The future success of this research programme will depend in part on a better understanding

of the complicated physical mechanisms present in magnetically confined plasmas at such

high temperatures [SCM+07, FBC+16]. New physics insights may result in more efficient

heating [GSL+07], better confinement of the plasma with reduced transport of heat away from

the hot core [PMP+07], and at the same time allow stable operation over long time-scales and

free of disruptive instabilities [HWB+07]. While it has been shown that, in principle, conditions

suitable for fusion can be achieved experimentally, the exciting next question is whether this

can be done in a sufficiently efficient manner such that the energy required for the operation

of the tokamak is outweighed by the energy set free in the fusion reactions taking place in the

1



Chapter 1. Ideal MHD and beyond

Figure 1.1 – A schematic illustration of a tokamak. Courtesy of EUROfusion

plasma core.

As already noted above, one of the most successful approaches to the confinement of high-

temperature plasmas is the tokamak configuration. In a tokamak (cp. Figure 1.1), a strong

toroidal field is generated by currents running through external coils. Additional transformer

coils (the central solenoid) are used to induce a toroidal current in the plasma. This toroidal

current serves two objectives. Firstly, it is used to heat the plasma through Ohmic dissipation.

Secondly, this plasma current induces a poloidal magnetic field in addition to the externally

applied toroidal field. This means that the magnetic field in a tokamak is not purely toroidal,

but instead winds helically around the machine, and is designed to fill out well-defined torus-

shaped surfaces, called flux surfaces.

The enforced axisymmetry of the plasma in a tokamak configuration makes such devices

not only easier to build, but also simplifies the theoretical understanding of the physics

relevant for tokamaks, compared to other magnetic confinement configurations without such

symmetry. The toroidal symmetry in a tokamak implies that the canonical toroidal momentum

is a constant of charged particle motion. The presence of such a conserved quantity has

far-ranging consequences for the confinement of particles in a tokamak configuration. An

important aspect in understanding and predicting the enhanced particle transport in real-

world experiments are thus deviations from axisymmetry, allowing the conservation of toroidal

momentum to be broken. One source of the breaking of axisymmetry is due the finite number

of field coils, which in reality achieve to produce only an approximately axisymmetric toroidal

field. Another source of axisymmetry breaking are fluctuations in the magnetic field, which

occur in the presence of plasma instabilities. Both of these effects are sources of symmetry
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breaking, and are found to markedly increase particle transport, and therefore deteriorate

plasma confinement.

The fact that the magnetic field lines wrap around the device helically to form flux surfaces in

a tokamak has many implications for the plasma dynamics: Since charged particles approxi-

mately follow magnetic field lines, the transport of energy and momentum in the direction

parallel to the field lines is very large compared to the transport perpendicular to the flux

surfaces. This means that temperature gradients along the field lines are very quickly damped

out by diffusion. As the magnetic field lines densely fill out most flux surfaces, this has as a

consequence that the temperature at equilibrium must be constant on each flux surface to a

good approximation, and can therefore depend only on a radial variable perpendicular to the

flux surfaces. By this argument, large gradients are permitted only across flux surfaces.

To obtain the best performance in such a plasma configuration, one seeks to maximize

the pressure and temperature at the core of the plasma. For plasma heating of the core

in high-performance plasmas, Ohmic heating due to the externally induced current is not

sufficient, because the electrical resistivity of plasmas decreases rapidly as the temperature

is increased [Fre07]. Additional heating mechanisms are used to heat the plasma core. Such

heating schemes include the heating of ions by the generation of externally injected elec-

tromagnetic waves which resonate with the ions cyclotron motion (ion cyclotron resonance

heating, or ICRH) and the injection of neutral beam ions (NBI). In both cases, this heating

results in a fraction of highly energetic ions in the plasma. The objective is then to confine this

suprathermal species of ions over time-scales that are sufficiently long for their energy to be

transferred to the background ions and electrons of the plasma via collisions.

Invariably, the achievable performance even with such auxiliary heating mechanisms is limited

by plasma instabilities, which typically occur when the large gradients perpendicular to the

flux surfaces exceed a threshold value [Fre14]. In the worst case, such instabilities can lead to

plasma disruptions which result in the complete loss of the plasma. These types of catastrophic

instabilities set hard limits on the available parameter space at which safe operation of a

tokamak is possible. A second type of instability does not result in the complete termination

of the plasma, but rather results in a degradation of its performance [CPG+07]. Examples of

such instabilities are internal instabilities such as the sawtooth and the fishbone instabilities.

The effect of these instabilities is typically the sudden expulsion of hot ions in the plasma

core, resulting in a collapse of the peaked pressure and density distribution at the centre, and

consequently a less well performing plasma.

Various plasma models have been proposed to describe the physical mechanisms that play

a role in such plasma instabilities. Such models are not only required to understand and

avoid plasma instabilities. They can also be used to explore possible mechanisms to suppress

these instabilities and potentially allow operation of high-performance plasma beyond the

apparent operational limits, e.g. by a judicious choice of external heating sources to control

the distribution of suprathermal particles inside the plasma, thereby excerting a stabilizing
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influence on the global plasma dynamics [CGL+15, CIG+09, GCC+09].

In the following, we will review some of the most successful models which have been used

to describe the stability of plasmas. Our review will focus in particular on the so-called 1/1

internal kink mode, which describes the linear stage of the previously mentioned nonlinear

sawteeth and fishbone modes, which are very commonly observed instabilities in plasma

experiments with auxiliary heating. Due to this fact, the understanding of the 1/1 internal kink

instability is of central importance, and takes a prominent role in the research literature on

global macroscopic instabilities. This magnetohydrodynamics (MHD)-mode is particularly

interesting, because it is in fact only very weakly unstable, and thus its destabilization in a

given experiment can depend sensitively on various physical effects; the plasma shaping,

the plasma conductivity, toroidal plasma flow or the resonant interaction with suprathermal

particles have all been shown to significantly influence the stability of the 1/1 internal kink.

It is hoped that the discussion in the remaining sections of this introduction will motivate

the need for the derivation of a new model, which retains several physical effects that have

previously only been studied separately. As will be seen, the complex interplay of various

physical effects influencing the internal kink stability will require us to stretch a vast range of

plasma physics – from ideal MHD and extended fluid models, to higher-order guiding-centre

theory and even touching on gyrokinetics. This effort will result in the derivation of a kinetic-

MHD model that is suitable for a numerical implementation and can be used to describe the

stability of plasmas to internal kink modes, including the effects of strong toroidal flows, kinetic

effects due to the resonant interaction with thermal and supra-thermal (virtually) collisionless

ions and the effects of a parallel electric field in a single, unified model based on guiding-centre

theory. In the process, we will gain a better understanding of the differences and links between

kinetic-MHD and a purely kinetic description of the plasma, which would e.g. be obtained

from a standard gyrokinetic approach, meaning the usual physics models behind gyrokinetic

codes. In particular, we will argue based on a rigorous analysis from modern guiding-centre

theory that under suitable approximations the kinetic-MHD formulation achieves a more

efficient description of the kinetic effects for global macroscopic instabilities, compared to a

fully kinetic formulation; as will be explained in detail in the following chapters, a fully kinetic

description would require higher-order in Larmor radius effects to be retained to obtain a

suitable description of macroscopic instabilities. To circumvent the need for a higher-order

kinetic description, kinetic-MHD instead makes instead use of the additional fluid variables

(bulk flow, current, magnetic field) as well as several convenient cancellations, thus obviating

the need for a kinetic theory expanded to very high orders. The derivation of a novel kinetic-

MHD model has been the main goal and is the central contribution of the present thesis.

1.2 Ideal MHD

The ideal MHD equations model the plasma as an electrically conducting, inviscid fluid with

zero electric resistivity, according to the following equations:
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∂ρ

∂t
+∇· (ρu) = 0, (conservation of mass) (1.1)

ρ
du

d t
+∇p = j ×B , (momentum equation) (1.2)

d

d t
(pρ−γ) = 0, (adiabatic equation of state) (1.3)

∂B

∂t
+∇×E = 0, (Faraday’s law) (1.4)

E +u ×B = 0, (ideal Ohm’s law) (1.5)

∇·B = 0, (1.6)

∇×B =µ0 j , (Ampère’s law) (1.7)

where d/d t := (∂/∂t +u ·∇) denotes the convective derivative along the bulk velocity u. These

equations are expressed in terms of the plasma mass density ρ, the (isotropic) pressure p, the

electric and magnetic fields E , B , and the current density j . The constants µ0 and γ denote

the vacuum permeability and the adiabatic index (ideal gas), respectively.

The ideal MHD equations are used extensively in plasma physics, and are often successful

in predicting the behaviour even of high-temperature plasmas. This is despite the fact that

the derivation of the ideal MHD equations is strictly speaking invalid at fusion-relevant

temperatures [Fre14]. Despite the difficulty in rigorously justifying their application to fusion

plasmas, many breakthroughs in plasma physics have been achieved relying on the ideal

MHD equations. Their practical success must therefore be attributed to the fact that in many

situations of practical interest, the ideal MHD equations capture the essential aspects of the

physics even of high-temperature plasmas. To quote Freidberg [Fre14, p.7, chapter 2]

[...] one of the basic assumptions used in the derivation [of ideal MHD], i.e., that

the plasma is collision dominated, is never satisfied in plasmas of fusion interest.

Even so, there is overwhelming empirical evidence that MHD provides an accurate

description of macroscopic plasma behavior. This apparent good fortune is not

a lucky coincidence but the consequence of some subtle physics; namely, those

parts of the MHD model that are not valid because of violation of the collision

dominated assumption are not directly involved in many if not most phenomena

of interest. [...]

Freidberg’s claim could be regarded as a claim of an “unreasonable effectiveness” of ideal

MHD in plasma physics. While this is certainly true in general and for many strongly growing

instabilities, it should be pointed out that there are important conditions which are frequently

encountered in fusion experiments, for which ideal MHD is insufficient; This is in particular
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ideal MHD

Fusion Plasmas

Figure 1.2 – Domain of validity of ideal MHD (blue) and conditions found in fusion relevant
plasmas (orange). Based on the derivation of ideal MHD from the kinetic Boltzmann-Maxwell
equations in [Fre14]. The relevant quantities for the validity of the ideal MHD model are the
particle density n, and the temperature T .

true for the 1/1 internal kink mode. The main objective of this thesis is to rigorously derive

a model that can be used to analyse the stability of plasmas under such conditions. It is

important to emphasize at this point that among the set of equations (1.1)-(1.7), mainly

the adiabatic equation of state and ideal Ohm’s law are truly problematic from the physical

point of view, in the context of macroscopic instabilities of plasmas [Fre14]. In particular, the

assumption of an adiabatic equation of state is only valid at high collisionality, and therefore

never applies to fusion relevant plasmas (cp. Figure 1.2).

1.2.1 Rotating equilibrium

The relevant equations describing ideal MHD equilibria are obtained by setting ∂/∂t = 0 in

the ideal MHD equations (1.1)-(1.7). We will usually refer to equilibrium quantities with a

subscript 0. At equilibrium, the momentum equation (1.2) is written

ρ0(v0 ·∇)v0 =−∇p0 + j0 ×B0.

In an axisymmetric configuration, the B-field can be expressed in the form B0 =∇φ×∇ψ+
F (ψ)∇φ, in terms of the poloidal flux function ψ and a function F = F (ψ), which is related to

the toroidal component (upper indices) of the magnetic field by Bφ
0 ≡ B0 ·∇φ= F /R2, where R

is the major radius. If ψ has a single extremum inside the plasma, then the flux surfaces are

nested. In this situation, we can introduce coordinates (ψ,θ,φ), where the poloidal magnetic

flux ψ, measured from the core of the plasma outward, serves as a radial coordinate, φ is the
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geometric toroidal angle, and θ is a choice of poloidal angle. The angles θ and φ parametrize

the ψ= const flux surfaces (for a more detailed description of flux coordinates, we refer e.g. to

the thorough discussion in [HM03, Chapter 3.1-3.4]).

From an analysis of the particle motion, particles following equilibrium trajectories are con-

fined to flux surfaces to leading order. In fact, it follows from the detailed derivation in chapter

2, that to leading order, the canonical toroidal momentum Pφ is given by Pφ ≈ qψ with q the

particle charge; Hence the confinement of particles to a flux surface is strongly linked to the

conservation of toroidal momentum in axisymmetry. In particular, we expect the equilibrium

velocity to be tangent to flux surfaces, to good approximation. Following the model studied by

Maschke and Perrin [MP80], and consistent with neoclassical theory [CBT87] from which it is

expected that poloidal flows are strongly damped in axisymmetry, we furthermore assume

that there are no poloidal components of the flow at equilibrium, and that the velocity can be

written in the form

v0 =Ω(ψ)R2∇φ.

Here R denotes the major radius, and Ω(ψ) is the toroidal rotation frequency, which may

vary across different flux surfaces. If we furthermore assume that the temperature T = T (ψ)

is constant on flux surfaces, then under these assumptions, the following form of the Grad-

Shafranov equation [GR58, LS57, Sha58] for ψ can be obtained, allowing for toroidal rotation

(see e.g. [HdBK12]):

R2∇·
(

1

R2 ∇ψ
)
= ∂P

∂ψ

∣∣∣
R
−F

dF

dψ
. (1.8)

Here P (ψ,R) = p̄0(ψ)exp
(

miΩ(ψ)2R2

4T (ψ)

)
is the pressure, provided the ideal gas law is assumed

[MP80, CBF+15], and it is noted that due to centrifugal effects, the pressure varies on a flux

surface. We recall that the function F (ψ) is related to the toroidal component of the magnetic

field via B0 · ∇φ = F /R2. As compared to the non-rotating case (Ω ≡ 0), to determine the

rotating equilibrium, one thus needs to specify in addition to the usual profiles, such as

e.g. the pressure profile p0(ψ) and the F (ψ)-profile (which in practice is usually determined

indirectly from either a specified current or ‘safety factor’ profile, see below), also the rotation

profileΩ(ψ)2/T (ψ).

In chapter 4, we will revisit the above form of the Grad-Shafranov equation from the kinetic

point of view, based on guiding-centre theory. In particular, we will see that this form of the

equilibrium relations, which here was obtained from ideal MHD, can also be derived to leading

order from guiding-centre theory.
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(a) pressure profile (b) safety profile

Figure 1.3 – Plasma profiles p(ρ) and q(ρ) required to compute an equilibrium, in the absence
of rotationΩ≡ 0.

1.2.2 Straight field-line coordinates

In the description above, we have not specified the poloidal angle. For stability analysis, the

preferred poloidal angle is the so-called straight-field line (SFL) angle θSFL, which is chosen

such that the safety factor q ≡ (B ·∇φ)/(B ·∇θSFL) is a flux surface quantity, i.e. q = q(ψ). As

the name indicates, with this choice of poloidal angle, the field lines are straight, describing

curves of the form (θ,φ)(τ) = (θ0 +τ,φ0 +qτ) when following a field line for time τ, on a fixed

flux surface ψ. Given an arbitrary choice of a poloidal angle θ and the SFL angle θSFL on the

flux surface, we clearly have

B ·∇θ = dθ

dθSFL
(B ·∇θSFL).

Therefore, given an arbitrary angle θ, we can find the corresponding SFL angle, by solving

dθSFL

dθ
= B ·∇θSFL

B ·∇θ = 1

q(ψ)

B ·∇φ
B ·∇θ , (1.9)

where

q(ψ) = 1

2π

∫ 2π

0

B ·∇φ
B ·∇θ dθ,

is the flux surface average of the “local” qloc(ψ,θ) ≡ (B ·∇φ)/(B ·∇θ). Clearly, θSFL is unique

up to the arbitrary choice of the reference point at which θSFL = 0. Given an equilibrium

in flux coordinates generated by a MHD equilibrium code, such as VMEC [CH87], the first

step in the numerical stability analysis is therefore often to map the equilibrium to straight

field-line coordinates, which, as mentioned earlier, are more suitable for the stability analysis.

Conversely, the equilibrium problem is not usually conveniently defined in terms of θSFL.

For example, the VMEC equilibrium code employs a Fourier expansion of R and Z (vertical

coordinate) in terms of θ, with a fixed number of Fourier modes. The freedom in the choice
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(a) VMEC flux coordinates (b) straight field line coordinates

Figure 1.4 – Flux aligned equilibria, (a) obtained from the VMEC code and (b) the correspond-
ing transformed straight field-line coordinates. Computed from the plasma profiles shown in
Figure 1.3.

of θ is used to improve the accuracy of the Fourier representation of R and Z . The resulting

VMEC poloidal angle θ differs significantly from θSFL, as is shown in Figure 1.3. It shows an

example of an equilibrium generated by VMEC, corresponding to the profiles displayed in

Figure 1.3, and the corresponding equilibrium mapped to SFL coordinates.

1.2.3 Linear stability – Plasma displacement

In ideal MHD, the linearization of the set of equations (1.1)-(1.7) can be very conveniently de-

scribed in terms of a single vector field ξ, called the plasma displacement. In the non-rotating

case (v0 = 0), the plasma displacement is simply given by ∂ξ/∂t = δv , where δv denotes the

perturbed ideal MHD velocity [Fre14] in the Eulerian frame. The correct generalization of the

displacement to the rotating case goes back to Frieman and Rotenberg [FR60], in which case

one defines the plasma displacement via

∂ξ

∂t
+v0 ·∇ξ= δv .

It turns out that with this definition of ξ, all perturbed ideal MHD quantities can be entirely

written in terms of ξ in a very compact manner. As a consequence, the linearisation of the

ideal MHD equations can be fully expressed in terms of the relevant momentum equation,

describing the motion the plasma displacement ξ. The resulting momentum equation for the

evolution of ξ takes the form (cp. [GKP10, Chapter 12] for a thorough discussion)

ρ0
∂2ξ

∂t 2 +2ρ0(v0 ·∇)
∂ξ

∂t
= δG(ξ), (1.10)
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where

δG(ξ) = δF (ξ)+∇· (ξρ0v0 ·∇v0 −ρ0v0v0 ·∇ξ),

is the extended force operator, and δF is the conventional force operator for static (v0 = 0)

plasmas [GP04, Fre14]:

δF (ξ) =∇(Γp0∇·ξ)−B0 × (∇×δB )+∇(ξ ·∇p0)+ j0 ×δB .

In these expressions, ρ0 is the equilibrium mass density, p0 is the equilibrium pressure, v0 is

the background velocity, j0 =µ−1
0 ∇×B0 is the current density corresponding to the equilibrium

magnetic field B0. The perturbed magnetic field δB is given by

δB =∇× (ξ×B0),

so that δA ≡ ξ×B0 can be identified as the perturbed vector potential.

The formulation in terms of a plasma displacement is not only convenient because it reduces

the number of equations to be analysed from the original 8 equations to 3 equations; In the

non-rotating case, this formulation also makes the self-adjoint character of the equations

manifest, which has important consequences on the spectra of ideal MHD equilibria. Indeed,

it can be shown that the MHD force operator δF (ξ) is self-adjoint in the sense that for any two

vector fields ξ,η, we have∫
η∗ ·δF (ξ) d3x =

∫
δF (η)∗ ·ξ d3x ,

where η∗ denotes the complex conjugate of η. Furthermore, in the non-rotating case, the

left-hand side of the momentum equation simplifies to ρ0∂
2ξ/∂t 2. Making the ansatz ξ(x , t ) =

ξ̂(x)e iωt , the problem of ideal MHD stability in the non-rotating case thus leads to an eigen-

value problem for self-adjoint operators:

−ω2ρ0ξ= δF (ξ). (1.11)

Since the spectrum of a self-adjoint operator is purely real, we can distinguish a unstable

plasma from an stable one, by considering whether the spectrum of δF contains positive

eigenvalues, or not. If δF (ξ) possesses a positive eigenvalue Λ> 0, then equation (1.11) has

a solution with −ω2 = Λ > 0, implying that ω = ±p−Λ ≡ ±iλ is a complex number (here

λ≡p
Λ> 0), and hence there exists a normal mode solution ξ= ξ̂e iωt = ξ̂eλt of (1.11) which

grows exponentially like ∼ eλt .

Due to the self-adjoint nature of δF , the most unstable eigenvalue can be determined by a

variational principle [Fre14, Chapter 6.4]:

ω2 = min
ξ

δW (ξ)

δK (ξ)
, δW (ξ) =

∫
ξ∗ ·δF (ξ) d3x , δK (ξ) =

∫
ρ0

(
ξ∗ ·ξ) d3x , (1.12)
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leading to the following “energy principle”, which roughly states the following (for a more

precise statement, see [Fre14, p.262]):

A static equilibrium (v0 = 0) is stable if and only if δW (ξ) > 0 for all plasma displacements ξ.

An equilibrium for which there exists a displacement ξ, for which δW (ξ) = 0, is often referred

to as marginally stable. It is noted here that the rotating case unfortunately does not exhibit

the convenient self-adjoint properties described above.

1.2.4 Parallel and perpendicular dynamics

In non-rotating plasmas the linear momentum equation for ξ can be effectively split into

parallel and perpendicular parts, as will presently be discussed. It turns out to be convenient

to introduce β≡ B−2B ·ξ= B−1ξ||, such that ∇·ξ|| =∇·(βB0) = B0 ·∇β. With this definition, we

find from the momentum equation (1.10) (the growth rate λ≡ iω is considered below, rather

than the frequency ω):

λ2ρ0ξ⊥ =∇⊥
(
ξ⊥ ·∇p0

)+∇⊥
(
Γp0∇·ξ⊥

)+∇⊥
(
Γp0B0 ·∇β

)+ [
δ

(
j ×B

)]
⊥ ,

perpendicular to the field B0, and

λ2ρ0β= B−2
0 B0 ·∇

(
ξ⊥ ·∇p0 +Γp0∇·ξ⊥

)+ΓB−2
0 p0B0 ·∇

(
B0 ·∇β

)+B−2
0

[
δ

(
j ×B

)]
|| ,

parallel to the field lines. It can be shown that the first and last terms on the right-hand side of

the parallel equation cancel,1 leaving us with

λ2ρ0β= ΓB−2
0 p0B0 ·∇

(∇·ξ⊥+B0 ·∇β
)

. (1.13)

Comparing terms on the left- and right-hand sides of this equality, we now note that they are

of relative order of magnitude:

λ2

Γp0/R2
0ρ0

= λ2

ω2
s

,

where ω2
s = Γp0/R2

0ρ0 is the sound frequency. For many ideal MHD modes of interest, such

as the 1/1 internal kink, we have λ2 ¿ω2
s , so that for such modes, the left-hand side term of

(1.14) is much smaller than the terms on the right-hand side. This means that we must have

B−2B ·∇(∇·ξ⊥+B ·∇β)≈ 0, (1.14)

and therefore to good accuracy (corrections of order λ2/ω2
s ), we have B · ∇β ≈ −∇ ·ξ⊥, or

equivalently ∇·ξ≈ 0. Under this incompressibility approximation, the perpendicular dynamics

1This can be seen easily by doting the un-linearized momentum equation with the total field B = B0 +δB ,
noting that ( j ×B ) ·B = 0, then linearizing.

11



Chapter 1. Ideal MHD and beyond

is then governed by the “incompressible MHD equations”:

λ2ρ0ξ⊥ =∇⊥
(
ξ⊥ ·∇p0

)+ [
δ

(
j ×B

)
)
]
⊥ , (1.15)

while the parallel component ξ|| = B−1
0 β can be solved for from B ·∇β≈−∇·ξ⊥.

The above analysis shows that the threshold for stability within the ideal MHD framework,

and crucially in the absence of toroidal rotation, is entirely determined by the incompressible

MHD equations (1.15) for ξ⊥, which could (formally) also have been obtained from our

momentum equation by formally taking Γ = 0, ξ|| = 0. The important difference between

the incompressible model (neglecting parallel dynamics altogether) and the full ideal MHD

momentum equation is that even under the approximation ∇ · ξ = 0, the compressibility

term gives us additional information about the parallel component ξ|| 6= 0. It is clear that

under this approximation ξ|| will not contribute to δW . Instead, the parallel displacement will

contribute to the inertia δK . In fact, for the internal kink mode, it can be shown that ξ|| leads

to an inertial enhancement δK (ξ) ≈
√

1+2q2
s δK (ξ⊥) =p

3δK (ξ⊥), where qs = 1 = 1/1 is the q-

value at the rational surface, where the majority of the inertia originates [GGJ75, GW17]. Thus,

this discussion shows that while the determination of stability or instability agree between

the compressible and incompressible models, it is expected that the incompressible model

overestimates the growth rate γincomp ≈p
3γ by a factor of

p
3 ≈ 1.4 for the internal kink mode

compared to the growth rate γ determined by the full ideal MHD model. If one instead takes

projections of the momentum equation for solving for the eigenvalue problem, ξ|| enters the

replaced momentum equation through the ∇·ξ contribution to δp. To recover the correct

growth rate one must eliminate ξ|| in ∇·ξ via the solution to the parallel component of the

momentum equation, and thus allow for weak contributions to ∇·ξ.

The fact that the determination of instability for the compressible and incompressible MHD

models agree may be seen as a more rigorous justification for Freidberg’s quote at the begin-

ning of this chapter. As has been pointed out above, the essential reason is that the perpen-

dicular dynamics, represented by ξ⊥, are only very weakly coupled to the parallel dynamics

ξ|| in the ideal MHD model without toroidal flow. And the dynamics perpendicular to the

field lines is well modeled by ideal MHD. This weak coupling is good news, since the paral-

lel dynamics are not well represented in the ideal MHD model. Indeed, in the collisionless

limit, particles are free-streaming along the field-lines, and the fluid assumption (which

requires high-collisionality) completely breaks down parallel to the field lines. Thus, in high-

temperature, low-collisional plasmas the mean-free path along field lines can be very large,

allowing complicated wave-particle interactions to take place, and we cannot expect any fluid

model to accurately represent such effects parallel to the field lines. Perpendicular to the field

lines, the magnetic field serves to restrict the mean-free path of particles, which gives some

justification for a fluid approach. If the perpendicular and parallel dynamics are only weakly

coupled, then the inaccurate representation of the dynamics along the field lines may be of

minor concern.
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This argument of weak coupling of perpendicular and parallel dynamics breaks down in the

strongly rotating case. As is clear from the momentum equation (1.10), the non-vanishing

fluid velocity v0 6= 0 introduces an additional, complicated coupling between parallel and

perpendicular dynamics, both due to the non-vanishing advective term, and through the

centrifugal and coriolis forces (additional terms in the extended force operator δG(ξ) as

opposed to the conventional ideal MHD force operator δF (ξ)). Due to this fact, it is expected

that an improved treatment of the parallel dynamics will be particularly important for rotating

plasmas.

1.3 Basic formulation of kinetic-MHD

In the collisionless limit, the dynamics of a (non-relativistic) plasma are well described by

the (kinetic) Vlasov equations, describing the evolution of the particle distribution function

fs(x , v , t ) for each particle species s:

∂ fs

∂t
+v ·∇ fs + qs

ms
(E +v ×B ) · ∂ fs

∂v
= 0, (1.16)

coupled to the Maxwell equations to determine the electromagnetic fields E , B . To obtain the

corresponding moment equations, we multiply by ms , ms v and integrate against d v . This

leads to the exact moment equations for each species s,

∂ρs

∂t
+∇· (ρs us

)= 0, (1.17)

ρs

(
∂us

∂t
+us ·∇us

)
=−∇·Ps +qsns (E +us ×B ) . (1.18)

Here ρs is the mass density [kg/m3], us is the macroscopic fluid velocity [m/s], ns is the

number density [1/m3], and Ps is the pressure tensor [N/m2], defined by

Ps ≡ ms

∫
(v −us)⊗ (v −us) fs d v . (1.19)

These equations are exact, but they are not closed, since there is no equation to determine the

pressure Ps in terms of the other moments ρs and us .

Summing equation (1.18) over all species, assuming quasi-neutrality
∑

s qsns = 0 and intro-

ducing the mass density ρ ≡ ∑
s msns , and mass velocity u by ρu ≡ ∑

s msnsus , we find the

following basic form of a kinetic-MHD model:

∂ρ

∂t
+∇· (ρu

)= 0, (1.20)

ρ

(
∂u

∂t
+u ·∇u

)
=−∇·P + j ×B −∇·σ. (1.21)

where the pressure is now given by P ≡ ∑
s Ps , and for each species, Ps is obtained from

13
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(1.19). Summation of the Lorentz force terms in (1.18) yields the familiar j ×B force, since∑
s qsns us = j . Note that the summation over all species eliminates the explicit appearance

of the electric field E , thanks to the quasi-neutrality relation
∑

s qsns = 0. This cancellation is

good news, since the electromagnetic forces are formally large terms in the exact momentum

equations (1.18). The last term in (1.21) represents a stress which arises due to the difference

between the flow velocity us of species s and the mass velocity u:

σ≡∑
s

msns(us −u)⊗ (us −u).

The ideal MHD model is obtained from (1.20) and (1.21), assuming that the inertia is domi-

nated by a single bulk ion species i and making an adiabatic closure assumption, so that the

total pressure
∑

s Ps can be written in the isotropic form p I , in terms of a scalar pressure p.

Note that in this case, we have σ≈ 0, since ρ ≈ ρi , ui ≈ u and me ¿ mi . We will assume that

the plasma inertia is dominated by a single species i , in the following. As already pointed out

above, the main problem with the ideal MHD model as applied to fusion relevant plasmas lies

in the adiabatic closure assumption. Without this assumption, we find instead the following

basic form of a kinetic-MHD model (here ρ = ρi , u = ui ):

∂ρ

∂t
+∇· (ρu

)= 0, (1.22)

ρ

(
∂u

∂t
+u ·∇u

)
=−∇·P + j ×B . (1.23)

where the pressure is given by P ≡∑
s Ps , and for each species, Ps is obtained from (1.19). Note

that even though the electric field has been eliminated from the momentum equation, it’s

effects will still be felt in the evolution equation for the particle distributions fs (1.16), and

hence will have an indirect influence on the momentum equation via Ps , which is determined

from the kinetic closure relation (1.19). To leading order, an adequate closure for the current j

is obtained as in the ideal MHD model from ideal Ohm’s law and the Maxwell equations (with-

out displacement current), equations (1.4)-(1.7). In this approximation, the perpendicular

velocity u⊥ is given by the familiar E ×B-velocity,

u⊥ = E ×B

B 2 . (1.24)

As a result of this discussion, we obtain the basic form of a kinetic-MHD model, comprising of

the continuity equation (1.1), the momentum equation (1.23) (with kinetic closure), and the

field equations (1.4), (1.5), (1.6) and (1.7). The adiabatic equation of state of the ideal MHD

model (1.3) is now replaced by the kinetic closure relation (1.19). The latter requires solution

of the kinetic equation (1.16).

In contrast to the ideal MHD model, a kinetic-MHD model allows for the tensorial nature

of the pressure tensor. It goes back to the early work of Chew, Low and Goldberger [CGL56],

that the pressure in plasmas at low collisionality should be of the so-called CGL form P ≈

14



1.4. The 1/1 internal kink

p||bb +p⊥(I −bb), though the focus of the work [CGL56] was not on a kinetic closure. This

leading order form of the kinetic pressure tensor is an immediate consequence of guiding-

centre theory (cp. chapter 4, where also higher-order, off-diagonal corrections will be derived).

The first investigation of linear stability in a kinetic-MHD model dates back at least to the

work of Rosenbluth and Rostocker [RR59], where the linearly perturbed kinetic equation was

solved along unperturbed trajectories. The work [RR59] also first pointed out the benefits,

in terms of a formal ordering in the Larmor radius, of a pressure closure in the momentum

equation over a kinetic current closure, or indeed a direct kinetic formulation. We will return

to this topic in chapter 4, where we derive a suitable kinetic-MHD model with pressure

closure based on a rigorous expansion of the guiding-centre equations in the Larmor radius.

A kinetic-MHD model based on a reduced, leading-order (“beads-on-a-string”) drift-kinetic

equation to provide kinetic pressure closure was discussed by Kulsrud [Kul83]. The present

work follows a very similar approach, but aims to consistently include higher-order effects

such as guiding-centre drifts and finite-Larmor radius effects. The derivation of a suitable set

of higher-order guiding-centre equations is carried out in detail in chapter 2. Kinetic-MHD

models have in particular made an important and essential contribution to the understanding

of the m = 1/n = 1 internal kink mode, which is a linear precursor for the often-observed

sawtooth (and fishbone) instabilities in present day experimental tokamak devices.

The kinetic-MHD model described above differs from the ideal MHD model only in the way

in which pressure closure is obtained. Due to this fact, the linearisation of this kinetic-MHD

model can again be described in terms of a plasma displacement ξ, leading (in the static case

v0 = 0) to a momentum equation of the form

−ω2ρ0ξ=−∇·δP +δ j ×B0 + j0 ×δB , (1.25)

where in contrast to the momentum equation (1.11) in ideal MHD, the perturbed pressure

δP = δP (ξ;ω) is now a tensor which depends on the mode frequency ω in addition to the

displacement ξ (as well, potentially, as the perturbed parallel electric field). δP has to be solved

for in terms of the perturbed distribution functions δ fs , of all kinetic species s, and is given

by δP =∑
s δPs , where δPs = ms

∫
(v ⊗v )δ fs d v . One of the central problems of kinetic-MHD

is the derivation of suitable (simplified) equations to determine the perturbed distribution

functions δ fs , and an analysis of the complicated dependence of δP on ω.

1.4 The 1/1 internal kink

A particularly important instability, which describes the linear stage of sawteeth and fish-

bones, is a perturbation that can be described by a plasma displacement ξ with a dominant

m = n = 1 mode structure ∼ exp(i mθ+ i nφ). A first analysis of the internal kink instability

based on the ideal MHD model was undertaken by Shafranov [Sha70]. Employing an ex-

pansion of the linearized stability equations in the inverse aspect ratio (εa ∼ a/R0 ¿ 1), a

minimisation of δW = δW0 + ε2
aδW2 + . . . was carried out for a straight cylindrical plasma
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Figure 1.5 – Internal kink mode structure: Shown are the dominant (m,n)-Fourier components
ρξ

ρ
m of the radial displacement ξρ , obtained for the straight field-line equilibrium of Figure

1.4, with toroidal mode number n = 1. Superimposed is the q-profile (safety factor). Visible is
the dominant m = n = 1 mode structure with a sharp gradient when q = m/n = 1, where the
field-line bending stabilisation is weakest. Also visible is the m = 2, n = 1 side-band, which
has a sharp change in gradient only at the q = 2 surface, consistent with m/n = 2/1 field-line
bending stabilization.

column (neglecting effects due to the toroidal bending of the torus). From such a derivation

(see e.g. [Gra99, Chapter 2.4] for a more thorough discussion), one concludes that to lowest

order the displacement must be incompressible ∇·ξ≈ 0, and that to the next order, a top-hat

displacement achieves the minimisation of δW . In fact, it can be shown that the dominant

contribution for a perturbation with poloidal and toroidal m/n mode structure is of the form

δW2 ∼
∫ [(

r
dξr

dr

)2

+ (m2 −1)(ξr )2
](

n

m
− 1

q(r )

)2

r dr,

which physically corresponds to the energy required for the mode to bend the field lines.

Clearly, this field-line bending is a stabilizing (δW2 ≥ 0) effect. For a perturbation to be unstable,

it is therefore necessary that it minimize such field-line bending, resulting for m = n = 1 in a

perturbation with dξr /dr = 0, except at any radial position r where q(r ) = m/n = 1; at those

16



1.4. The 1/1 internal kink

Figure 1.6 – Internal kink: Comparison of growth rates vs. poloidal β, obtained from VENUS-
MHD vs. analytic form due to Bussac, for equilibrium with profiles shown in Figure 1.3 and
scan over different scaled pressure profiles. The internal kink mode structure of Figure 1.5
corresponds to the first unstable value of βp .

radial positions, dξr /dr may be non-zero since it is cancelled by the factor (n/m−1/q)2. With

the appropriate boundary conditions, this implies that the radial component ξr have a top-hat

shape, as can be inferred from Figure 1.5, where ρξρ ≈ rξr is plotted for a numerically obtained

1/1 internal kink. Since such a top-hat displacement is marginally stable to leading order in

the inverse aspect ratio εa , it is necessary to go to higher order in εa to determine the stability

of the 1/1 internal kink. After the initial work by Shafranov [Sha70], a treatment up to fourth

order in εa was later achieved by Rosenbluth et al. [RDR73], who again considered a straight

cylindrical plasma column, thus neglecting toroidal effects. A perhaps surprising result of the

analysis of Rosenbluth et al. is the realization that by a careful treatment of the “layer region”

(radial region close to q = 1, where field line bending stabilization is weak), the growth rate

γ= iω turns out to be linearly related to the minimised potential energy δWe in the “external

region”, i.e. γ∼ δWe. In contrast, a naive consideration of the ideal MHD variational principle

would instead suggest a quadratic relationship γ2 ∼ δW .

The results of Rosenbluth et al. [RDR73] were later revisited by Bussac et al. [BPES75], who

included corrections due to the toroidal bending of the plasma into the shape of a torus.

Hinting at the delicate nature of the 1/1 internal kink instability, Bussac et al. showed that

the cylindrical corrections to δW derived by Rosenbluth et al. are exactly cancelled by certain

toroidal corrections, so that the remaining terms arise purely due to toroidal effects. Employing

the singular layer analysis of [RDR73], Bussac et al. show that for a parabolic q-profile, the

internal kink mode is unstable provided that βp & 0.2 to 0.3, where βp is the poloidal beta,

a measure for the ratio of the plasma internal energy (pressure) vs. the poloidal magnetic

energy, inside the q = 1 surface, with an approximately quadratic growth as a function of βp

(cp. Figure 1.6, where a scan in βp is shown computed by the stability code VENUS-MHD; for
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a description of this code, see chapter 5).

As already mentioned in the previous section, the plasma compressibility (parallel dynamics)

leads to inertial enhancement and a corresponding adjustment of the growth rate by a factorp
3 [GGJ75]. Ara et al. [ABC+78] have later taken into account the diamagnetic motion of ions

and electrons in the layer: Introducing the ion diamagnetic frequency ωi ,p =−p ′
i /(Z eni B0r ),

the most important modification due to such diamagnetic effects is the replacement of the

growth rate γ= iω→ i
√
ω(ω−ωi ,p ), resulting in a dispersion relation i

√
ω(ω−ωi ,p ) ∼ δWe,

where δWe is the minimized potential energy of Bussac et al. [BPES75]. Note that the intro-

duction of diamagnetic effects breaks the symmetry present for ideal MHD modes (which lie

symmetric about the origin). Further references and a more extended review can be found

in [Gra99].

1.4.1 Centrifugal effects

The stability of the 1/1 internal kink in tokamaks and in the absence of toroidal rotation, has

received considerable attention since the result due to Bussac et al. [BPES75] and is reason-

ably well understood. The effect of strong toroidal rotation on this instability has first been

considered by Walbroeck [Wae96] only two decades after the work by Bussac et al. [BPES75].

In [Wae96] it was shown that, in addition the trivial doppler shift of the mode frequency in the

lab frame, the centrifugal forces cause a “gyroscopic” stabilization mechanism even in rigidly

rotating plasmas, i.e. in the absence of any shear in the rotation frequencyΩ(ψ) = const.. This

gyroscopic mechanism is especially important for tokamaks with a large fraction of neutral

beam injection (NBI) heating, where it can lead to significant stabilising effects. The rota-

tion velocities can in fact exceed the sound velocity in low aspect-ratio tokamaks such as

MAST [LAA+07] and NSTX [MBF+05]. Therefore centrifugal effects can not be neglected in

these devices.

The observations of a stabilizing mechanism by Waelbroeck [Wae96] has later been confirmed

in work by Wahlberg and Bondeson [WB97, WB00] (see also [WB01] for similar effects on

interchange modes in an axisymmetric torus). The latter work was assisted by a computer-

algebra program to carry out the inverse aspect ratio expansion of the Frieman-Rotenberg

equations [FR60] to the required order in inverse aspect ratio εa ∼ a/R0. Wahlberg and Bonde-

son relate the stabilising effects due to toroidal rotation to the created nonuniform plasma

density and pressure on the q = 1 surface due to the centrifugal force. The stabilisation in

the work [Wae96, WB00] is thus related a finite continuum frequency in the q ≈ 1 layer, the

so-called “Brunt-Väisälä” (BV) frequency,

ω2
BV ≡ M 2Ω2

3

(
1− 1

Γ

)
,

whereΓ is the adiabatic index, M is the sonic Mach number, given by M =Ω/ωs =
√
ρΩ2R2

0/2p,

and p the plasma pressure. This continuum frequency is partly responsible for the stabilization
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of the internal kink mode in the analysis of [Wae96]. To leading order, it is found in [WB00]

that the stability criterion can be written as ωBV > γB , where γB is the growth rate computed

in the absence of any flow. As already noted in [WB00], the explicit dependency of this stability

criterion on the value of the adiabatic index Γ shows that this result depends crucially on the

fluid closure in the ideal MHD model and thus the parallel dynamics. This is consistent with

our discussion of the coupling of perpendicular and parallel dynamics due to centrifugal ef-

fects in section 1.2.4. Since ideal MHD is a bad description of the parallel dynamics in realistic

high-temperature tokamak plasmas, it is expected that the kinetic behavior along the field

lines will influence this stabilization mechanism considerably.

Since the stabilizing mechanism discovered in the analysis of [WB00] crucially depends on the

non-uniform distribution of pressure and density in the equilibrium on the q = 1 flux surface

due to centrifugal forces, the work [WB00] also suggests that it is crucial to consistently include

flow effects not only in the stability model, but also in the equilibrium. The importance of

centrifugal effects for internal kink mode stability for numerical stability analyses in toroidally

rotating plasmas with realistic tokamak geometry has been further investigated by Wahlberg,

Chapman and Graves in [WCG09]. In this work, analytical results of [WB00] were compared to

results obtained from two numerical codes: CASTOR-FLOW) [SGM+05], with a self-consistent

treatment of centrifugal effects in both the equilibrium as well as the linearized equations of

motion, and another code, MISHKA-F [CSHM06], which includes flow effects correctly in the

linearized stability equations, but neglects centrifugal effects on the equilibrium. Centrifugal

effects have been found to be important for the stability of the internal kink mode, even at

modest flow rates. In particular, guided by the analytical results, the authors of [WCG09] find

that while the assessment of stability from the two codes [SGM+05, CSHM06] can be very

similar for certain choices of plasma profiles, for other choices, they make completely opposite

predictions; In the most extreme case reported in [WCG09], the consistent model predicts

complete stabilization of the internal kink mode, while the inconsistent model predicts a

destabilization due to rotation. The marked differences between a self-consistent and non-self-

consistent treatment of centrifugal effects on mode stability are traced back to the stabilizing

influence of a rotation-induced geodesic acoustic mode (GAM), which exists in the ideal MHD

model only when centrifugal effects on rotating equilibria are taken into account. Centrifugal

effects lead to pressure corrections, enhancing the Shafranov shift of flux surfaces, and induce

a nonuniform plasma density on flux surfaces. A recent review on GAMs in rotating plasmas,

and their correction to instabilities, can be seen in [GW17].

1.4.2 Kinetic effects

Going beyond fluid theory, it has been found that additional important effects on the internal

kink mode stability can come from interactions of this macroscopic mode with both an

external species of (suprathermal) kinetic ions, as well as additional kinetic effects due to a

kinetic description the bulk plasma. As already indicated in section 1.3, a suitable kinetic-MHD

model to describe such kinetic effects consists of two ingredients: A fluid model to determine
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the evolution of the electro-magnetic fields, as well as macroscopic fluid moments, such as

the bulk velocity and current density on the one hand, and on the other hand a kinetic model

which accounts for kinetic effects such as particle-wave interactions and Landau damping,

and which provides a more accurate moment closure (pressure) for the moment equations of

the fluid model.

At this level, we can distinguish between self-consistent and perturbative approaches. Whereas

in a self-consistent approach, the kinetic-MHD model that is used to asses the stability includes

the full interaction between the kinetic and the fluid components by solving for the evolution

of the full coupled system of fluid and kinetic equations, in a perturbative approach, one first

solves the fluid equations in the absence of kinetic effects, and then adds kinetic corrections

in a second step. Typically in such a perturbative approach, the mode structure is fixed from

ideal MHD, and only corrections to the mode frequency ω are solved for based on a modified

dispersion relation. A suitable dispersion relation is obtained from the momentum equation

(1.25), by multiplication with ξ∗, and integration against d x . This general procedure results in

an equation of the form

iω∼ δWfluid +δWkin(ω),

where, as a rule of thumb, ω is replaced by
√
ω(ω−ωi ,p ), when diamagnetic effects due to

ions are included. As indicated by this equation, two contributions to δW are now taken into

account; the first one corresponds to the fluid potential energy contributions δWfluid, while

the second term corresponds to

δWkin(ω) ∼
∫
ξ∗ · (∇·δP (ξ;ω)) d x ,

and is typically a complicated function of ω. The additional term δWkin accounts for kinetic

effects such as particle-wave interactions. Different versions of such a dispersion relation have

been derived under various approximations. Notably, this procedure has been employed by

Chen et al. [CWR84] to investigate the excitation of internal kink modes by trapped energetic

beam ions. The model of Chen et al. is based on a ideal MHD description of the bulk plasma

species (adiabatic closure), and includes an additional kinetic species of suprathermal particles

which contributes a hot particle pressure tensor of CGL form δPh = p||,hbb + p⊥,h(I −bb)

with parallel and perpendicular pressure components p||,h , p⊥,h , respectively. A bounce-

averaged form of the kinetic equation is solved, taking into account the toroidal drift frequency,

while neglecting finite orbit-width effects (drifts off the flux surface). The effects of a parallel

electric field are neglected (i.e. the model assumes δE|| = 0). Based on an expansion in inverse

aspect ratio, the authors find that the inclusion of trapped supra-thermal particles induces an

additional trapped-particle branch in the dispersion relation, with mode frequency ω∼ωdh ,

where ωdh is the drift frequency of the suprathermal trapped particles. It is proposed that this

trapped-particle induced branch is related to the fishbone instability.

In addition to such a minority species of supra-thermal ions, Kruskal and Oberman [KO58]
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have also shown that thermal ions can stabilize MHD instabilities such as the internal kink

[HH88]. Kruskal Oberman theory predicts that thermal trapped ions contribute to δW via an

additional term

δWKO ∼
∫
ξ∗⊥ · (∇·δpk,i )d x ,

where the perturbed pressure tensor is given by δpk,i = −ξ⊥ ·∇pi 0. This stabilizing term is

analogous to the adiabatic compressibility term in ideal MHD, and arises due to the fact that

thermal trapped particles resist compression. A generalisation of the inertial enhancement

first derived by Glasser et al. [GGJ75] in a kinetic treatment of the thermal ions, has been

derived by Graves et al. in [GHH00]. The derivation of [GHH00], which takes into account

radial drift motions across the rational surface, shows that the inertial enhancement factorp
1+∆, where ∆MHD = 1+2q2 in ideal MHD, as derived by Glasser et al., is replaced by

∆≈
[

1.6p
εa,1

+0.5

]
q2,

when kinetic effects in the singular layer (where q ≈ 1) due to thermal ions are taken into

account. Here εa,1 = r1/R0 is the inverse aspect ratio at the q = 1 surface. Thus, kinetic effects

due to thermal ions are expected to significantly affect the growth rate due to corrections to the

inertia. It is noted that analogous inertial enhancement factors have been evaluated for higher

frequency modes [ZC14]. Besides such inertial corrections, the work by Graves et al. [GHH00]

investigates the effects of sheared toroidal plasma rotation on the internal kink mode. To this

end, a kinetic-MHD model is derived which includes toroidal rotation in the toroidal drift

motion of the kinetic ions. While this model is suitable to investigate the effects of velocity

shear, centrifugal effects are not taken into account. Therefore, to investigate the combined

centrifugal and kinetic effects in a rotating plasma, the model of Graves et al. [GHH00] should

be extended to allow for centrifugal effects on the thermal ions, as well as centrifugal and

coriolis forces in the equation for the plasma displacement. Also in [GHH00], the parallel

electric field was assumed to vanish (δE|| = 0).

The inclusion of an electrostatic contribution (parallel electric field) in the computation of

the perturbed potential energy δW has been discussed by Antonsen and Lee [Ant82], who

employ Lagrangian coordinates to solve the equation of the kinetic species, and include a

quasi-neutrality relation. Their model is bounce-averaged and takes into account the toroidal

drift motion of trapped particles, but neglects drifts off the flux surface. Though the work of

Antonsen and Lee does not focus on the internal kink, their model has later been employed by

Antonsen and Bondeson [AB93] who numerically investigate the effects of thermal trapped

particles on the m = n = 1 internal kink, with a particular emphasis on the effect of unequal

electron- and ion-temperatures, and the coupling of this mode to electrostatic trapped particle

modes.

An extension of the model of Antonsen and Lee [Ant82] to include full orbit width effects

has been proposed by Porcelli et al. [PSBZ92, PSK94], though their model was applied to
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cases where δE|| was also set to zero (no attempt was made to eliminate δE|| in favor of ξ).

In [PSK94], starting from the guiding-centre equation derived by Littlejohn [Lit83], the authors

obtain a suitable linearisation of the kinetic equation for δ f by direct perturbation of the

guiding-centre equations of motion. Their method based on the Lagrangian formulation of

guiding-centre theory allows for the full finite-orbit width effects to be retained. Although

a perturbed electrostatic potential δφ is included in the derivation of the kinetic equation

as mentioned above, the corresponding quasi-neutrality relation that would be needed to

self-consistently calculate δφ is not discussed in the work [PSK94]. It is shown that results

from models with kinetic closure in the zero-orbit width limit overestimate the fast particle

stabilization of the internal kink in the potato orbit limit, where the bounce-frequencies

become of the same of magnitude as the drift frequency, and the orbit width is of the order of

the local minor radius. The formulation by Porcelli is in fact implemented in the numerical

code CASTOR-K [BK99, NBC+15], to compute the influence of a population of suprathermal

particles on a fluid bulk plasma mode. A model similar to that of Porcelli et al. [PSK94] has also

been obtained by Helander et al. [HGHM97], who present a different derivation of the form of

the perturbed distribution function δ f , based on physical intuition. The authors of [HGHM97]

apply their kinetic-MHD model to “double-kink” modes, which are similar to the conventional

internal kink modes, except that the q-profile is no longer assumed to be monotonic, allowing

it to have multiple q = 1 surfaces inside the plasma. A similar role of the fast ions on the

stability is observed also for such double-kink modes.

We emphasize that none of the kinetic-MHD models above include centrifugal effects.

1.5 Summary and contributions of this thesis

Basic elements of the ideal MHD model have been reviewed in the context of tokamak equi-

libria and as a model for macroscopic plasma instabilities. A particular emphasis has been

given on the inadequacies of the simple adiabatic pressure closure of this model for plasmas of

fusion relevance, at low collisionality. It has been pointed out that for a variety of instabilities,

in particular in the absence of toroidal rotation, the stability analysis based on the ideal MHD

model depends mostly on the perpendicular dynamics, and hence the incorrect treatment of

the parallel dynamics in this model does not have any dramatic consequences. In contrast, for

pressure-driven instabilities such as the m = n = 1 internal kink, which are marginally stable to

high order in the inverse aspect ratio expansion, corrections to the adiabatic pressure closure

assumption can have a significant influence on the stability analysis. As illustrated by our

short survey, the internal kink instability depends on many effects, such as toroidal rotation,

kinetic effects due to a suprathermal species (generated e.g. by external heating mechanisms

such as ICRH, NBI), kinetic effects due to the thermal bulk species and finite Larmor-radius,

or diamagnetic effects. A considerable research effort has illuminated many aspects of the

stability of instabilities such as the internal kink, and several models have been proposed

to understand various aspects of the underlying plasma dynamics. However, no model is

available at present, which incorporates important centrifugal as well as kinetic effects. As
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explained in this introduction, centrifugal effects cause a stronger coupling of the perpen-

dicular and parallel dynamics, even within the ideal MHD model, and therefore a kinetic

treatment should be expected to be of particular importance for plasmas with strong toroidal

rotation. The extension of existing kinetic-MHD models to consistently include centrifugal as

well as kinetic effects is the main goal of this thesis. This requires a better understanding of an

appropriate simplified kinetic description (a guiding-centre description) of the dynamics of

charged particles in a tokamak plasma, and the relation of this microscopic guiding-centre

theory to the macroscopic fluid description which describes the gross motion of the plasma in

response to the kinetic effects.

The remainder of this thesis is organised as follows. In chapter 2, we will review guiding-

centre theory as developed originally by Littlejohn [Lit83]. A full derivation of the higher-order

guiding-centre Lagrangian allowing for flow velocities on the order of the sound velocity will

be presented. A complete and detailed derivation is given in this work. It is hoped that the

level of detail may serve as a reference for anyone wishing to learn about the derivation of

these equations, which are not only implemented in most modern particle pushing codes,

but also form the basis of modern gyrokinetic theory [BH07]. It will be shown how the kinetic-

MHD model of Porcelli et al. [PSK94] can be derived from gyrokinetics. The non-adiabatic

and adiabatic contributions to δ f identified in [PSK94] will be shown to correspond to the

perturbed distribution function in gyrocentre coordinates and the contribution arising due to

the pull-back to guiding-centre coordinates, respectively. Moreover, our derivation allows for

the inclusion of centrifugal effects as well as a parallel component of the perturbed electric

field. Diamagnetic effects will be discussed at length in chapter 4. From the point of view

of guiding-centre theory, it will be shown that diamagnetic effects arise due to higher-order

corrections in the Larmor motion of particles about their guiding centre. These higher-order

corrections stem from gradients in the electric field, due to which the particles describe an

elliptic rather than a circular motion perpendicular to the field lines. In particular, the deviation

from a circular Larmor motion is shown to cause off-diagonal components of the pressure

tensor, resulting in a so-called “gyroviscous” contribution to the pressure tensor. Based on

well-known results from fluid theory together with this novel derivation of the gyroviscous

pressure tensor from guiding-centre theory, the pressure closure approach is then followed

to derive a consistent kinetic-MHD model that is suitable for a numerical implementation

and can be used to describe the stability of plasmas to internal kink modes, including the

effects of strong toroidal flows, kinetic effects due to the resonant interaction with thermal and

supra-thermal (virtually) collisionless ions and the effects of a parallel electric field in a single,

unified model based on guiding-centre theory. It will be argued in chapter 4 that under suitable

approximations the kinetic-MHD formulation with pressure-closure achieves a more efficient

description of the kinetic effects for global macroscopic instabilities, compared to a fully

kinetic formulation based on a current-closure approach. Indeed, a fully kinetic description

appears to require higher-order O(εB
2) corrections (in Larmor radius) to be retained to achieve

a suitable description of macroscopic instabilities. In contrast, within the proposed kinetic-

MHD approach, O(εB ) corrections appear to be sufficient. Thus, we argue that the kinetic-
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MHD approach relying on pressure-closure may achieve a more efficient description of the

plasma dynamics, as compared to an alternative approach based on current-closure.
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2 Guiding-centre theory

2.1 Introduction

As has been pointed out in the previous chapter, it is commonly agreed that, in principle, the

dynamics of plasmas of interest to fusion research are well-described by the Vlasov-Maxwell

system of equations. These equations are able to describe most aspects of the plasma dy-

namics; ranging from macroscopic (fluid) instabilities to the enhanced transport due to small

amplitude microscopic instabilities associated to turbulence, the interaction of electromag-

netic waves with the gyromotion of particles (used for plasma heating) and even describing

the propagation of high-frequency waves through the plasma. With this power of describing a

wide range of effects comes an inherent complexity, which makes these equations not only dif-

ficult to understand and analyse analytically, but also extremely difficult to solve numerically

in all but the simplest of settings. It is therefore not astonishing that the greatest progress in

plasma physics has been achieved by the development of simplified models, which for a given

problem, retain the essential physical effects required to understand the plasma dynamics,

while at the same time discarding superfluous information, such as effects taking place at

length or time scales which are not relevant to the physics processes of interest. If a suitable

model can be found, this allows both analytical as well as numerical progress to be made,

resulting in a deeper understanding of the physical processes taking place.

One important example of such a reduction in complexity occurs when passing from kinetic

to fluid theory. Fluid theory, and in particular ideal MHD has led to a better understanding

of macroscopic instabilities, as has already been discussed in the previous chapter. Another

example of such a reduced model will be discussed in the present chapter. Its goal is to give

a description of the motion of individual charged particles in strong background magnetic

field, whose exact description under most conditions of interest is assumed to be given by the

Lorentz equations:

mẍ = q [E (x)+v ×B (x)] . (2.1)

Here, x denotes the particle position, v = ẋ the particle velocity, m is the particle mass, q the
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particle charge, and E , B denote the background electric and magnetic fields, respectively.

As is well known, such particles carry out a helical motion around field lines. The frequency of

the gyration increasing with higher magnetic field strength, and when lowering the particle

mass. Assuming a homogeneous background B-field B(x) = B0 and E (x) = 0, and choosing

a cartesian frame e1,e2,b, such that B0 = B0b, the solution of the Lorentz equations, can be

written in the form

x(t ) = X0 +v0,||t +ρ(ζ(t )), ρ(ζ) = ρ0 cos(ζ)e1 −ρ0 sin(ζ)e2, ζ(t ) = ζ0 +Ω0t . (2.2)

The six constants X0, ρ0, v0,|| = v0,||b, ζ0 are to be determined from the initial conditions, i.e.

form the specification of the six (3+3) components of the initial particle position and velocity

(x0, v0). The constantΩ0 depends on the particle mass m, the charge q and the background

field strength B0: Ω0 = qB0/m. According to (2.2), the particle describes a helical motion

around its “guiding-centre” X0, with a constant parallel velocity v0,|| along the field lines, and

with gyration frequency, or gyrofrequency, given by Ω0. Note in particular that Ω0 depends

only on the particle species (characterised by charge and mass), as well as the field strength

of the background field, but it is independent of e.g. the particle energy. It turns out that for

most typical macroscopic instabilities in magnetically confined plasmas, the characteristic

time scale of interest is much longer than the gyrofrequency of the particle species. This

means that even during a potentially disruptive plasma instability, all particles involved will

typically undergo a large number of gyrations before the fields have changed appreciably. This

suggests that to describe the interaction of the particles with such plasma instabilities, only

the “gyro-averaged” particle motion (average over one gyroperiod), is usually of relevance.

In addition to this difference of time scales between the particles’ fast gyromotion and typical

plasma instabilities, the magnetic confinement in tokamaks is, by design, such that the applied

magnetic field binds the particles as tightly as technically feasible. This makes the typical

particle gyroradius ρ0 = v⊥/Ω0 of most particles (v⊥ ∼ vth) much smaller than the typical

length scales LB ∼ [|∇B |/B ]−1 of the plasma. Macroscopic instabilities, which are the most

dangerous to the confinement of the plasma, have typical scale lengths on the order of LB . To

obtain a reduced description of the particle dynamics, it is therefore reasonable to assume

ρ0 ¿ LB , and Ω0 À ω, where ω is the typical frequency of the plasma instability (inversely

proportional to the time-scale on which the instability changes appreciably).

The reduced description of particle motion under these conditions on the time- and length-

scales of interest is usually referred to as guiding-centre theory. The central aim of guiding-

centre theory is to find a reduced description of the average particle motion, or more precisely,

to describe the motion of the particle’s guiding-centre. To derive reduced equations of motion

for the particles, one introduces the formal guiding-centre ordering parameter

εB ∼ ρ0

LB
∼ ω

Ω
¿ 1.

Historically, two approaches to deriving suitable guiding-centre equations of motion have
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been followed. The first approach, pioneered in the 1950’s and 60’s by Alfvén, Kruskal, Northrop,

led to the first insights into the properties of guiding-centre motion. This approach is concep-

tually straight-forward, but becomes somewhat computationally involved, in particular when

attempting to derive higher than first-order corrections to the guiding-centre motion in εB .

Using this approach, one starts from the ordered (and normalised) Lorentz equations

v̇ = εB
−1 [E (x)+v ×B (x)] , ẋ = v ,

and proceeds to solve these equations for the average particle motion, order by order in

εB . Using this approach, it has been observed that the magnetic moment µ= 1
2 mv2

⊥/B is a

conserved quantity to order εB . The existence of such an (approximate) conserved quantity is

a fundamental insight that underlies much of guiding-centre theory. It also provides a first

clue that a different description and derivation of the guiding-centre equations of motion

should be possible.

As is well-known, it is a mantra of classical mechanics that classical systems should be de-

scribed by a Lagrangian, and the equations of motion obtained from variational principles. In

particular, there should be a Lagrangian description of guiding-centre motion. The second ap-

proach to deriving guiding-centre motion, comes from an attempt to find this guiding-centre

Lagrangian. In accordance with Noether’s theorem, the conserved quantities of the particle

motion correspond to the symmetries of the Lagrangian. Therefore, if µ is a (approximate)

constant of guiding-centre motion, then there should correspond to it a (approximate) sym-

metry, and as the experience from Hamiltonian mechanics indicates, the variable conjugate to

µ should be a periodic (or approximately periodic) variable. One obvious candidate for such a

variable is the gyroangle ζ, that we have already encountered in equation (2.2). It turns out that

the derivation of such a guiding-centre Lagrangian requires mathematical techniques beyond

those that one can typically find in textbooks on Lagrangian or Hamiltonian mechanics, which

are mostly formulated with respect to canonical variables. After several attempts, an elegant

derivation of the guiding-centre Lagrangian in a natural (non-canonical) set of coordinates

was finally achieved in the celebrated work of Littlejohn [Lit83], whose methods underpin

most of “modern” guiding-centre theory (as presented e.g. in [CB09]) and natural extensions

such as gyrokinetics, not only in theory but also in their numerical implementation.

One crucial advantage of the Lagrangian formulation of guiding-centre theory over the equa-

tions obtained by direct expansion of the Lorentzian equations of motion, is that the La-

grangian guiding-centre equations automatically ensure that additional conservation laws are

satisfied precisely; in a static background the guiding-centre energy is exactly conserved, and

in an axisymmetric background field, the canonical toroidal momentum Pφ is a constant of

guiding-centre motion. Since the conservation of toroidal momentum is intimately related to

the confinement of particles in tokamaks, physically realistic simulations are usually based on

the Lagrangian guiding-centre equations, as only they ensure that particles will not experi-

ence an unphysical drifting motion which might cause them to escape the plasma even in a

perfectly axisymmetric configuration.
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The general mathematical technique that has been developed and introduced to guiding-

centre theory by Littlejohn [Lit83], will be used in section 2.4 to provide a full and detailed

derivation of the guiding-centre equations in strongly flowing plasmas. While this derivation

is not entirely new, it is here given in unprecedented detail, including computations that are

usually omitted in the published literature (probably for the sake of brevity). The intention

of including these calculations here is two-fold: Firstly, our results disagree in some details

with expressions found in the literature. These differences turn out to be important for our

subsequent discussion of finite Larmor-radius effects in kinetic MHD. It is hoped that including

the detailed derivation of the equations here will make it possible for anyone interested to

check the correctness of the results. Secondly, a major hurdle to entering the field of guiding-

centre theory (and gyrokinetics) is the understanding of fundamental concepts such as the

push-forward and pull-back relations. A proper understanding of these concepts, in particular

to higher than leading-order, turns out to be rather subtle and requires a closer look at the

meaning of guiding-centre variables, and their relation to the particle position and velocity. As

pointed out by Brizard, modern guiding-centre theory is not fundamentally a description of the

“average” particle motion, but rather a description of particle motion in the most convenient

coordinates, making the conserved magnetic moment µ and its conjugate ignorable variable ζ,

appear explicitly. In this formulation, the reduction is not achieved by any averaging, as is often

erroneously claimed, but by uncovering a hidden symmetry of particle motion, the so-called

gyro-symmetry [Lit84]. It is the author’s hope that the detailed derivation given below will

allow more researchers to appreciate not only the usefulness, but also the beauty of Littlejohn’s

Lagrangian formalism of guiding-centre motion, without the pain of having to derive most

details on their own.

2.2 Lagrangian mechanics and Lie perturbation theory

The differential-geometric point of view for deriving reduced equations describing the motion

of charged particles in strongly magnetized background has first been introduced by Littlejohn

[Lit82,Lit83,Lit84], who bases his analysis on earlier methods introduced in Cary and Littlejohn

[CL83]. An overview of previous perturbation methods at that time is given by Cary in [Car81].

In the Lie perturbation approach, the equations for the motion of the particle’s guiding-

centre [Lit83] are derived by a perturbative method based on the geometric theory of classical

mechanics, as e.g. developed in the classic textbooks [AM87, Arn78].

In the following sections, we will first remind the reader of some basic notions of classical

mechanics, giving mostly references to existing excellent accounts of the background theory

in the literature, and then derive the starting equations of Lie perturbation theory. One of the

intentions of this section is to collect material which had to be assembled from various sources

in the literature. This section is therefore intended to serve as a convenient reference for the

reader, as well as building the basis for later sections. These further developments will require

a detailed understanding of not only the guiding-centre motion itself, but also the precise

meaning of the guiding-centre coordinates. By providing a more detailed discussion of the
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mathematical basis of guiding-centre theory, we hope to clarify the sometimes subtle issues

surrounding the guiding-centre transformation and to emphasize the fact that the guiding-

centre equations of motion are meaningless without knowledge of the chosen guiding-centre

coordinates, and how these coordinates relate to the phase-space coordinates of the physical

particle which they describe.

2.2.1 Variational principles and Lagrangian one-form

Informative discussions of the Lagrangian formulation of guiding-centre motion, including

the details of the variational principle can be found by some of the founders of this field, in

the reviews by Cary, Brizard [CB09, section II] and by Brizard, Hahm [BH07, section IV]. We

here discuss a few key elements which we shall make use of in the following.

It is well-known that given a physical system with N degrees of freedom, and set of coordi-

nates q = (q1, q2, . . . , q N ), the dynamics of this physical system can often be described by a

Lagrangian L(q , q̇ , t). The Lagrangian is a function of the coordinates and their time deriva-

tives. The variational principle states that the equations of motion can be obtained from the

Lagrangian, by finding the curve t 7→ q(t ) which minimizes the action

A[q(t )] =
∫

L(q , q̇ , t )d t .

An equivalent condition for t 7→ q(t) to minimize the action A is that q solves the system of

Euler-Lagrange equations

d

d t

(
∂L

∂q̇

)
− ∂L

∂q
= 0.

For the motion of a charged particle of mass m and charge q in a background electromagnetic

field, the Lagrangian is given by

L(x , ẋ , t ) = m

2
ẋ2 +q A(x , t ) · ẋ −qΦ(x , t ). (2.3)

The Lagrangian is expressed in terms of the time-dependent vector potential A, and the

electrostatic potentialΦ, which are related to the electric and magnetic fields E , B as usual via

E =−∇Φ−∂t A, B =∇× A. A short calculation confirms that the Euler-Lagrange equations for

(2.3) lead to the well-known Lorentz equations (2.1).

Unfortunately, this conventional Lagrangian formulation of the particle motion is not im-

mediately suitable for a perturbation analysis. The goal of perturbation theory is to find a

transformation to new coordinates to a given order in an expansion parameter, in which the

Lagrangian takes a simpler form, e.g. because the transformed variables make approximate

symmetries of the original Lagrangian manifestly apparent. The possible transformations

for a Lagrangian of the form (2.3) are transformations of the particle position coordinates

x = (x1, x2, x3), only; whereas our experience with the particle motion in homogeneous fields
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(cp. equations (2.1), (2.2)) clearly indicates that suitable guiding-centre coordinates should

depend on the particle velocity in addition to the particle position. This motivates an ap-

proach, where not only the particle position x , but also the particle velocity v are treated as

independent coordinates.

Early attempts at deriving guiding-centre equations have therefore focused on classical

Hamiltonian perturbation techniques, where one first introduces the canonical momentum

p = ∂L/∂q̇(q , q̇ , t ), and uses this to interpret the velocity q̇ = q̇(q , p , t ) as a (time-dependent)

function of the phase-space variables (p , q). In canonical coordinates (p , q), the dynamics

can then be expressed in terms of a scalar function, the Hamiltonian H(p , q , t), by Hamil-

ton’s equations q̇ = ∂H/∂p and ṗ =−∂H/∂q . With this canonical formulation in place, the

perturbation analysis can then proceed via canonical transformations.

That such canonical methods are not favoured in the context of guiding-centre theory can

be attributed in large part to the fact that the canonical momentum of a charged particle

is in this case given by p = ∂L/∂ẋ = q A(x , t)+mv , and is therefore not a simple function of

the velocity v , as would be the case in other systems. Furthermore, since q A is formally εB
−1

larger than mv in the perturbative ordering, the transformation to canonical variables mixes

terms of different orders. This makes both the perturbative analysis, as well as the physical

interpretation of the results more difficult, compared to the viewpoint introduced by Littlejohn,

which we will describe next.

Instead of working in canonical coordinates, Littlejohn’s approach uses arbitrary phase-space

coordinates, which one is therefore free to choose. The two main benefits of this approach are

that it is possible to choose suitable coordinates with a simple physical interpretation, and

that there is more freedom in the choice of transformations in the perturbation analysis. This

comes at the expense of having to transform not only the scalar Hamiltonian, but instead all

components of the so-called phase-space Lagrangian.

Since general phase-space coordinates are considered, it is most natural (or maybe inevitable)

to formulate this approach in the language of differential geometry. In such a geometric

formulation of Hamiltonian mechanics, the phase-space Lagrangian is now interpreted as a

one-form Γ on phase-space. We will assume the reader to be familiar with this formulation

of mechanics, for reviews of the mathematical elements we refer to [CB09, BH07, BSQ13]. In

canonical coordinates, this one-form can be expressed simply as

Γ= p ·d q −H(p , q , t )d t ≡
(

N∑
i=1

pi d q i

)
−H(p , q , t )d t .

To avoid writing out sums as above, we will make use of Einstein’s summation rule whereby

repeated indices are summed over, in the following. One may think of Γ as an infinitesimal

action, since the action along a path t 7→ α(t) := (p(t), q(t)) (say, defined for t ∈ [t0, t1]) in
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phase-space can be simply obtained by integration of Γ along the path α:

A (α(t )) =
∫
α
Γ=

∫ t1

t0

α̇(t ) ·Γ|α(t ) =
∫ t1

t0

[
p(t ) · q̇(t )−H(p(t ), q(t ), t )

]
d t .

Minimizing the action A is equivalent to Hamilton’s equations. In contrast to the Hamiltonian

formulation, the equivalent formulation in terms of the one-form Γ also indicates the correct

phase-space Lagrangian formulation with respect to arbitrary phase-space coordinates: If

Z = (Z 1, . . . ,Z N ) are arbitrary phase-space coordinates, then we can express p = p(Z ), q =
q(Z ) and H = H(Z , t ). The phase-space Lagrangian Γ is then given with respect to Z , by

Γ= Γi (Z , t )dZ i −H d t , Γi (Z , t ) ≡ p(Z , t ) · ∂q(Z )

∂Z i
. (2.4)

Example 2.2.1 (Charged particle phase-space Lagrangian). To give a concrete example of the

above abstract formulation, let us compute the phase-space Lagrangian of a charged particle

in a background field. In this case the canonical momentum is given by p = q A(x , t )+mẋ , so

that

ẋ(x , p , t ) = p/m −q A(x , t )/m.

The Hamiltonian is

H(x , p , t ) = p · ẋ(x , p , t )−L(x , ẋ(x , p , t ), t ) = 1

2m

∣∣p −q A(x , t )
∣∣2 −qΦ(x , t ). (2.5)

We now choose as our phase-space coordinates Z = (x , v), the position and velocity of the

particle. From the general transformation rule (2.4), we then find: q = x , p = q A(x , t)+mv

and H(Z ) = 1
2 mv2 +qΦ(x , t ). Therefore(

p · ∂q

∂Z i

)
dZ i = p jδ

j
i d xi = p ·d x = [

q A(x , t )+mv
] ·d x ,

where δ j
i is the Kronecker delta. Hence it follows that the phase-space Lagrangian in coordi-

nates (x , v ) is given by

Γ= [
q A(x , t )+mv

] ·d x −
[

1

2
mv2 +qΦ(x , t )

]
d t . (2.6)

Given an expression for Γ in a chosen set of phase-space coordinates Z , the equations of

motion are obtained by minimizing the action along the path Z (t ),

A (Z (t )) =
∫ t1

t0

[
Γi (Z (t ), t )Ż i (t )−H(Z , t )

]
d t .
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The Euler-Lagrange equations corresponding to this variational problem take the form(
∂Γ j (Z , t )

∂Z i
− ∂Γi (Z , t )

∂Z j

)
· Ż j = ∂Γi (Z , t )

∂t
+ ∂H(Z , t )

∂Z i
, for i = 1, . . . , N . (2.7)

We note that for any function S(Z , t ), adding the exact one-form dS = ∂i S dZ i +∂t S d t to the

Lagrangian, we obtain a new Lagrangian Γ̂ given by

Γ̂≡ Γ+dS =
(
Γi (Z , t )+ ∂S

∂Z i

)
dZ i −

(
H − ∂S

∂t

)
d t .

Writing Γ̂= Γ̂i dZ i − Ĥ d t , with

Γ̂i ≡ Γi + ∂S

∂Z i
, Ĥ ≡ H − ∂S

∂t
,

we observe that

∂Γ̂ j

∂Z i
− ∂Γ̂i

∂Z j
=

(
∂Γ j

∂Z i
+ ∂2S

∂Z i∂Z j

)
−

(
∂Γi

∂Z j
+ ∂2S

∂Z j∂Z i

)
= ∂Γ j

∂Z i
− ∂Γi

∂Z j
,

and

∂Γ̂i

∂t
+ ∂Ĥ

∂Z i
=

(
∂Γi

∂t
+ ∂2S

∂t∂Z i

)
+

(
∂H

∂Z i
− ∂2S

∂Z i∂t

)
= ∂Γi

∂t
+ ∂H

∂Z i
.

Hence, we find the well-known fact that the equations of motion (2.7) for Ż j , derived from Γ

and from Γ̂= Γ+dS are the same and hence the physics described by the Lagrangian one-form

Γ is invariant with respect to the addition of a “total derivative” dS.

Case of a time-invariant symplectic part Γi (Z )dZ i

Let us assume now that in factΓi = Γi (Z ), does not depend explicitly on time. The Hamiltonian

is still allowed to explicitly depend on time, H = H(Z , t). Introducing the notation ωi j ≡
∂Γ j /∂Z i −∂Γi /∂Z j for the coefficients in front of Ż i in (2.7), we can then write the Euler-

Lagrange equations more succinctly in the form

Ż i = X i
H (Z ), (2.8)

where XH is the Hamiltonian vector field, which is defined as the solution of

ωi j X j
H = ∂H

∂Z i
, for i = 1, . . . , N . (2.9)

Clearly, if J i j (Z ) denote the matrix coefficients of the inverse matrix of ωi j (Z ), then this

can be equivalently written in the form X i
H (Z , t ) =J i j (Z )∂ j H(Z , t ). This suggests another

common formalism; to express the equations of motion in terms of the Poisson bracket { · , · }.
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The Poisson bracket acts on functions f (Z ), g (Z ), and is defined by

{
f (Z ), g (Z )

}≡ ∂ f (Z )

∂Z i

{
Z i ,Z j

} ∂g (Z )

∂Z j
≡ ∂ f (Z )

∂Z i
J i j (Z )

∂g (Z )

∂Z j
. (2.10)

In terms of the Poisson bracket, we can now very concisely combine (2.8), (2.9) and write the

time evolution equation (2.7) (under the assumption that ∂tΓi = 0), as

Ż i =
{
Z i , H

}
, for i = 1, . . . , N . (2.11)

We note that the coefficients J i j of the Poisson matrix are given by inverting the matrix with

coefficients ωi j = ∂iΓ j −∂ jΓi , and hence the expression of the Poisson bracket in a given set

of coordinates Z , depend only on the so-called symplectic part Γi dZ i of the phase-space

Lagrangian Γ, but not on the Hamiltonian H(Z , t ). More precisely, the coefficients depend on

the symplectic (two-)form

ω≡ dΓi ∧dZ i =
(
∂Γi

∂Z j
− ∂Γ j

∂Z i

)
dZ i ∧dZ j . (2.12)

Note that in this time-independent case, for any function S = S(Z ), adding the closed form dS

(“total derivative”) to the phase-space Lagrangian Γ→ Γ+dS results in the same symplectic

structure, since d 2S = 0 implies that d(Γ+dS) = dΓ = ω. Furthermore, the addition of dS

also leaves the Hamiltonian invariant. Therefore, with this Poisson bracket formulation, the

resulting equations of motion are independent of the addition of dS for time-independent

S. We will employ this Poisson formalism in chapter 4, to extend the ad hoc derivation of

the linearised kinetic-MHD equation for the perturbed distribution function δ f of Porcelli

et al. [PSK94], to allow for strong toroidal rotation. While the work [PSK94] achieved this by

carrying out a direct linearization of the guiding-centre equations of motion, the abstract

approach in terms of Poisson which we will present, results in a shorter argument and clarifies

the meaning and origin of the adiabatic and non-adiabatic contributions to δ f derived by

Porcelli et al. in the non-rotating case.

As has been explained in the present section, the general phase-space Lagrangian formulation

of mechanics requires knowledge of the symplectic form ω, in addition to the Hamiltonian

H . Canonical coordinates are precisely those phase-space coordinates Zc ≡ (p , q), in which

the symplectic form ω has a coordinate representation of the canonical form ω = d p ∧d q ,

corresponding to a phase-space Lagrangian of the form Γ= p ·d q −H d t . Compared to an

approach based on canonical coordinates, the phase-space formulation allows considerably

more flexibility in the choice of phase-space coordinates, and therefore enables us to choose

the most suitable form for a given problem. This observation is particularly important for the

Lagrangian formulation of guiding-centre theory.
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2.3 Guiding-centre theory in co-moving frame

In this section, we apply the Lie perturbation theory explained in the previous section to

obtain a reduced set of guiding-centre equations of motion describing the motion of a charged

particle. For later applications, it will be useful to develop a set of guiding-centre equations

based on the velocity variable decomposition v = u(x)+w , where u is the (leading-order in εB )

fluid velocity and w can be viewed as a thermal fluctuation. This has been achieved in [Bri95]

for the case of a time-independent equilibrium flow u. A similar approach has been followed

in [Mad10] in the case of time-varying fields, but a slightly different decomposition v =
uE (x , t )+v|| was employed, with uE the E ×B velocity so that the parallel velocity corresponds

to the parallel velocity as measured in the lab frame. Here, we extend the results in [Bri95] to

allow for time-varying fields. It turns out that the calculation is an almost verbatim repetition

of [Mad10, appendix], with the only difference being that uE is now replaced by u and the

parallel guiding-centre velocity v|| is replaced by the fluctuating parallel part wb. Along the

way we have, however, found two errors in [Mad10, appendix], which do not affect the results

in the main text of that work but which will be crucial for the present work. This section

serves two purposes. Firstly, we explain our precise choice of guiding-centre coordinates,

including higher-order corrections. Secondly, since our results disagree with published work

[Mad10], we would like to present the perturbation analysis in full detail to enable the reader to

convince himself of the correctness of our derivation. Furthermore, we hope that the detailed

calculations included in this section may serve as a convenient reference for anyone wishing

to learn about guiding-centre theory from the Lie perturbation approach.

2.3.1 Phase-space coordinates

We start our discussion of the guiding-centre transformation by choosing a more convenient

set of coordinates on phase-space. To this end, we first fix unit vector fields e1(x , t),e2(x , t)

perpendicular to b(x , t ), so that (e1,e2,b) forms a right-handed orthonormal basis at any point

x and time t . Instead of phase-space coordinates (x , v ), it will be more convenient to write the

particle velocity relative to a given background flow velocity u(x , t ) in the following form

v = u(x , t )+w0b(x , t )+c⊥(x ,µ0,ζ0, t ), (2.13)

in terms of a new set of particle coordinates (x , w0,µ0,ζ0). Then, clearly

w0 ≡ [v −u(x , t )] ·b(x , t ) (2.14)

is the parallel particle velocity measured in a frame relative to u, and c⊥ is the perpendicular

velocity relative to u. Following [Bri95, Mad10], we have introduced a variable µ0, defined by

µ0 =
mc2

⊥
2B(x , t )

. (2.15)
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Finally, the gyro-angle variable ζ0 is defined relative to e1,e2 by the relationship c⊥ =−c⊥[sin(ζ0)e1+
cos(ζ0)e2]. More explicitly, from (2.15) we find that

c⊥(x ,µ0,ζ0, t ) =−
√

2µ0B(x , t )

m
[sin(ζ0)e1(x , t )+cos(ζ0)e2(x , t )].

We shall assume that u is the leading-order mass flow of the plasma, whose perpendicular

component is given by the E ×B flow, i.e. we assume u ×B =−E⊥. The parallel component

is left undefined at the moment and can be chosen depending on the particular physical

application without any change to the derivation presented in this section. With this choice of

particle coordinates (x , w0,µ0,ζ0), the phase-space Lagrangian for charged particle motion,

giving rise to the exact Lorentz equations of motion (which we will denote byγ in the following),

becomes

γ= [
q A +mw +mc⊥

] · dx −
[

qΦ+ 1

2
mw 2 +mw ·c⊥+µ0B

]
dt . (2.16)

Here we have denoted w ≡ u(x , t)+ w0b(x , t). We have the following ordering, where the

background fields vary on a typical length scale LB :

w ∼ u ∼ c⊥ ∼ vth, A ∼ LB B , E ∼ |u ×B | ∼ vthB , Φ∼ LB E , (2.17)

and, withΩ= qB/m the gyro-frequency, ρth the gyro-radius, it is assumed that

vth = ρthΩ, ρth/LB ∼ εB ¿ 1, ∂t /Ω∼ω/Ω∼ εB ¿ 1, (2.18)

where it is reminded that εB is the formal guiding-centre ordering parameter. From the above,

we find

mw +mc⊥
q A

∼ mvth

qBLB
∼ ρth

LB
∼ εB ¿ 1, (2.19)

and

1
2 mw 2 +mw ·c⊥+µ0B

qΦ
∼ mv2

th

qΦ
∼ mv2

th

qBLB vth
∼ vth

ΩLB
∼ ρth

LB
∼ εB ¿ 1. (2.20)

Based on this ordering, we can write γ= γ0 +εBγ1 where
γ0 = q A · dx −qΦdt ,

γ1 = [mw +mc⊥] · dx −
[

1

2
mw2 +mw ·c⊥+µ0B

]
dt .

(2.21)

It now becomes evident that the Lagrangian (2.16) possesses an approximate symmetry with

respect to ζ0. More precisely, if it were not for the terms involving c⊥, all coefficients of the

Lagrangian would be independent of ζ0 which would imply the existence of a conserved

quantity by Noether’s theorem. In reality, there is no such exact invariant. However, since
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Chapter 2. Guiding-centre theory

the ζ0-dependent contributions occur in the higher-order “correction” γ1, there does exist

an approximately conserved quantity, an adiabatic invariant, which is referred to as the

magnetic moment µ. To lowest order, it turns out that µ≈µ0 with µ0 given by (2.15). The Lie

perturbation approach allows us to compute an expression for µ to arbitrary order in εB . In the

present work, we will only explain the derivation of the first-order correction. For higher-order

expressions and an algorithm suitable for implementation in computer algebra systems we

refer the interested reader to the work of Burby et al. [BSQ13].

2.3.2 Summary of guiding-centre transformation

In section 2.4 below, we will present a detailed derivation of the guiding-centre transformation

in a frame co-moving with a background flow u, based on a Lie perturbation analysis up

to third order in εB . As will be seen, an expansion to εB
3 is necessary (at least of certain

terms) in order to uniquely determine all the components of the second-order guiding-centre

Lagrangian Γ= Γ0 +εBΓ1 +εB
2Γ2 (cp. [Bri95, Mad10, BSQ13]). Here, we summarize our results.

Rotating frame

Given the right-handed orthonormal frame (e1,e2,b), which was used to define the gyro-angle

ζ0 above, we define a rotating frame (ρ̂,b,⊥̂⊥⊥) by

⊥̂⊥⊥(X ,ζ, t ) ≡−sin(ζ)e1(X , t )−cos(ζ)e2(X , t ),

ρ̂(X ,ζ, t ) ≡ cos(ζ)e1(X , t )− sin(ζ)e2(X , t ),
(2.22)

Following [CB09], we also introduce the dyadic tensors

a1 =−1

2

(
ρ̂⊥̂⊥⊥+⊥̂⊥⊥ρ̂)

, a2 = 1

4

(⊥̂⊥⊥⊥̂⊥⊥− ρ̂ρ̂)
. (2.23)

Particle coordinates

The guiding-centre transformation maps physical particle coordinates (x , w0,µ0,ζ0) to guiding-

centre coordinates (X , w,µ,ζ). The particle coordinates are defined with respect to a reference

flow u(x , t ), in terms of the particle position x and velocity variables (w0,µ0,ζ0). The velocity

variables are defined via the particle velocity v in the lab frame, as follows: First, we introduce

the particle velocity, as measured in the frame co-moving with u(x , t ) by w ≡ v −u(x , t ). Then

we set

w0 ≡ b(x , t ) ·w , µ0 ≡
1
2 m|w⊥|2

B(x , t )
, ζ0 ≡ arctan

(
w ·e1(x , t )

w ·e2(x , t )

)
, (2.24)
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2.3. Guiding-centre theory in co-moving frame

so that the particle velocity in the lab frame can be written as

v = u(x , t )+w0b(x , t )+
√

2B(x , t )µ0

m
⊥̂⊥⊥(x , t ,ζ0), (2.25)

with ⊥̂⊥⊥ given by (2.22).

Guiding-centre Lagrangian in co-moving frame

The second-order guiding-centre Lagrangian corresponding to this guiding-centre transfor-

mation is given by (cp. (2.55), (2.59), (2.66), (2.99), (2.100)):

Γ= q A∗ · dX +εB
2 mµ

q
dζ−H dt , (2.26)

where

A∗ ≡ A +εB
m

q
W −εB

2 mµ

q2

(
R + 1

2
[b ·∇×b]b

)
, (2.27)

and

H = qΦ+εB

(
1

2
mW 2 +µB

)
+εB

2 mµ

q

(
1

2
[b · (∇×u⊥)]+S

)
. (2.28)

Here, we have defined the leading-order guiding-centre velocity W ≡ u(X , t )+wb(X , t ) and

the gyrogauge fields are given by

R ≡ (∇e1) ·e2, S ≡
(
∂e1

∂t

)
·e2. (2.29)

Guiding-centre equations of motion

The guiding-centre equations of motion are derived from (2.26) by the variational principle

(2.7). Following [CB09], we introduce

E∗ ≡− 1

q
∇H − ∂A∗

∂t
, B∗ ≡∇× A∗. (2.30)

Then, the equations of motion for X and w can be expressed in the form

Ẋ = ((b ·u)+w)
B∗

B∗
||
+ E∗×b

B∗
||

,

ẇ = q

m

B∗ ·E∗

B∗
||

,
(2.31)

with B∗
|| ≡ b ·B∗.
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Chapter 2. Guiding-centre theory

The equations of motion (2.31) including higher-order corrections at order εB
2 are considered

in more detail in chapter 3, in the limit of vanishing background flow u ≡ 0, in the context of

numerical slowing-down simulations.

Expanding the equation of motion for X in (2.31) to first order in εB , it can be shown [Mad10,

eq.(49)] that (2.31) can be written in the more familiar form

Ẋ =W +εB

[
µ

qB
b ×∇B + 1

Ω
b ×

(
∂

∂t
+W ·∇

)
W

]
+O(εB

2), (2.32)

with Ω=Ω(X , t) ≡ m
qB(X ,t ) the gyrofrequency at the guiding-centre position X . In (2.32), we

can clearly identify the leading-order guiding-centre velocity W = u +wb (which includes

the E ×B drift perpendicular to the magnetic field via u⊥ = E ×B/B 2), as well as the well-

known ∇B-drift. In the absence of a strong background flow (u ≡ 0), the last term is given by

Ω−1w2b × (b ·∇b), which is therefore identified as the curvature drift in limit u ≈ 0.

The approximate form (2.32) of the guiding-centre equations of motion with strong back-

ground flow will be one ingredient in our derivation of higher-order (gyroviscous) corrections

to the pressure tensor in chapter 4. It turns out that the correct form of these gyroviscous

corrections requires not only the equations of motion, but crucially depends on higher-order

Larmor-radius corrections in the particle position (expressing deviations from circular Larmor

motion about its guiding-centre). We summarize the relation between particle coordinates

and the coordinates of the corresponding guiding-centre next.

Relation between guiding-centre and particle coordinates

To the accuracy that is required to obtain the second-order guiding-centre Lagrangian, the

guiding-centre transformation is given in terms of phase-space generating vector fields G1

and G2 according to (2.54), below, as follows:

X = x +εBG X
1 +εB

2
(
G X

2 + 1

2
G1 · dG X

1

)
+O(εB

3),

w = w0 +εBGw
1 +O(εB

2),

µ=µ0 +εBGµ
1 +O(εB

2),

ζ= ζ0 +εBGζ
1 +O(εB

2),

(2.33)

We recall that the terms on the right hand side of (2.33) need to be evaluated at the particle

coordinates, i.e. by formally substituting (X , w,µ,ζ) → (x , w0,µ0,ζ0) in the expressions (2.37)-

(2.42).

The inverse mapping from guiding-centre to particle coordinates is obtained according to
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2.3. Guiding-centre theory in co-moving frame

(2.53) as follows:

x = X +εBρ0 +εB
2ρ1 +O(εB

3),

w0 = w −εBGw
1 +O(εB

2),

µ0 =µ−εBGµ
1 +O(εB

2),

ζ0 = ζ−εBGζ
1 +O(εB

2),

(2.34)

where the right-hand side coefficients (2.37)-(2.42) are now evaluated at the guiding-centre

coordinates (X , w,µ,ζ), and where we have used the notation ρ0 =−G X
1 and

ρ1 ≡−G X
2 + 1

2
G1 · dG X

1 . (2.35)

After some algebraic manipulation detailed in the appendix, the higher-order displacement

(2.35) can be written more conveniently in the form

ρ1 =−
(

gµ
∂

∂µ
+ gζ

∂

∂ζ

)
ρ0 − 1

Ω
(b ·∇×W )ρ0 −

(
G X

2,||+
1

2
ρ0 ·∇b ·ρ0

)
b. (2.36)

Coefficients of generating vector fields

We now collect the required components of G1, G2. The spatial component of G1 is given by

(cp. (2.67))

G X
1 =−ρ0 =−

√
2µ

qΩ
ρ̂(X , t ,ζ). (2.37)

We recall that ρ̂ is the rotating unit vector in direction of ρ0, defined by (2.22). From (2.74),

(2.75) and (2.98), we obtain

Gw
1 = µ

q
[b · (∇×b)+a1 : ∇b]−wρ0 ·κ+ρ0 × [b × (∇×u)] . (2.38)

This expression involves the dyadic tensor a1 defined in (2.23). The first-order correction to the

parallel guiding-centre velocity Gw
1 is expressed in terms of the field line curvature κ≡ b ·∇b,

the field strength gradient ∇B and the magnetic field line twist τ≡ b ·∇×b, as well as the curl

∇×u of the background velocity u. We note that, given two dyadic tensors C and D , we denote

by

C : D ≡
3∑

i , j=1
Ci j Di j ,

the contraction on both indices, where Ci j , Di j are the components of C and D with respect

to an orthonormal basis.
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Chapter 2. Guiding-centre theory

Collecting (2.72), (2.84) and (2.93), we find

Gµ
1 =− µ

Ω
(b · (∇×W )+a1 : ∇W )+ m

B
ρ0 ·

(
∂W

∂t
+W ·∇W

)
+µρ0 ·∇ logB. (2.39)

This expression for Gµ
1 corrects an error in [Mad10, eq. (A24)], which mistakenly contains an

additional factor of 1
2 in front of the ∂W /∂t term.

Equations (2.73) and (B.6) yield

Gζ
1 =−ρ0 ·R − 1

Ω
a2 : ∇W − q

2µΩ
(ρ0 ×b) ·

(
∂W

∂t
+W ·∇W + 2µ

3m
∇B

)
. (2.40)

Finally, we write down the spatial component G X
2 =G X

2,⊥+G X
2,||b. The perpendicular contribu-

tion is given by (2.76)

G X
2,⊥ = 1

Ω
[b · (∇×W )]ρ0 + 1

2Ω
b ×

[
gµ
∂c⊥
∂µ

+ g ζ
∂c⊥
∂ζ

]
, (2.41)

where

gµ =Gµ
1 −µρ0 ·∇ logB ,

gζ =Gζ
1 +ρ0 ·R .

According to (2.96), the parallel component G X
2,|| is

G X
2,|| =− 1

Ω
ρ0 ·

{
b ×

[
b ·∇W +W ·∇b + ∂b

∂t

]}
+ µ

qΩ
a2 : ∇b. (2.42)

Here the dyadic tensor a2 is defined by (2.23), above.

This expression for the second order components G X
2 corrects two errors in [Mad10, eq. (A35)],

where the ∂b
∂t contribution to G X

2,|| contains an erroneous additional factor of 1
2 , and the last

term in [Mad10, eq. (A35)] does not gyro-average to zero.

The expressions for Gµ
1 and G X

2 presented here will be crucial for the derivation of the correct

form of the gyroviscous components of the pressure tensor in chapter 4. Only with these

corrections does the derivation from guiding-centre theory recover the corresponding result

based on fluid theory [Mac65].
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2.4. Derivation of guiding-centre transformation

2.4 Derivation of guiding-centre transformation

2.4.1 Phase-space transformations induced by a vector field

Given a vector field G on phase-space M , we associate to it a flow φs : M → M , defined by

following the vector field G for a time s, i.e. φs is defined as the solution of the system of ODEs

dφs(Z )

ds
=G(φs(Z )), φ0(Z ) =Z , ∀Z ∈ M .

For fixed s, the mappingφs is a bijective phase-space transformation (diffeomorphism) and we

can use it to define new phase-space coordinates Z by the relation Z ≡φ1(Z ), i.e. following

G up to time s = 1.

If G =O(ε) is formally small in an expansion parameter ε, then the difference between Z and

Z will be small as well, in the sense that the distance between Z and Z is O(ε). In this case,

we introduce a formal ordering parameter (or tag) ε, which in reality is set to ε= 1, but is used

to keep track of formally small quantities in our perturbation analysis. To emphasize that G is

considered small, we would then write εG rather than G , and denote

Z =φε(Z ).

In this case, we call φε a near-identity transformation, since to lowest order in ε we find

Z
α ≈ Z α + εGα(Z )+O(ε2), and φε differs from the identity only by terms of order ε and

higher.

The basic idea of Lie perturbation theory is to choose the vector field εG in a suitable way so

that the dynamics in terms of the new coordinates Z is simpler than the original dynamics in

coordinates Z . If such a reduction in complexity can be achieved and a suitable εG can be

found, then one can solve the simpler equations of motion for Z and obtain the corresponding

evolution of Z from the inverse relationship Z =φ−ε(Z ). To find equations that can be used to

determine a suitable εG , we first need to consider how geometric quantities such as functions,

vector fields and differential forms transform under the near-identity transformation induced

by εG . We begin by explaining this in detail for a given phase-space function f (Z ). To such a

function f , we can associate the corresponding function T ε f (it’s pull-back), which is written

in new variables Z , by requiring that [T ε f ](Z ) ≡ f (Z ), or more explicitly

[T ε f ](Z ) = [(φε)
∗ f ](Z ) ≡ f (φ−ε(Z ))

is the pull-back of f from Z to Z . Then, to leading order in ε,

[T ε f ](Z ) ≈ f (φ−s(Z ))|s=0 +ε dφ−s

ds

∣∣∣
s=0

· d f (φ−s(Z )|s=0 +O(ε2)

= f (Z )−ε(G · d f )|
Z
+O(ε2),

which is usually expressed more simply, yet slightly ambiguously, in the form T ε f = f −ε(G ·
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Chapter 2. Guiding-centre theory

d f )+O(ε2). To go beyond first order, we consider any 0 ≤ s ≤ ε:

∂sT
s f = ∂s

[(
φ−1

s

)∗
f
]
= lim
∆s→0

(
φ−1

s+∆s

)∗
f − (

φ−1
s

)∗
f

∆s
= (

φ−1
s

)∗ (
lim
∆s→0

(
φ−1
∆s

)∗
f − f

∆s

)
,

where we have used that the flow and its inverse satisfy φ−1
s+∆s =φ−1

s ◦φ−1
∆s , so that

(
φ−1

s+∆s

)∗
f =(

φ−1
s

)∗ ((
φ−1
∆s

)∗
f
)
. The limit on the right-hand side can be expressed in terms of G as a Lie

derivative

−εLG f = lim
∆s→0

(
φ−1
∆s

)∗
f − f

∆s
,

so that T s is found to satisfy the following relation

∂sT
s f =−εT sLG f . (2.43)

Since, T s and LG commute, we find the formal solution for T s in terms of G as

T ε = exp(−εLG ) =
∞∑

k=0

(−εLG )k

k !
. (2.44)

Since T s and LG also commute with the exterior derivative d, one can show that formula

(2.44) remains true also for differential forms, and therefore in particular the Lagrangian

1-form [BSQ13].

This gives us the required recipe for determining the form of T sγ for a given function, or more

generally for a differential form γ, in new coordinates Z to any desired order. Given an explicit

functional form for γ: We first find L k
Gγ for all required k, and then evaluate

(T εγ)|
Z
=∑

k

(−εLG )kγ

k !

∣∣∣
Z

.

With formula (2.44) at hand, we can now proceed to write down the transformation rules

required by Lie perturbation theory. We consider a Lagrangian one-form γ which we assume

to be written in the form γ = γ0 + εγ1, where γ0 is a leading-order term and εγ1 is a for-

mally small first-order correction. Rather than using a near-identity transformation induced

by a single generating vector field εG , we consider a family of vector fields at different or-

ders εG1,ε2G2,ε3G3, . . . with associated near-identity transformations φ`,ε pull-back operators

T ε
`
≡ exp

(−ε`LG`

)
, where L` ≡LG`

, for `= 1,2,3, . . . . In this way, the transformation can be

carried out order-by-order and we define the total transformation to be given by

Z ≡φε(Z ) := [· · · ◦φ3,ε ◦φ2,ε ◦φ1,ε
]

(Z ),

i.e. to pass from Z to Z , we start at Z and first follow G1, then G2, followed by G3 and so forth.

42



2.4. Derivation of guiding-centre transformation

The corresponding transformation operator T ε is given by

T ε = [· · · ◦exp(−ε3L3)◦exp(−ε2L2)◦exp(−εL1)
]

= 1−εL1 −ε2
(
L2 − 1

2
L 2

1

)
−ε3

(
L3 −L2L1 + 1

6
L 3

1

)
+O(ε4),

(2.45)

where the last expression is obtained from straight-forward expansion of the exponentials.

The inverse transformation from Z to Z coordinates and to a given order N , is obtained

by starting at Z and following first −εN GN , then −εN−1GN−1, and so forth until finally we

follow −εG1 to find Z , i.e. Z ≈ [
φ1,−ε ◦ · · · ◦φN−1,−ε ◦φN ,−ε

]
(Z ). The associated transformation

operator is correspondingly given by[
T ε

]−1 = [
exp(εL1)◦exp(ε2L2)◦exp(ε3L3)◦ . . .

]
= 1+εL1 +ε2

(
L2 + 1

2
L 2

1

)
+ε3

(
L3 +L1L2 + 1

6
L 3

1

)
+O(εB

4).
(2.46)

We thus find that the inverse relation (2.46) is not simply (2.45) with reversed signs of the

corrections terms, as one might think. This perhaps subtle difference between the (forward

and backward) transformation operators will turn out to be crucial in the correct evaluation of

the gyroviscous corrections of the pressure moment from guiding-centre theory in chapter 4

below.

Transformation rules for Lagrangian

We return to the Lagrangian one-form γ = γ0 + εγ1 in coordinates Z . Note that this is pre-

cisely the form taken by the Lagrangian in physical coordinates (2.21), which gives rise to

the Lorentzian equations of motion. Following the above discussion, we can now write the

corresponding expression in the transformed coordinates Z . As discussed previously, the

physical Lagrangian γ= γ0 +εBγ1 exhibits a gyro-symmetry only to 0-th order. Our goal is ulti-

mately to find a suitable set of coordinates Z (corresponding to guiding-centre coordinates),

in which the transformed Lagrangian Γ= Γ0 +εBΓ1 +εB
2Γ2 + . . . is gyro-symmetric to higher

order in εB . To this end, we first write down the general expression for Γ in terms of arbitrary

generating vector fields G1, G2, ... and then seek to determine G1, G2, ... for which Γ1, Γ2, ... are

gyro-symmetric, i.e. do not depend on the (transformed) gyro-angle ζ.

Using (2.45), we find

Γ=T εγ= Γ0 +εΓ1 +ε2Γ2 +ε3Γ3 + . . .
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Chapter 2. Guiding-centre theory

with

Γ0 = γ0 + dS0, (2.47)

Γ1 = γ1 −L1γ0 + dS1, (2.48)

Γ2 =−L1γ1 −
(
L2 − 1

2
L 2

1

)
γ0 + dS2, (2.49)

Γ3 =−
(
L2 − 1

2
L 2

1

)
γ1 −

(
L3 −L2L1 + 1

6
L 3

1

)
γ0 + dS3. (2.50)

...

Here, we have also introduced closed forms dS0, dS1, . . ., which represent additional gauge

terms that can be used to simplify the resulting form of the transformed Lagrangian but which

will not affect the physics (see the discussion following (2.7)). The expressions (2.49) and (2.50)

can be simplified somewhat by noting that from (2.48) we have, up to the physically irrelevant

closed forms, L1γ0 = γ1 −Γ1. Inserting in (2.49) yields

Γ2 =−L2γ0 − 1

2
L1

(
γ1 +Γ1

)+ dS2. (2.51)

Similarly, we find that (2.50) can be rewritten, neglecting contributions due to exact forms,

using 
−L2γ1 +L2L1γ0 =−L2γ1 +L2(γ1 −Γ1) =−L2Γ1,

1

2
L 2

1 γ1 − 1

6
L 3

1 γ0 = 1

2
L 2

1 γ1 − 1

6
L 2

1 (γ1 −Γ1) = 1

3
L 2

1 (γ1 + 1

2
Γ1).

From which it follows that

Γ3 =−L3γ0 −L2Γ1 + 1

3
L 2

1

(
γ1 + 1

2
Γ1

)
+ dS3. (2.52)

Equations (2.47),(2.48),(2.51),(2.52) express the transformed Lagrangian up to third-order in ε,

in terms of the generating vector fields G1, G2, G3 and the phase-space gauge functions S0, ...,

S3. The Lie perturbation approach now consists of fixing a desired form for the transformed

Lagrangian Γ, and solving for G`, S` order-by-order in ε. Usually, the form of Γ is restricted

by solvability conditions for the generating vector fields and gauge functions. However, even

after these solvability conditions are taken into account, there will generally be many different

forms of the resulting Lagrangian, corresponding to different choices of the transformed

variables Z . This non-uniqueness has led to some confusion in the past, but any apparent

contradictions between different formulations are resolved when carefully taking into account

the associated phase-space transformations, as has been shown in [BSQ13].

Applying (2.45) to the coordinate functions Z α = [φ−ε(Z )]α = [T ε]Z
α

, we find that

Z α =Z
α−εGα

1 −ε2
(
Gα

2 − 1

2
G1 · dGα

1

)
+O(εB

3), (2.53)
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2.4. Derivation of guiding-centre transformation

where the right-hand side terms are evaluated at Z . Employing the inverse transformation

(2.54) to Z
α = [φε(Z )]α = [T ε]−1Z α, we find

Z
α =Z α+εGα

1 +ε2
(
Gα

2 + 1

2
G1 · dGα

1

)
+O(εB

3), (2.54)

and the right-hand side terms are evaluated at Z .

2.4.2 Order-by-order analysis

The guiding-centre transformation is based on the approximately gyro-symmetric Lagrangian

γ= γ0 +εBγ1 given by equation (2.21). The idea is to find a coordinate transformation such

that the transformed Lagrangian will be gyro-symmetric to a higher order in εB . Then, the

transformed Lagrangian is truncated at the chosen order, which yields an approximate La-

grangian with an exact gyro-symmetry. The existence of this symmetry implies that a reduced

description of the dynamics can be obtained, which despite the reduction in complexity still

is formally correct to a given order in εB . The mathematical procedure is an application of the

Lie perturbation theory approach outlined in section 2.4.1.

Two basic formulae (equations (α) and (β))

Before beginning our order-by-order analysis, we establish the following equations for phase-

space functions α,β= (β1,β2,β3):

iG d
(
αdt

)= [
G X ·∇α+Gw ∂α

∂w
+Gµ ∂α

∂µ
+Gζ ∂α

∂ζ

]
dt , (α)

and

iG d
(
β · dX

)= [
−[

G X × (∇×β)
]+Gw ∂β

∂w
+Gµ ∂β

∂µ
+Gζ ∂β

∂ζ

]
· dX

−G X · ∂β
∂w

dw −G X · ∂β
∂µ

dµ−G X · ∂β
∂ζ

dζ−G X · ∂β
∂t

dt .
(β)

These formulae will be used multiple times in the following.

The derivation follows directly from the definition of the exterior derivative d and the inner

product iG . To see (α), we first note that d(αdt ) = dα∧ dt and iG d(αdt ) = (iG dα)∧ dt − dα∧
(iG dt ) = (iG dα)∧ dt , since G t = 0. Now,

(iG dα)∧ dt =
(
iG

[
∂α

∂X i
dX i + ∂α

∂w
dw + ∂α

∂µ
dµ+ ∂α

∂ζ
dζ+ ∂α

∂t
dt

])
∧ dt

=
[
∂α

∂X i
G X i + ∂α

∂w
Gw + ∂α

∂µ
Gµ+ ∂α

∂ζ
Gζ+ ∂α

∂t
��>

0
G t

]
dt ,
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implies (α). To see (β), we note that

d
(
β · dX

)= dβi ∧ dX i

= ∂βi

∂X j
dX j ∧ dX i + ∂βi

∂w
dw ∧ dX i + ∂βi

∂µ
dµ∧ dX i

+ ∂βi

∂ζ
dζ∧ dX i + ∂βi

∂t
dt ∧ dX i .

Taking the interior product of the individual terms with G , first yields

iG

(
∂βi

∂X j
dX j ∧ dX i

)
= ∂βi

∂X j

(
iG dX j

)
∧ dX i − ∂βi

∂X j
dX j ∧

(
iG dX i

)
= ∂βi

∂X j
G X j

dX i − ∂βi

∂X j
G X i

dX j

=
(
∂βi

∂X j
− ∂β j

∂X i

)
G X j

dX i .

Employing the vector identity G X × (∇× A) = (∇A) ·G X −G X · (∇A), we find

iG

(
∂βi

∂X j
dX j ∧ dX i

)
=−[G X × (∇×β)] · dX .

Similarly, the w-components can be obtained from

iG

(
∂βi

∂w
dw ∧ dX i

)
= ∂βi

∂w
(iG dw)∧ dX i − ∂βi

∂w
dw ∧

(
iG dX i

)
= ∂βi

∂w
Gw dX i − ∂βi

∂w
G X i

dw.

The terms involving µ,ζ are obtained by substituting w → µ,ζ. The temporal component is

found by substituting w → t and noting that G t = 0, i.e.

iG

(
∂βi

∂t
dt ∧ dX i

)
=−∂βi

∂t
G X i

dt .

Combining these expressions yields (β). With (α) and (β) at our disposal we now give a detailed

derivation of the guiding-centre transformation via an order-by-order analysis.

0th-order analysis

The lowest-order Lagrangian is already gyro-symmetric so that we can simply choose Γ0 = γ0

with gauge function S0 = 0, so that

Γ0 = q A · dX −qΦdt . (2.55)

Before proceeding to higher orders, we point out that the transformed Lagrangian is only

required up to closed forms. Since the transformation equations (2.48)-(2.52) are expressed in

46



2.4. Derivation of guiding-centre transformation

terms of Lie derivatives LG and since we have Cartan’s formula for differential forms

LGγ= iG dγ+ d
(
iGγ

)
,

which expresses LG as a sum of a differential form iG dγ and a closed form d
(
iGγ

)
, we can in

practice substitute LG =̇iG d [Lit82], which will simplify the following analysis considerably.

1st-order analysis

From equation (2.48), we find that the first-order transformed Lagrangian is given by Γ1 =
−LG1γ0 +γ1. A very detailed calculation of the first term on the right-hand side is now given.

First, we recall that LGγ0=̇iG dγ0. Then, we apply (α) and (β) to find

iG1 dγ0 = iG1 d
(
q A · dX

)− iG1 d
(
qΦdt

)= [−G X
1 × (∇× A)

] · dX +G X
1 ·

(
−∂A

∂t
−∇Φ

)
dt .

Recalling that B =∇× A and E =−∂A
∂t −∇Φ, we can write this in the compact form

iG dγ0 =−q[G X ×B ] · dX +qG X ·E dt . (2.56)

From (2.59), (2.21) and (2.56), we find

Γ1 =
[
mW +mc⊥+qG X

1 ×B
] · dX −

[
1

2
mW 2 +mW ·c⊥+µB +qG X ·E

]
dt ,

in the transformed coordinates (X , w,µ,ζ). To arrive at this form, we have chosen S1 = 0.

In these expressions, the terms involving c⊥ are clearly dependent on ζ. To make the dX

components gyro-symmetric, we thus require that qG X
1 ×B =−mc⊥. We can clearly identify

G X
1,⊥ ≡ c⊥×b

Ω
=−ρ0, (2.57)

as the negative Larmor radius vector ρ0, which we already found in the case of a homogeneous

B-field. The dt coefficient of Γ1 now contains the a priori gyro-angle dependent combination

mW ·c⊥+qE ·G X
1 = m

[
u⊥ ·c⊥+E ·

(
c⊥× b

B

)]
= m

[
u⊥+ E ×b

B

]
·c⊥.

This term will be gyro-angle independent if the term in square brackets vanishes, i.e. provided

that

E⊥+u ×B = 0 ⇔ u⊥ = E ×B

B 2 . (2.58)

We will henceforth assume u to satisfy (2.58). In contrast to [Mad10], we will allow for u|| 6= 0.
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With G X
1,⊥ chosen according to (2.57) and assuming (2.58), we obtain

Γ1 = mW · dX −
[

1

2
mW 2 +µB

]
dt . (2.59)

The other components G X
1,||, Gw

1 , Gµ
1 and Gζ

1 are not determined at this order, so that knowledge

of the higher-order corrections in the guiding-centre coordinates require consideration of

higher-order contributions to Γ.

2nd-order analysis

To the next order, we recall that by equation (2.51):

Γ2 =−LG2γ0 − 1

2
LG1

(
γ1 +Γ1

)+ dS2. (2.60)

From (2.56), we immediately find

−LG2γ0=̇q[G X
2 ×B ] · dX −qG X

2 ·E dt . (2.61)

Next, we note that γ1 = Γ1 +mc⊥ · dX −mW ·c⊥ dt and Γ1 = mW · dX − [1
2 mW 2 +µB

]
dt , so

that

−1

2
LG1

(
γ1 +Γ1

)=̇− iG1 d(mW · dX )− 1

2
iG1 d(mc⊥ · dX ) (2.62)

+ iG1 d

([
1

2
mW 2 +µB + 1

2
mW ·c⊥

]
dt

)
. (2.63)

To compute the first term we use that W = u+wb depends on X , w and t . Formula (β) implies

that

iG1 d(W · dX ) = [−G X
1 × (∇×W )+Gw

1 b
] · dX − (

b ·G X
1

)
dw −G X

1 · ∂W

∂t
dt . (2.64)

The computation of the term iG1 d(c⊥ · dX ) is similar to (2.64), but one needs to take into

account that c⊥ depends on X ,µ,ζ, t , instead of X , w, t . We find from (β):

iG1 d(c⊥ · dX ) =
[
−G X

1 × (∇×c⊥)+Gµ
1

∂c⊥
∂µ

+Gζ
1

∂c⊥
∂ζ

]
· dX − 2µ

q
dζ+ 2µ

q
S dt , (2.65)

The third term in (2.62) will only contribute to the dt-component Γ2,t and will be computed

at the end of this section. Combining equations (2.60)-(2.65), we conclude that the dw , dµ

and dζ-components of Γ2 are given by

Γ2,w = mb ·G X
1 + ∂S2

∂w
, Γ2,µ = ∂S2

∂µ
, Γ2,ζ =

m

q
µ+ ∂S2

∂ζ
. (2.66)

48



2.4. Derivation of guiding-centre transformation

To enforce gyro-symmetry of the transformed Lagrangian, we wish to ensure that Γk = 〈Γk〉 for

all components k = X , w,µ,ζ, t . Furthermore, the gyrogauge function will be chosen so that its

gyro-average vanishes, 〈S2〉 = 0. Comparing with (2.66), we find that this is possible if S2 = 0

and Γ2,µ = 0, Γ2,ζ = m
q µ. We also choose b ·G X

1 = 0, so that Γ2,w = 0 and

G X
1 ≡G X

1,⊥ =−ρ0, (2.67)

where G X
1,⊥ is given by (2.57). The more difficult task is to remove the gyro-angle dependency

in Γ2,X and Γ2,t . We will first consider Γ2,X , which will determine G X
2,⊥ and Gw

1 . Then, we will

consider Γ2,t .

To analyse Γ2,X , we first write

−G X
1 × (∇×W ) =−[(ρ0 ×b) · (∇×W )]b + [b · (∇×W )](ρ0 ×b). (2.68)

It can be shown that

−G X
1 × (∇×c⊥) = 2µ

q
R − µ

q
[b · (∇×b)]b

− 2µ

q
(a1 : ∇b)b −µ(

ρ0 ·∇ logB
) ∂c⊥
∂µ

+ (
ρ0 ·R

) ∂c⊥
∂ζ

.
(2.69)

In this expression, the first line is gyro-angle independent, the second line is oscillatory. We

can now rewrite (2.64) and (2.65) as follows:

iG1 d(W · dX ) = [
[b · (∇×W )](ρ0 ×b)+ (

Gw
1 − (ρ0 ×b) · (∇×W )

)
b
] · dX

+ρ0 · ∂W

∂t
dt .

(2.70)

and

iG1 d(c⊥ · dX ) = 2µ

q
R · dX − 2µ

q

(
1

2
[b · (∇×b)]+a1 : ∇b

)
b · dX

+
[

gµ
∂c⊥
∂µ

+ g ζ
∂c⊥
∂ζ

]
· dX − 2µ

q
dζ+ 2µ

q
S dt .

(2.71)

where, similar to [Bri95, Mad10], we introduce the following convenient notation

gµ ≡Gµ
1 −µ(ρ0 ·∇ logB), (2.72)

g ζ ≡Gζ
1 + (ρ0 ·R). (2.73)

Similarly, it will be convenient to use

g w ≡Gw
1 − µ

q
a1 : ∇b − (ρ0 ×b) · (∇×W ). (2.74)

Combining the expression for Γ2 (2.60), (2.61), (2.62) with the above (2.70) and (2.71), we
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obtain

Γ2,X =−mµ

q
R −m

[
g w − µ

2q
[b · (∇×b)]

]
b

+
[

q

(
G X

2 − 1

Ω
[b · (∇×W )]ρ0

)
×B − m

2

(
gµ
∂c⊥
∂µ

+ g ζ
∂c⊥
∂ζ

)]
.

To make Γ2,X gyro-angle independent, we require that g̃ w = 0 and we require the second

line to vanish. We remind the reader that for any physical quantity X , we denote by X̃ the

gyro-angle oscillatory part,

X̃ ≡ X −〈X 〉, 〈X 〉 ≡ 1

2π

∮
X dζ.

Requiring that g̃ w = 0 and that the second line in the above expression for Γ2,X vanish, yields

G̃w
1 = µ

q
a1 : ∇b +ρ0 · (b × (∇×W )) = µ

q
a1 : ∇b −wρ0 ·κ+ρ0 × [b × (∇×u)] , (2.75)

and

G X
2,⊥ = 1

Ω
[b · (∇×W )]ρ0 + 1

2Ω
b ×

[
gµ
∂c⊥
∂µ

+ g ζ
∂c⊥
∂ζ

]
. (2.76)

And we find

Γ2,X =−mµ

q
R −m

[
〈g w 〉− µ

2q
[b · (∇×b)]

]
b. (2.77)

In addition, we need to consider the dt-component Γ2,t . To evaluate this component, we first

consider the third term in (2.62). Using (α), we find from formula (α)

iG1 d

([
1

2
mW 2 +µB

]
dt

)
=

[
1

2
mG X

1 ·∇W 2 +mGw
1 (b ·W )+BGµ

1 +µG X
1 ·∇B

]
dt .

From (2.72) and (2.67), we can identify BGµ
1 +µG X

1 ·∇B = B gµ. We can furthermore show that

m

2
G X

1 ·∇W 2 =−m(b ·W )[(ρ0 ×b) · (∇×W )]+ m

Ω
(c⊥ ·W )[b · (∇×W ])−mρ0 · (W ·∇W ) .

Thus,

iG1 d

([
1

2
mW 2 +µB

]
dt

)
=

[
m

(
Gw

1 − (ρ0 ×b) · (∇×W )
)

(b ·W )+B gµ

−mρ0 · (W ·∇W )+ m

Ω
(c⊥ ·W )[b · (∇×W ])

]
dt .

(2.78)
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2.4. Derivation of guiding-centre transformation

Finally, we need to evaluate iG1 d(W ·c⊥ dt ). Using (α) once more, we find

iG1 d(W ·c⊥ dt ) =
[
G X

1 · (∇W ) ·c⊥+Gw
1
�
�
�
�>

0
∂W

∂w
·c⊥+G X

1 · (∇c⊥) ·W

+Gµ
1

∂c⊥
∂µ

·W +Gζ
1

∂c⊥
∂ζ

·W
]

dt .

having taken into account that ∂w W = b ⊥ c⊥ to cancel one term. So that

iG1 d

(
1

2
mW ·c⊥ dt

)
= m

2

[
G X

1 · (∇W ) ·c⊥+G X
1 · (∇c⊥) ·W

+Gµ
1

∂c⊥
∂µ

·W +Gζ
1

∂c⊥
∂ζ

·W
]

dt ,
(2.79)

The first two terms can be simplified using

G X
1 · (∇W ) ·c⊥ = 2µ

q

(
1

2
b ·∇×W +a1 : ∇W

)
= µ

q
[b ·∇×b](b ·W )+ µ

q
[b ·∇×u⊥]+ 2µ

q
a1 : ∇W ,

and

G X
1 ·∇c⊥ ·W =−µ(ρ0 ·∇ logB)

∂c⊥
∂µ

·W + (ρ0 ·R)
∂c⊥
∂ζ

·W

−
[
µ

q
b ·∇×b + 2µ

q
a1 : ∇b

]
(b ·W ).

(2.80)

We note a cancellation between the terms involving [b ·∇×b](b ·W ). Recalling the definitions

of gµ, g ζ, g w (2.72)-(2.74), the last three terms in (2.80) can also be combined to obtain

iG1 d

(
1

2
mW ·c⊥ dt

)
=

[
mµ

2q
[b ·∇×u⊥]+ mµ

q
a1 : ∇W − mµ

q
[a1 : ∇b](b ·W )

+ m

2

(
gµ
∂c⊥
∂µ

·W + g ζ
∂c⊥
∂ζ

·W
)]

dt ,

(2.81)

Thus, combining (2.61), (2.70),(2.71), (2.78) and (2.81), the component Γ2,t is found to be given

by

Γ2,t =−qG X
2 ·E + m

2

[
gµ
∂c⊥
∂µ

+ g ζ
∂c⊥
∂ζ

]
·W + m

Ω
(c⊥ ·W )(b ·∇×W )− mµ

q
S

+B gµ+ mµ

2q
b · (∇×u⊥)+mg w (b ·W )+ mµ

q
a1 : ∇W −mρ0 ·

(
∂W

∂t
+W ·∇W

)
.

(2.82)

51



Chapter 2. Guiding-centre theory

Now we note that E = E⊥+O(εB ), and E⊥ =−W ×B , so that

−qG X
2 ·E = (−qG X

2 ×B ) ·W +O(εB ). (2.83)

We thus find from (2.76)

−qG X
2 ·E + m

2

[
gµ
∂c⊥
∂µ

+ g ζ
∂c⊥
∂ζ

]
·W =

[
−q(G X

2 ×B )+ m

2
gµ
∂c⊥
∂µ

+ m

2
g ζ
∂c⊥
∂ζ

]
·W +O(εB )

=−m[b · (∇×W )](ρ0 ×b) ·W +O(εB )

=−m

Ω
[b · (∇×W )](c⊥ ·W )+O(εB ).

This term will evidently cancel the third term in (2.82). Recalling also that g w = 〈g w 〉, we

obtain

Γ2,t =−mµ

q
S + mµ

2q
b · (∇×u⊥)+m〈g w 〉(b ·W )

+B gµ+ mµ

q
a1 : ∇W −mρ0 ·

(
∂W

∂t
+W ·∇W

)
.

To eliminate the oscillatory contributions, we require

g̃µ =− µ
Ω
a1 : ∇W + m

B
ρ0 ·

(
∂W

∂t
+W ·∇W

)
. (2.84)

The component 〈gµ〉 will be determined at the next order. For now, we simply note that

Γ2,t =−mµ

q
S + mµ

2q
b · (∇×u⊥)+m〈g w 〉(b ·W )+B〈gµ〉. (2.85)

3rd-order analysis

The general formula for the third-order transformed Lagrangian is given according to (2.52),

by

Γ3 =−LG3γ0 −LG2Γ1 + 1

3
L 2

G1

(
γ1 + 1

2
Γ1

)
+ dS3.

By (2.56), the third-order generating vector field will only contribute to the perpendicular

component of Γ3,X and to Γ3,t . The parallel component of Γ3,X will give an equation for Gw
2 .

Therefore, in the same way that the second-order Lagrangian allowed us to solve for G X
2,⊥ and

Gw
2 , the choice of the spatial component Γ3,X will now determine Gw

2 and G X
3,⊥. Since we will

neither require knowledge of Gw
2 nor of G X

3,⊥ in the following, we will not compute the spatial

component Γ3,X . Similarly, the dt-component could be used to determine (the gyro-angle

oscillatory part of) Gµ
2 . We will not require this component of G2, either. Thus, it will suffice to

compute only the three components Γ3,w , Γ3,µ and Γ3,ζ in order to obtain three equations for

the unknowns 〈gµ〉, G X
2,|| and g ζ.

Because we will not be interested in the dX , dt components, we introduce the following
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2.4. Derivation of guiding-centre transformation

notation
(v )= for equality up to terms of the form (. . .)dX + (. . .)dt . From (2.64), we thus find

−LG2Γ1=̇− iG2 dΓ1
(v )= m(b ·G X

2 )dw. (2.86)

Let us also point out that for any phase-space function G , we have

iG1 d(Gb · dX ) = (
iG1 dG

)
(b · dX )−�����:0(

b ·G X
1

)
dG

(v )= 0, (2.87)

since (. . .)(b · dX )
(v )= 0 by definition of

(v )= .

More involved calculations are necessary to evaluate

1

3
L 2

G1

(
γ1 + 1

2
Γ1

)
= 1

2
L 2

G1
Γ1 + 1

3
L 2

G1
(mc⊥ · dX −mW ·c⊥ dt ) .

From (2.70) and our observation (2.87), we obtain

L 2
G1
Γ1=̇iG1 d

(
iG1 dΓ1

) (v )= iG1 d
(m

Ω
(b · (∇×W ))c⊥ · dX

)
.

From formula (β), and the fact that c⊥ ⊥G X
1 , it follows that

1

2
L 2

G1
Γ1

(v )= − m

2Ω
(b · (∇×W ))

∂c⊥
∂ζ

·G X
1 dζ=−mµ

qΩ
[b · (∇×W )]dζ. (2.88)

For the second term, we observe that

L 2
G1

(mc⊥ · dX −mW ·c⊥ dt )
(v )= iG1 d

(
iG1 d(mc⊥ · dX )

)
.

Using (2.71), the last term can be written – again not writing out terms that will contribute to

dt , only, or terms of the form iG1 d((. . .)b ·X ) which vanish due to (2.87) – as

iG1 d

(
2mµ

q
R · dX +

[
mgµ

∂c⊥
∂µ

+mg ζ
∂c⊥
∂ζ

]
· dX − 2mµ

q
dζ

)
.

The four contributing terms evaluate as follows

iG1 d

(
2mµ

q
R · dX

)
(v )= 2m

q
(ρ0 ·R)dµ,

iG1 d

(
mgµ

∂c⊥
∂µ

· dX
)

(v )= −m

q
gµdζ,

iG1 d

(
mg ζ

∂c⊥
∂ζ

· dX
)

(v )= − ∂

∂ζ

(
2mµ

q
g ζ

)
dζ+

[
m

q
g ζ− ∂

∂µ

(
2mµ

q
g ζ

)]
dµ− ∂

∂w

(
2mµ

q
g ζ

)
dw,

iG1 d

(
−2mµ

q
dζ

)
(v )= −2m

q

[
gµ+µ(ρ0 ·∇ logB)

]
dζ+ 2m

q

[
g ζ− (ρ0 ·R)

]
dµ.
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Taking the sum and denoting s ≡ 2mµ
3q g ζ, we find

1

3
L 2

G1
(mc⊥ · dX −mW ·c⊥ dt )

(v )=
[
−m

q
gµ− 2mµ

3q
(ρ0 ·∇B)− ∂s

∂ζ

]
dζ

+
[

m

q
g ζ− ∂s

∂µ

]
dµ− ∂s

∂w
dw

(2.89)

We note that s contributes to these components of Γ3 in the form of a closed term ds, which

can be absorbed in the gyrogauge function S3. From (2.86), (2.88) and (2.89), we conclude that

Γ3,w = m
(
b ·G X

2

)+ ∂S3

∂w
, (2.90)

Γ3,µ = m

q
g ζ+ ∂S3

∂µ
, (2.91)

Γ3,ζ =−m

q
gµ− 2mµ

3q
(ρ0 ·∇ logB)− mµ

qΩ
[b · (∇×W )]+ ∂S3

∂ζ
. (2.92)

For the component Γ3,ζ to vanish, we require

〈gµ〉 =− µ
Ω

[b · (∇×W )], (2.93)

and

∂S3

∂ζ
= m

q
g̃µ+ 2mµ

3q
(ρ0 ·∇ logB).

Recalling (2.84), and observing that a1 = ∂ζa2, ρ0 =−∂ζ(ρ0 ×b), we can integrate in ζ to find

S3 =−mµ

qΩ
a2 : ∇W + m

Ω
(ρ0 ×b) ·

(
∂W

∂t
+W ·∇W − 2µ

3m
∇B

)
. (2.94)

Note that the integration in ζ is uniquely determined, provided 〈S3〉 = 0. Having found an

explicit expression for S3, we can now compute g ζ from (2.91) as

g ζ =− 1

Ω
a2 : ∇W − q

2µΩ
(ρ0 ×b) ·

(
∂W

∂t
+W ·∇W + 2µ

3m
∇B

)
. (2.95)

Similarly, we find from (2.90)

b ·G X
2 = µ

qΩ
a2 : ∇b − 1

Ω
(ρ0 ×b) ·

(
∂b

∂t
+W ·∇b +b ·∇W

)
. (2.96)

We have now completed our derivation of G1 and G X
2 . Returning to (2.85), and substituting

B〈gµ〉 =−mµ

q
[b · (∇×W )] =−mµ

q
[b · (∇×u⊥)]− mµ

q
[b · (∇×b)](b ·W ),
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we find

Γ2,t =−mµ

q
S − mµ

2q
b ·∇×u⊥+m

(
〈g w 〉− µ

q
b ·∇×b

)
(b ·W ). (2.97)

To simplify Γ2,t , we choose

〈g w 〉 = µ

q
b · (∇×b). (2.98)

So that, finally, the missing components of Γ2 are found to be given by

Γ2,X =−mµ

q

(
R + 1

2
[b · (∇×b)]b

)
, (2.99)

Γ2,t =−mµ

q
S − mµ

2q
[b · (∇×u⊥)]. (2.100)

We recall that in the above derivation, we have imposed that

u⊥ = E ×B

B 2 . (2.101)

2.4.3 Collection of useful identities

With the notation as above, G X
1 =−ρ0.

Since (ρ̂,b,⊥̂⊥⊥) is right-handed:

ρ̂×b = ⊥̂⊥⊥, b ×⊥̂⊥⊥= ρ̂, ⊥̂⊥⊥× ρ̂ = b, (2.102)

Using that they are mutually orthogonal unit vectors, we find from the decomposition ∇⊥̂⊥⊥=
(∇⊥̂⊥⊥· ρ̂)⊗ ρ̂+ (∇⊥̂⊥⊥·b)⊗b that

∇⊥̂⊥⊥= R ⊗ ρ̂− (∇b · ⊥̂⊥⊥)⊗b, (2.103)

∇ρ̂ =−R ⊗⊥̂⊥⊥− (∇b · ρ̂)⊗b. (2.104)

where R =∇e1 ·e2 =∇⊥̂⊥⊥· ρ̂ is the gyrogauge vector field. We also note that

∂ρ̂

∂ζ
= ⊥̂⊥⊥, (2.105)

∂⊥̂⊥⊥
∂ζ

=−ρ̂. (2.106)
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Based on the fact that c⊥ =√
2µB/m⊥̂⊥⊥=Ωρ0⊥̂⊥⊥, we find

∂c⊥
∂ζ

=−Ωρ0 = c⊥×b, (2.107)

∂c⊥
∂µ

= 1

2µ
c⊥, (2.108)

∇c⊥ = 1

2
∇ logB ⊗c⊥+R ⊗Ωρ0 − (∇b ·c⊥)⊗b (2.109)

=µ∇ logB ⊗ ∂c⊥
∂µ

−R ⊗ ∂c⊥
∂ζ

− (∇b ·c⊥)⊗b. (2.110)

Using the vector calculus identity A × (∇×B ) =∇B · A − A ·∇B , it follows that

−G X
1 × (∇×c⊥) =ρ0 × (∇×c⊥) (2.111)

= (∇c⊥) ·ρ0 −ρ0 ·∇c⊥ (2.112)

=Ωρ2
0R −µ(ρ0 ·∇ logB)

∂c⊥
∂µ

+ (ρ0 ·R)
∂c⊥
∂ζ

+ (ρ0 ·∇b ·c⊥)b. (2.113)

Note that

Ωρ2
0 =

c⊥2

Ω
= 2µB

mΩ
= 2µ

q
. (2.114)

Furthermore, for any vector field A, we have

ρ0 ·∇A ·c⊥ = 2µ

q
ρ̂ ·∇A · ⊥̂⊥⊥ (2.115)

= µ

q

[
ρ̂ ·∇A · ⊥̂⊥⊥−⊥̂⊥⊥·∇A · ρ̂]

(2.116)

+ µ

q

[
ρ̂ ·∇A · ⊥̂⊥⊥+⊥̂⊥⊥·∇A · ρ̂]

(2.117)

To simplify the last expression, we used the identity

ρ̂ ·∇A · ⊥̂⊥⊥−⊥̂⊥⊥·∇A · ρ̂ = e2 ·∇A ·e1 −e1 ·∇A ·e2 =∇2 A1 −∇1 A2,

and observe that (e1,e2,b) is a right-handed orthonormal basis, so that

∇2 A1 −∇1 A2 =−ε3i j∇i A j =−b ·∇× A.

We find

ρ0 ·∇A ·c⊥ =−µ
q

[b · (∇× A)]− 2µ

q
a1 : ∇A, (2.118)

where a1 ≡ 1
2 (ρ̂⊗⊥̂⊥⊥+⊥̂⊥⊥⊗ ρ̂).
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We can now write

−G X
1 × (∇×c⊥) = 2µ

q
R −µ(ρ0 ·∇ logB)

∂c⊥
∂µ

+ (ρ0 ·R)
∂c⊥
∂ζ

(2.119)

− 2µ

q

[
1

2
b · (∇×b)+a1 : ∇A

]
. (2.120)

We can also decompose

−G X
1 × (∇×W ) = ⊥̂⊥⊥·{ρ0 × (∇×W )

}⊥̂⊥⊥+b ·{ρ0 × (∇×W )
}

b

= (⊥̂⊥⊥×ρ0) · (∇×W )⊥̂⊥⊥+ (b ×ρ0) · (∇×W )b

to find

−G X
1 × (∇×W ) = [b · (∇×W )](ρ0 ×b)− [(ρ0 ×b) · (∇×W )]b (2.121)

Another important equality will be the following:

G X
1 · ∂c⊥

∂ζ
=Ωρ2

0 =
2µ

q
. (2.122)

It follows that

iG1 d(c⊥ · dX ) =
[
−G X

1 × (∇×c⊥)+Gµ
1

∂c⊥
∂µ

+Gζ
1

∂c⊥
∂ζ

]
· dX

−
�
�
�
��>

0
∂c⊥
∂µ

·G X
1 dµ− ∂c⊥

∂ζ
·G X

1 dζ− ∂c⊥
∂t

·G X
1 dt

=
[
−G X

1 × (∇×c⊥)+Gµ
1

∂c⊥
∂µ

+Gζ
1

∂c⊥
∂ζ

]
· dX − 2µ

q
dζ+ 2µ

q
S dt .

2.5 Summary

In this chapter, a detailed discussion of the Lagrangian formulation of guiding-centre theory

in a rotating plasma has been given. After a short review of the historical development of

guiding-centre theory, the guiding-centre Lagrangian has been presented in a suitable set of

guiding-centre coordinates. As pointed out in the introduction to this chapter, the approach

to guiding-centre theory followed in the present work focuses on (gyro-)symmetry as the core

mechanism by which a reduction in complexity can be achieved. This is in contrast to an

alternative approach based on gyro-averaging of the equations. While the two approaches

can be used to derive guiding-centre equations of motion which are formally equivalent, up

to higher-order correction terms in εB , the main advantage of the Lagrangian approach is

the additional preservation of the underlying physical structure encoded in the Lagrangian

formulation. In particular, using the present Lagrangian approach, if quantities such as the

energy and toroidal momentum are conserved by the particle motion, then the corresponding
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guiding-centre motion will also ensure exact conservation of these quantities. Such an exact

conservation of physical constants of motion in the reduced description is especially important

for numerical simulations over long time-scales, and is difficult to achieve when the equations

of motion are derived by gyroaveraging. A full derivation of the guiding-centre Lagrangian

including centrifugal effects in a time-varying background is given, following an order-by-order

expansion in Larmor radius εB . Throughout, a particular emphasis is given on the meaning

of the guiding-centre coordinates and their relation to the physical particle coordinates. The

guiding-centre equations and the higher-order Larmor radius corrections derived in the

present chapter form the basis of the original results presented in chapters 3 and 4. Chapter 3

focuses on the possible implications of higher-order εB corrections which are conventionally

neglected in the context of slowing-down simulation of neutral beam injection in a MAST-

like equilibrium, in the absence of strong background rotation (u ≈ 0). It will be seen that

the neglect of higher-order corrections for the magnetic moment µ and the parallel guiding-

centre velocity w corresponds to a neglect of a guiding-centre drift parallel to the field lines,

the so-called Baños drift. This often overlooked drift motion along the field lines, induced

by magnetic field line shear, is shown to affect the expected resonances of particles with

external magnetic perturbations, as well as the estimated NBI driven current in a MAST-like

equilibrium by up to 8% [LPGC17]. In chapter 4, higher-order corrections, such as the higher-

order displacement ρ1 (2.36) (which expresses a deviation of the particles Larmor motion

from a circular motion due to gradients in the background fields), will be shown to give rise

to off-diagonal components of the pressure tensor corresponding to a given distribution

of guiding-centres. Several errors in the available expressions for the required higher-order

corrections in the literature [Mad10, appendix] have been uncovered in the process of the

detailed derivation given in the present chapter. While these errors do not affect the results

in the main text of [Mad10], they prove crucial for the correct derivation of the gyroviscous

pressure components in chapter 4. Based on the results of the present chapter, first-order

(gyroviscous) corrections to the pressure tensor will be evaluated from guiding-centre theory

without any simplifying assumptions on the background geometry, for the first time. This

derivation will form one of the main ingredients to show the consistency of the kinetic-MHD

model presented in chapter 4 [LGPC19].

58



3 Application of higher-order guiding-
centre corrections to full- f calcula-
tion
3.1 Introduction

Much effort has recently been expended on calculating realistic, consistent fast ion distribu-

tions in present and future devices [AGB+15,SKSS10,PMA+04,PMCG15,BGC03]. Some research

focuses on special ion orbits that may hit sensitive plasma-facing components [SKSS10], other

efforts attempt to estimate driven currents and pressure gradients associated with fast ions,

which ultimately affect plasma equilibria [BGC03, PMA+04]. Most numerical studies involv-

ing fast particles apply low-order guiding-centre equations to track their orbits and evolve

their distribution function. There exist numerous papers on the derivation and theoretical

discussion of higher-order guiding-centre equations (see e.g. [Lit83, Bri95, CB09, BSQ13] and

references therein). But in the context of guiding-centre simulations, higher-order effects seem

to be largely ignored.

The consideration of guiding-centre equations at one order higher in Larmor radius than

is conventionally done is motivated by the findings of previous work [PGC15]. There, it was

shown from a simple example that the Baños drift, a drift parallel to the field lines induced by

the magnetic field line twist τ≡ b ·∇×b = µ̂0 j||/B (where µ̂0 is the vacuum permeability) is

not correctly accounted for using the conventional guiding-centre expressions. To correctly

account for the Baños drift, we derive a set of higher-order guiding-centre equations, similar to

Littlejohn [Lit83] but following the formulation of Brizard [Bri95] and Cary and Brizard [CB09].

We then show that these higher-order guiding-centre equations of motion can actually be

used in orbit-following codes instead of solving the more costly full-orbit equations. The code

VENUS-LEVIS [PCGM14] has indeed been upgraded in the publication [LPGC17] (which forms

the basis of the present chapter) to include these higher-order guiding-centre equations and is

applied to revisit three cases involving energetic ions: 1) neutral beam injection in a MAST-like

low aspect-ratio spherical equilibrium where the fast ion driven current is significantly larger

with respect to previous calculations [PGC+14] because of the large Baños drift due to the

combination of large equilibrium currents, low magnetic field strength and comparatively high

injection energies, 2) fast ion losses due to resonant magnetic perturbations in a MAST-like
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Chapter 3. Application of higher-order guiding-centre corrections to full- f calculation

equilibrium where a lower lost fraction and a better confinement than previous calculations

[PMCG15] is confirmed, 3) alpha particles in the ripple field of the European DEMO [PCFG16,

LPGC17] where the effect is found to be marginal.

Fast ion distributions obtained via neutral beam heating are naturally anisotropic in pressure,

and exhibit strong gradients in velocity parallel to the field lines. Higher-order parallel dynam-

ics, such as the parallel Baños drift, dismissed by Hazeltine and Meiss [HM03, p.136, ch.4.2] as

having no known application, can become important for studies in the exotic properties and

consequences of auxiliary generated fast ion populations. Denoting E the particle energy, Ip

the plasma current and B0 the magnetic field strength, the Baños drift scales as ∼p
E Ip /B 2

0 .

The higher-order corrections considered are expected to be important at high particle energies,

large plasma current and/or small magnetic field strength. To our knowledge, the implications

of higher-order corrections for guiding-centre following codes and the modelling of energetic

ion source distribution functions has not been discussed before.

Higher-order corrections to the guiding-centre’s magnetic moment and toroidal momentum

have previously been considered to compute consistent hybrid kinetic-MHD equilibria by

Belova et al. [BGC03] with neutral beam injection (NBI). The focus of their work was to

find appropriate variables to be used in the modelled energetic ion equilibrium distribution

function [BGC03, equations (15)–(17)] in order to include kinetic effects in the computed

MHD equilibrium. Their fast ion distribution functions were however not computed based on

guiding-centre slowing-down simulations that would be consistent with such higher-order

corrections in the equations of motion. Instead, their results are obtained with an ad hoc

analytic expression resembling a slowing-down distribution, expressed as a function of the

corrected (adiabatic) invariants. Their ad hoc distribution contains free parameters that are

tuned to match typical NSTX parameters as well as the profiles of the beam ion density

calculated by the TRANSP code. To compare the conservation properties of guiding-centre

invariants expanded at various orders in Larmor radius, Belova et al. [BGC03] employed full-

orbit following with the HYM code (see e.g. [BJJ+00]). From their work, they concluded that

good conservation of the guiding-centre invariants could only be achieved via the inclusion of

higher-order terms [BGC03, sec. III.A, III.B]. A second important question addressed by Belova

et al. [BGC03] was to correctly evaluate the fast ion contribution to the current density, when

the spatial gradient length scale of the slowing-down distribution is small compared to the

Larmor radius [BGC03, sec. IV]. They found that strong gradients in the final slowing-down

NBI distribution impacted the fast ion driven current (evaluated after the NBI slowing-down

distribution has been computed). In the present work, the corrections provided in the context

of NBI modelling are complementary to the work of Belova et al. in the sense that the focus

here is on higher-order corrections related to strong velocity gradients from NBI deposition

and on the question of correctly initialising the position and velocity variables of guiding-

centre tracers. From a computational point of view, the present work therefore applies the

results of chapter 2 to address how to initialize guiding-centre distributions for slowing-down

simulations and what equations to solve in order to obtain consistent saturated distribution

functions, while the work by Belova et al. [BGC03] discusses the properties of the saturated
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solution in terms of the corrected invariants.

The work is organised as follows. In section 3.2, we summarise some elements of modern

guiding-centre theory and explain our choice of guiding-centre variables as implemented in

the code. To this end, we will recall several results from chapter 2, in the appropriate limit. It

will be argued that the form of the Lagrangian derived in chapter 2 (see also Brizard [Bri95])

may have practical advantages over the original (equivalent) expression by Littlejohn [Lit83].

In section 3.3, the higher-order corrections are investigated numerically. In section 3.4, higher-

order guiding-centre equations are applied in slowing-down simulations of NBI in a MAST-

like equilibrium and α-particles in DEMO. Higher-order corrections are found to lead to

an increase of the fast ion driven current by up to 8% for NBI in the MAST-like equilibrium

[LPGC17]. When applying resonant magnetic perturbations (RMP), these corrections are seen

to affect the lost fraction of NBI ions. Better confinement is found for co-current injection

in a MAST-like equilibrium as compared to previous calculations. The impact on fusion α-

particle losses in DEMO is found to be marginal. Section 3.5 is dedicated to a discussion on

the surprising fact that the Baños drift finds an application in current drive corrections for

parallel anisotropic distributions. Conclusive remarks are reserved for recitation in section 3.6.

3.2 Guiding-centre theory

3.2.1 Introduction

The Lagrangian formulation of guiding-centre theory as outlined in chapter 2 (see [Lit83,

Bri95, CB09]) is based on the removal of the gyroangle dependence of the particle phase-space

Lagrangian

Lphys =
(
εB

−1q A +mv
) · ẋ − 1

2
mv2, (3.1)

by the use of a near-identity phase-space transformation. We shall assume a time-independent

background equilibrium without electric field throughout this current chapter. The more

general formulation, considered in chapter 2, with strong flows will be used in chapter 4,

below. We recall that following the Lie perturbation procedure explained in chapter 2, one

introduces the expansion parameter εB ∼ ρ/LB ¿ 1, with the Larmor radius ρ ∼ mv/qB , and

characteristic scale-length LB ∼ B |∇B |−1. Employing the right-handed orthonormal frame

e1,e2,b with b = B/B , the gyroangle ζ0 (in the absence of background flow u ≡= 0) is defined

through (cp. (2.25))

v = v||b(x)− v⊥(sin(ζ0)e1(x)+cos(ζ0)e2(x)). (3.2)

In the context of this perturbative treatment, it is convenient to introduce physical particle

coordinates Z0 = (x , v||,µ0,ζ0), with µ0 the lowest-order expression for the magnetic moment

µ0 ≡ 1
2 mv2

⊥/B(x). The Lie transformation method provides a framework for the asymptotic
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removal of the gyroangle-dependence in (3.1), moving gyroangle-dependent terms to higher

order in εB . As explained in Section 2.4.1, the method results in a phase-space transformation

Tε : (x , v||,µ0,ζ0) → (X ,U ,µ,ζ) (3.3)

from physical particle variables to guiding-centre variables Zgc = (X ,U ,µ,ζ). The Lagrangian

Lphys expressed in these guiding-centre variables, and neglecting terms of order O(εB
2) and

higher, is given by (cp. (2.26) in the limit u = 0)

L = q A∗ · Ẋ +εB mµ/q ζ̇−H , (3.4)

where the symplectic part of the Lagrangian A∗ is given by

A∗ ≡ εB
−1 A(X )+m/qU b(X )−εB mµ/q2R(X )+O(εB

2), (3.5)

and the Hamiltonian is

H = 1

2
mU 2 +µB(X )+O(εB

2). (3.6)

Note that in contrast to chapter 2, where the parallel guiding-centre velocity was denoted

by w measured in a frame relative to the background velocity u, we denote the parallel

guiding-centre velocity in this chapter by U , thinking of it as the guiding-centre velocity

in a Eulerian frame unrelated to possible macroscopic background flows. The vector field

R = R+ 1
2 (b ·∇×b)b is expressed in terms of the gyrogauge vector field R ≡ (∇e1)·e2 (2.29) (first

introduced by Littlejohn [Lit83,Lit88]) and the magnetic field line twist τ≡ (b ·∇×b) [CB09]. We

emphasize that with the present choice of guiding-centre coordinates, terms at order εB in the

Hamiltonian vanish. A detailed discussion of different choices of guiding-centre coordinates

as well as an algorithm for their calculation to arbitrary order can be found in [BSQ13]. It

turns out that the formulation considered in the present work is particularly advantageous for

numerical simulation, as explained in the next section.

3.2.2 Equations of motion

The equations of motion have been derived from the Euler-Lagrange equations d
d t

(
∂L
∂Ż α

)
= ∂L

∂Z α

in chapter 2, eq. (2.31). As shown in section 2.3.2, assuming time-invariant background fields,

they are conveniently expressed in terms of B∗ ≡∇× A∗ and E∗ ≡−∇H/q . Setting Z α = X

and Z α =U , one obtains

Ẋ =U
B∗

B∗
||
+ E∗×b

B∗
||

, U̇ = e

m

B∗ ·E∗

B∗
||

, (3.7)

with B∗
|| ≡ b ·B∗. The Euler-Lagrange equations corresponding to Z α = ζ yields µ̇ = 0. For

Z α =µ, we obtain ζ̇=Ω+R(X ) · Ẋ , whereΩ≡ qB(X )/m is the gyrofrequency evaluated at the

guiding-centre position. The lower-order correction term R(X ) · Ẋ accounts for any rotation
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along the guiding-centre trajectory of the frame e1,e2,b which is used to define ζ. It guarantees

that the resulting guiding-centre dynamics is independent of the particular choice of e1,e2, a

property called gyrogauge-invariance [Lit88, Lit84].

3.2.3 Choice of guiding-centre variables

The form of the higher-order guiding-centre Lagrangian is not unique and depends on the

choice of guiding-centre variables Zgc. The choice used to arrive at (3.4) differs from the one

made in the original work by Littlejohn [Lit83]. In particular, the different choices between

chapter 2 (cp. also [CB09]) and [Lit83] can be tracked down to equation (2.98). Littlejohn’s

Lagrangian is obtained by setting the gyroaverage 〈g w
1 〉 = (µ/2q)b ·∇×b, whereas the form

considered in the present work corresponds to the choice 〈g w
1 〉 = (µ/q)b ·∇×b. Therefore, the

higher-order guiding-centre Lagrangian should not be viewed in isolation of the associated

guiding-centre phase-space transformation.

The relevant relation between full-Lorentzian and guiding-centre variables for the present

work, neglecting terms of order O(ε2
B ) and higher, is expressed in terms of the first-order

generating vector field G1 (2.37)-(2.40) (see also [CB09, eq. (5.41)]). Formally, the relation is

given by Z α
gc =Z α

0 +εBGα
1 , which yields (see (2.33) and (2.37)-(2.40))

X = x −ρ0, (3.8)

U = v||+µ0/q (a1 : ∇b +τ)− v||ρ0 ·κ, (3.9)

µ = µ0 +ρ0 ·
(
µ0∇ logB +

mv2
||

B
κ

)
−µ0

v||
Ω

(a1 : ∇b +τ) , (3.10)

ζ = ζ0 −ρ0 ·R + ∂ρ0

∂ζ
·
(
∇ logB +

mv2
||

2µ0B

)
+v||
Ω
a2 : ∇b. (3.11)

These expressions involve dyadic tensors a1,a2, which are defined (cp. (2.23) in chapter 2) in

terms of the rotating (right-handed) orthonormal frame (b,⊥̂⊥⊥, ρ̂), given by (cp. (2.22))

⊥̂⊥⊥=−sin(ζ)e1 −cos(ζ)e2, (3.12)

ρ̂ = cos(ζ)e1 − sin(ζ)e2, (3.13)

and ρ0 ≡ ρ0 ρ̂ ≡ −b ×mv/qB is the usual expression for the Larmor vector. We remind the

read that the dyadic tensors (cp. (2.23) in chapter 2) are given by

a1 =−1

2

(
ρ̂⊥̂⊥⊥+⊥̂⊥⊥ρ̂)

, a2 = 1

4

(⊥̂⊥⊥⊥̂⊥⊥− ρ̂ρ̂)
.
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The terms also involve the field line curvature κ≡ b ·∇b, the field strength gradient ∇B and

the magnetic field line twist τ≡ b ·∇×b.

The appearance of terms involving

a1 : ∇b ≡−1

2

(
ρ̂ ·∇b · ⊥̂⊥⊥+⊥̂⊥⊥·∇b · ρ̂)

(3.14)

may be more intuitively understood when considering the projection of the perpendicular

particle velocity component v⊥ onto b(X ), which is one of the contributions to the parallel

guiding-centre velocity

U = b(X ) · Ẋ = b(X ) ·v −b(X ) · ρ̇. (3.15)

We obtain

b(X ) ·v⊥ = v⊥b(X ) · ⊥̂⊥⊥(X +ρ0)

≈ v⊥b(X ) · (⊥̂⊥⊥(X )+ (
ρ0 ·∇

)⊥̂⊥⊥|X
)

= (
mv2

⊥/qB
)

b · (ρ̂ ·∇⊥̂⊥⊥)
≈−2µ/q

(
ρ̂ ·∇b · ⊥̂⊥⊥)

, (3.16)

and we observe that

−ρ̂ ·∇b · ⊥̂⊥⊥=−1

2

(
ρ̂ ·∇b · ⊥̂⊥⊥+⊥̂⊥⊥·∇b · ρ̂)

− 1

2

(
ρ̂ ·∇b · ⊥̂⊥⊥−⊥̂⊥⊥·∇b · ρ̂)

= a1 : ∇b − 1

2
τ. (3.17)

Calculation of b(X ) · ρ̇ to the required order would involve a higher-order correction to ρ ≡
x−X =ρ0+εBρ1+. . ., see [Bri95, appendix] for details. According to eq. (3.17), the appearance

of a1 in (3.9) and (3.10) is a direct consequence of the distinction b(X ) 6= b(x), a first-order finite

Larmor radius effect. More explicit expressions for these corrections in a simple background

field may be found in appendix A.

In a conventional guiding-centre treatment as used in most guiding-centre following codes,

the additional first order correction terms in equations (3.4), (3.8), (3.9), (3.10), (3.11) are

neglected, relying instead on the leading order relations

X = x −ρ0, (3.18)

U = v|| ≡ v ·b(x), (3.19)

µ = µ0 ≡
mv2

⊥
2B(x)

. (3.20)
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3.2. Guiding-centre theory

And the conventional guiding-centre Lagrangian

L0 = (εB
−1q A +mU b) · Ẋ −H0 +O(εB ), (3.21)

H0 = 1

2
mU 2 +µB(X )+O(εB ). (3.22)

is considered on reduced phase-space (X ,U ,µ), with µ= const. treated as a parameter. The

conventional Lagrangian (3.21) is correct to order O(1). Additional O(εB ) terms in the La-

grangian are then neglected.

3.2.4 Guiding-centre push-forward

To consistently include all first-order effects in numerical guiding-centre following, guiding-

centres have to be initialized correctly according to a given physical distribution function

f . This requires the relation between full-Lorentzian distributions and guiding-centre dis-

tributions to be established including terms at order O(εB ). Assuming f = f (x , v||,µ) with

ρ0|∇ log f | ∼ εB , expanding to first order in gradient length scale, the guiding-centre distribu-

tion Fgc is found to be given by

Fgc = f −εBG X
1 ·∇ f

−ε f G
v||
1

∂ f

∂v||
−ε f Gµ

1

∂ f

∂µ
+O(εB

2,ε2
f ,εBε f ).

(3.23)

Where an additional expansion parameter ε f ∼ µτ
q

∣∣∣∂ log f
∂v||

∣∣∣ has been introduced. While εB is

related to spatial gradients of the background equilibrium, ε f measures the effect of velocity

space gradients of the particle distribution. The parameter ε f depends both on the equilibrium

(via the magnetic twist τ) as well as the anisotropy of the distribution function. For a fusion

α-particle birth distribution considered in section 3.4.5, we would e.g. have ε f ¿ εB , while for

the NBI case considered in section 3.4.1, it is found that ε f > εB .

For a correct initialization of guiding-centre markers, the first order phase-space density

d3x d3v is also required in guiding-centre coordinates. As explained in [CB09, p.720], the

Jacobian of the phase-space transformation (x , v) → (X ,U ,µ,ζ) (3.8)-(3.11) is given by J =
m−1B∗

|| in terms of B∗
|| ≡ b ·B∗. Thus

d3x d3v = m−1B d3x dv|| dµ0 dζ0 (3.24)

= m−1B∗
|| d3X dU dµdζ. (3.25)

One can arrive at the same result by consideration of the canonical phase-space volume

element as computed from the Lagrangian (3.4) [CB09, equation (3.43)].

Neglecting first-order corrections associated to the magnetic field line twist, we find B∗
|| = B

and no distinction needs to be made between the particle and guiding-centre volume elements.

Figure 3.1 shows a comparison between approximations to B∗
|| at different orders in εB for a
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Chapter 3. Application of higher-order guiding-centre corrections to full- f calculation

Figure 3.1 – B∗
|| for a H+ ion at energy E = 10keV, parallel pitch λ = 0.5. Shown are approx-

imations expanded at different orders in εB for the axisymmetric MAST-like equilibrium
considered in section 3.4.1, along the midplane (Z = 0).

H+ hydrogen ion guiding-centre with E = 10keV and parallel pitch λ= 0.5 for the MAST-like

equilibrium of section 3.4.1. The first order term associated with the magnetic field line twist τ

is found to make a noticeable difference, while the second-order term related to R makes only

a negligible (< 1% throughout the domain) contribution to B∗
|| in this case.

3.2.5 Discussion

As pointed out in [CB09, eq. (3.48) and discussion], O(εB ) corrections to the Hamiltonian

H lead to O(εB ) drifts, while O(εB ) corrections to the symplectic part A∗ (3.5) only lead to

additional O(εB
2) drifts in the equations of motion. Owing to this observation, the form of

the higher-order Hamiltonian H in equation (3.6) is preferable for a numerical treatment

over the choice considered in [Lit83]. Indeed, the observation implies that guiding-centre

simulations including all drift corrections at O(εB ) (perpendicular and parallel to the field

lines) can actually be achieved based on the expression for the conventional guiding-centre

Lagrangian (i.e. neglecting the R-term in A∗). Any drift terms that are neglected are then seen

to be of order O(εB
2) or higher. To consistently include the O(εB ) drift-correction parallel to

the field lines, higher-order terms in the correspondence between guiding-centre and physical

particle variables must however be retained.

To provide a concrete example where the above observation applies, we consider the problem

of evaluating the NBI driven current. As discussed e.g. in [Spi52, QTRL00], there are two
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3.2. Guiding-centre theory

contributions to the physical current density j = jgc + jmag +O(εB
2), where

jgc = q
∫

Ẋ Fgc d3v , (3.26)

jmag = εB∇×
(∫

−µbFgc d3v
)

. (3.27)

In these expressions, Fgc denotes the guiding-centre distribution. To obtain jgc including all

corrections at O(εB ), we need to take into account guiding-centre drifts at O(εB ) perpendicular

and parallel to the field lines. Perpendicular to the field lines, these drifts are accounted for

when relying on the conventional Lagrangian. Parallel to the field lines, the inclusion of the

relevant corrections relies on the correct definition of the parallel guiding-centre velocity U

according to (3.9).

It is important to note that the higher-order terms in (3.9), (3.10) do not gyroaverage to zero.

Gyroaveraging (3.9) 〈. . .〉 = 1
2π

∮
dζ . . ., yields

U = 〈v||〉+εB
µ

q
τ+O(εB

2) (3.28)

where τ(x) ≡ b ·∇×b is the field-line twist. Equation (3.28) shows that there is a difference

between the gyroaverage of the local parallel particle velocity v|| and the parallel guiding-

centre velocity U = b(X ) · Ẋ . The difference between the two is the Baños drift parallel to the

field lines, which is induced by the magnetic field line twist [Ban67] (see (A.4) and surround-

ing discussion). In general, this drift correction therefore would be expected to give a finite

contribution to the guiding-centre current jgc at O(εB ).

As will be seen below, the computation of a slowing-down distribution for NBI represents

a special case, because the source distribution is given in physical coordinates, while the

slowing-down distribution is to be computed in guiding-centre coordinates. The use of a

consistent pushforward operation is thus required to obtain the correct source distribution

in guiding-centre coordinates. This is in contrast to e.g. the computation of the distribution

for ion cyclotron resonance heating (ICRH) or ion cyclotron current drive (ICCD) where

particles are heated from a thermal background distribution that is usually expressed a priori

as a function of the guiding-centre constants of motion. In the latter case, the push-forward

relation (3.23) is not needed for the correct guiding-centre initialization. In particular, the

Baños drift is then already implicitly included in the parallel guiding-centre velocity and will

not appear explicitly. In a similar way, the Baños drift would be implicitly accounted for in

extensions of guiding-centre theory such as gyrokinetics, if the guiding-centre Lagrangian and

coordinates considered in the present work are used. Our discussion of higher-order effects in

section 3.4.1 focuses on higher-order corrections related to strong anisotropy in the source

distribution and does not apply in cases that do not involve the push-forward operation.

To make contact with the approach to drift-kinetic theory based on direct gyroaveraging of the

67



Chapter 3. Application of higher-order guiding-centre corrections to full- f calculation

Vlasov equation, as discussed in detail in [HM03], we also consider the gyroaverage of (3.10)

µ= 〈µ0〉−εB
µU

Ω
τ+O(εB

2). (3.29)

Combining this expression with dµ/d t = 0 yields at leading order

d〈µ0〉
d t

= εB
d

d t

(
µU

Ω
τ

)
+O(εB

2) (3.30)

= εBUµb ·∇
(

U

Ω
τ

)
+O(εB

2). (3.31)

This expression recovers the corresponding result obtained in [HM03, eq. (4.69)], under the

assumption of a time-independent background field. We note that the O(εB )-term on the right-

hand side of (3.30) appears to be subsequently neglected in [HM03, eq. (4.44) and discussion]

to arrive at a simpler form of the gyro-averaged Vlasov equation. In contrast, the approach

based on Lie perturbation theory discussed in the current chapter retains a simple form of the

Vlasov equation while accounting for the variation in 〈µ0〉. This is achieved by employing µ

instead of 〈µ0〉 as a guiding-centre variable. Neglect of the right hand side of (3.30) as proposed

in [HM03] is only justified under additional assumptions on either the ordering of the parallel

current j|| ∝ τ ≡ b · ∇×b (cp. eq. (3.43) below), or on the distribution of guiding-centres

(approximate isotropy). Neither of these assumptions hold for the case of NBI in a MAST-like

equilibrium, which is studied in section 3.4.1 below.

In accordance with [PGC15], we conclude that relying on the leading order terms in the

definition of the guiding-centre variables results in a neglect of the Baños drift. In appendix A,

it is shown how the results of [Pfe15, PGC15], which have been derived by direct inspection

of the full particle dynamics, are recovered by Lie perturbation methods to first order in εB .

The discussion of appendix A will be based on the Lagrangian (3.21) and relations (3.8)–(3.11),

which as already indicated, lead to guiding-centre treatment neglecting only drift terms of

order O(εB
2).

3.2.6 Practical implications

For numerical applications, an increase in computational speed can only be achieved if the

short time-scales of the gyromotion do not have to be resolved, thereby allowing the use of a

much larger timestep. In practice, simulations are carried out on the reduced phase-space

(X ,U ,µ), with µ treated as a parameter. As the mapping (x , v) → (X ,U ,µ) is no longer invert-

ible, this implies a loss of information. This is a trade-off we are willing to make for an increase

in computational speed. Since the push-forward relation (3.23) might in general contain gy-

roangle dependent information, we proceed to eliminate this information by gyroaveraging.

Using the relations (cp. [BH07, equation (B13)])

〈ρ0〉 = 0, 〈Gv||
1 〉 =µ/qτ, 〈Gµ

1 〉 =−µv||τ/Ω, (3.32)
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3.2. Guiding-centre theory

Figure 3.2 – Physical particles sharing the same guiding-centre are initialized according to
conventional (left) and higher-order (right) expressions (initialization near y = z = 0). Dots
indicate snapshots of the position of these markers at several fixed points in time during their
evolution. The lack of first-order corrections in the parallel velocity at the initialization of
full Lorentzian markers (left) causes distortions, as well as an average lag behind the guiding-
centre (missing Baños drift correction).

assuming f = f (x , v||,µ) and defining the gyro-averaged part of the distribution function

F (Zgc) ≡ 〈Fgc(Zgc)〉 = 〈 f (Z0)〉 = 〈 f (Zgc)〉−ε f 〈G1 ·d f |Zgc〉+O(εB
2,ε2

f ), we obtain

F = f −ε f
µ

q
τ

(
∂ f

∂v||
− v||
Ω

∂ f

∂µ/q

)
+O(εB

2,ε2
f ,εBε f ). (3.33)

In a conventional leading order guiding-centre treatment, the first order contributions involv-

ing τ≡ b ·∇×b would be neglected.

For numerical applications, it is convenient to express these relations in terms of (x ,λ||,E)

and (X ,λ,Eg c ), where λ|| ≡ v||/v and λ=U /
p

2E/m denote the particle and guiding-centre

parallel pitch variables, respectively. We evaluate the particle energy E ≡ 1
2 mv2

||+µ0B(x) in

terms of the guiding-centre coordinates Zgc, given by (3.8)-(3.11):

Egc(Zgc) ≡ E(Z0) = E(Zgc)−εBGE
1 |Zgc

+O(εB
2). (3.34)

Thanks to the convenient cancellation in the energy component GE
1 of the generating vector

field [CB09]:

GE
1 ≡G

v||
1

∂E

∂v||
+Gµ

1

∂E

∂µ
+G x

1 ·∇x E = 0, (3.35)

we obtain Egc = E +O(εB
2) = 1

2 mU 2 +µB(X )+O(εB
2). No distinction therefore needs to be

made between the particle energy and the energy of its associated guiding-centre, to first order

in εB .
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The phase-space density in terms of the variables (x ,λ||,E) and (X ,λ,E) is expressed as

d3x d3v =
√

2E

m3 d3x dλ|| dE dζ0 (3.36)

=
√

2E

m3

B∗
||

B
d3X dλdE dζ. (3.37)

In terms of the coordinates (X ,λ,E), we obtain the following expression for the numerical

distribution function

F = f −ε f
µτ

qv

∂ f

∂λ||

∣∣∣
E
+O(εB

2,ε2
f ,εBε f ). (3.38)

The terms on the right-hand side are evaluated at the guiding-centre coordinates, e.g.

f = f (x ,E ,λ||)|x→X ,E→Egc,λ||→λ, (3.39)

a clear distinction is made between λ|| and λ at the order considered. Neglect of the correction

term in (3.38) is questionable unless we may assume an additional ordering ε f ¿ εB . This is

manifestly not the case for NBI in a MAST-like equilibrium, though the correction would clearly

be zero for a fusion α-particle birth distribution. A comparison between models including

and neglecting corrections related to ε f for NBI in a MAST-like equilibrium is given in section

3.4.1.

3.3 Single particle dynamics

The theory described in the last section has been implemented in the guiding-centre follow-

ing code VENUS-LEVIS [PCGM14]. This includes a consistent full-Lorentz/guiding-centre

switching taking into account higher-order corrections, as well as higher-order guiding-centre

dynamics obtained from the higher-order Lagrangian (3.4). Numerical investigations of the

effect of higher-order corrections will be presented in this section.

An algorithm for switching between full-Lorentzian and guiding-centre following based on

leading-order relations, as well as a field variation estimator have been presented in [PGC15].

In the present work, the switching algorithm is refined by inclusion of higher-order corrections.

The meaning of the higher-order terms in (3.8)-(3.11) are illustrated in eq. (3.9). We identify

two sets of terms

U = v||+ µ

q
a1 : ∇b − v||ρ0 ·κ︸ ︷︷ ︸

(I )

+ µ

q
b ·∇×b︸ ︷︷ ︸

(I I )

. (3.40)

The terms (I) are gyroangle-dependent and gyroaverage to zero. These terms account for

the variations of the parallel particle velocity on the gyration time scale; they carry out a
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Figure 3.3 – Poloidal projection of representative guiding-centre orbits initialized at different
energies and evolved using higher-order equations of motion (‘high’) and conventional equa-
tions of motion (‘low’). The difference between the curves ‘high’ and ‘low’ are due to the O(εB

2)
drifts, which arise from the additional term −εB mµ/q2R in the higher-order Lagrangian (3.4).

gyroaverage of v||, so that v||+ (I ) = 〈v||〉+O(εB
2) is invariant on the gyromotion time-scale.

The term (II) on the other hand is a drift term that varies on the slower time-scale of guiding-

centre motion. The difference between v||, 〈v||〉, and U in a purely sheared background is

clearly visible in figure A.2 of appendix A. Note that the term (I) serves to generalize that of

(A.4) for more general magnetic fields.

In figure 3.2, we show the evolution of full Lorentzian particles initialized to correspond to

the same guiding-centre. Compared are the results obtained from initialization based on

the conventional relations (3.18)–(3.20) and the higher-order relations (3.8)–(3.11). It is ob-

served that the conventional leading-order expressions quickly lead to distortions from the

full-Lorentz/guiding-centre correspondence. The difference is due to the lack of first-order

corrections in the conventional relations, and in particular the neglect of corrections in the cor-

respondence of particle and guiding-centre parallel velocities (eq. (3.40)). The consequences

of the inclusion of such correction terms for models of NBI injection will be discussed in

section 3.4.1, a detailed analytical derivation in a simple background field is presented in

appendix A.

To investigate the effect of the additional higher-order terms in (3.4), scans in energy of char-

acteristic orbit quantities have been performed in a MAST-like equilibrium. A representative

guiding-centre was initialized at a fixed initial position ρT = 0.55, θ = 0 in the poloidal plane

(here ρT = p
ΦN , where ΦN = normalized toroidal flux), and the parallel pitch was fixed at

λ=−0.4. The energy was varied from 10keV to 116keV. These energies can be compared with

the NBI model considered in section 3.4.1, where guiding-centres are injected at a maximal

energy E0 = 56keV. The results from conventional guiding-centre equations (neglecting the

higher-order terms related to R in (3.4)) and the higher-order equations are compared in figure

3.3.
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Figure 3.4 – Energy dependence (E = 10keV to E = 120keV) of characteristic orbit quantities ob-
tained from higher-order (‘high’) and conventional (‘low’) guiding-centre equations of motion.
Shown are the bounce-averaged toroidal drift precession 〈φ̇〉 (left) and the bounce-averaged
value of the normalized poloidal flux 〈ΨN 〉 = 〈Ψ〉/Ψedge along the orbit. The difference be-
tween the curves ‘high’ and ‘low’ are due to the O(εB

2) drifts, which arise from the additional
R-term in the higher-order Lagrangian (3.4).

The additional higher-order corrections in A∗ scale as εB ∼ p
E as compared to the next

lower-order terms. As expected, the results obtained from the conventional and higher-order

guiding-centre Lagrangian agree to good accuracy in the limit of low energies, but differ as the

energy is increased. Going even further up in energy, the correction terms have been observed

to locally dominate at energies E > 130keV, indicating that the guiding-centre approximation

completely breaks down at such high energies in a MAST-like equilibrium. For this reason,

the poloidal projections of orbits in figure 3.3 are restricted to a maximum energy of 116keV.

Shown in figure 3.4 are results for the toroidal drift precession 〈φ̇〉 and the average (normalized)

poloidal flux value 〈ΨN 〉, withΨN ≡Ψ/Ψedge.

The results of figures 3.3 and 3.4 indicate that only at very high energies with associated large

Larmor radii and when approaching the limits of the guiding-centre approximation, should

one see appreciable differences in the guiding-centre dynamics expanded at different orders.

3.4 Application to slowing-down simulations

In 3.4.1, we discuss the implications of higher-order terms for the modeling of NBI injection in

a MAST-like equilibrium. In sections 3.4.2 and 3.4.3, we compare results obtained with the in-

clusion of higher-order correction (3.23) to the results obtained from a conventional approach.

In section 3.4.5, slowing-down simulations based on the higher-order equations presented in

section 3.2 are applied to the computation of fusion α-particle loss in the European DEMO

design, and compared to results obtained from conventional guiding-centre equations.
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3.4.1 Corrections for strong anisotropy (NBI)

The focus of this section is on the implications of the higher-order corrections for models

of NBI. The deposition distribution of NBI ions in MAST is strongly anisotropic, so that the

first-order correction in equation (3.38) is non-zero. Furthermore, NBI is usually focused in

the core region, where the magnetic field-line twist τ ≡ b ·∇×b is maximal. Therefore, the

ε f -term in (3.38) is not expected to be negligible in this case. Focusing on the effects of strong

anisotropy, we shall assume the ordering ε f > εB in this section. In a first approximation, we

will neglect the corrections associated to the R-term in (3.4), and only retain the correction

associated with ε f . A more formal justification for the ordering may be given by considering

ε f ∼
vB años

v

∣∣∣∣∂ log f

∂λ||

∣∣∣∣∼ εB

∣∣∣∣∂ log f

∂λ||

∣∣∣∣ . (3.41)

The relation between εB and ε f is therefore uniquely determined by the scale length of the

distribution in the parallel pitch λ||. In this section, we consider the limit of strong anisotropy,

expecting the corrections to the source distribution which are induced by the push-forward

to dominate higher-order corrections. Figure 3.5 shows the general shape of the NBI source

distributions obtained in MAST, which indicates that we may expect a value of this scale length

of around ∆λ= 0.3−0.5. Hence, we expect ε f ∼ 2εB to 3εB . We acknowledge that higher-order

drift terms in the guiding-centre dynamics may give additional corrections in the case of MAST

by e.g. slightly altering the toroidal drift precession as shown in figure 3.4, which may in turn

e.g. influence the resonant interaction with field perturbations and hence the induced losses.

The detailed investigation of such effects has been found to be associated with numerical

difficulties due to the coordinate singularity near the axis in the case of MAST, and is left for

future work.

The simplified NBI model used in VENUS-LEVIS was described in detail in [Alb11]. This

model accounts for ion deposition computed based on ionisation rates depending on the

plasma background profiles and takes into account beam spread. Markers are distributed

uniformly along the beamline and given a weight proportional to the ionisation rate. The

beam spread is accounted for by the introduction of a random Gaussian displacement. The

position, energy and the parallel component of the velocity along the field line v|| = b(x) · v

are used to initialize the guiding-centre marker at ionization. Finite Larmor radius corrections,

in particular the Baños drift correction to v|| (expressed by the first order term in (3.23)), were

previously not taken into account in [Alb11]. While there are NBI models which take into

account more detailed information on beam geometry [PMA+04, AGB+15], and even finite

Larmor radius effects associated to the ρ0 correction, the corrections due to the higher-order

effects considered in the present work have, to the best of our knowledge, not been discussed

before.

The finite Larmor-radius corrections considered in this section are expressed by the gyroaver-

aged push-forward (3.38). We consider two models. The first model (A) employs the simplified

VENUS-LEVIS NBI model where F (X ,U ,E ) = 〈 f (X ,U ,E ,ζ)〉 neglects the Baños drift correction.
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Figure 3.5 – Deposition rate of NBI markers in terms of parallel guiding-centre pitch variable
λ. A comparison is made between the conventional model and the model including the Baños
drift correction to the parallel guiding-centre velocity (3.23).

The second model (B) on the other hand includes this parallel correction. The simulations

were set up as follows: an ensemble of markers with variables X , λ||, E was initialized accord-

ing to the physical distribution provided by the model in VENUS-LEVIS. This furnished the

NBI deposition distribution for model (A). To obtain the source distribution for (B), the same

distribution was taken, but the relationλ=λ||+vB años/v was used to initialize guiding-centres

including the Baños drift correction. This corresponds to a marker initialization in accordance

with the gyro-averaged push-forward relation (3.38). Additional complications with a possible

gyroangle dependence of the physical source distribution are here neglected. As a result,

the markers of models (A) and (B) are deposited identically in the poloidal plane, as well as

toroidally. The only difference is the missing Baños correction of model (A), which is taken into

account in model (B). This allows us to isolate and quantify effects related to the consistent

inclusion of parallel drifts, independently of other finite Larmor-radius (FLR) corrections,

associated to e.g. ρ0 or the gyroangle dependent terms in (3.9). The source distributions for

models (A) and (B) as a function of parallel guiding-centre pitch λ are depicted in figure 3.5

for the unbalanced NBI beam application of MAST that is considered in the next subsection.

All slowing-down simulations are performed until a steady state is reached, so that the NBI

source is balanced by the fast particle sinks. The sinks of our fast ion model are given by

losses to the last closed flux surface (LCFS), as well as thermalization with the background. A

guiding-centre is considered thermalized, and removed from the simulation, if its energy falls

below a constant multiple of the background thermal energy. As in earlier studies [PMCG15], a

thermalization threshold factor of 3 is chosen for all simulations.
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3.4. Application to slowing-down simulations

(a) q-profile (b) pressure profile

Figure 3.6 – Profiles determining the MAST-like equilibrium considered in this section.

(a) MAST-like axisymmetric equilibrium (b) MAST-like helical core equilibrium

Figure 3.7 – Comparison of current profiles as computed from the slowing-down simulation
for the NBI injection models considered in this section for a MAST-like equilibrium (bifurcated
state).

3.4.2 Unbalanced NBI in MAST

Slowing-down simulations have been performed for models (A) and (B), and for a MAST-like

equilibrium with non-monotonic q-profile and qmin very close to 1 (cp. fig. 3.6). The MAST

magnetic equilibrium was modelled with the fixed boundary VMEC code. This equilibrium

bifurcates into two sister sates; an axisymmetric equilibrium and a helical core sister state,

modelling a saturated internal kink [CGP+10]. We choose first to compare the models for

the axisymmetric branch. NBI markers are injected at energies E0, E0/2, E0/3 with E0 =
56keV. To compare models (A) and (B) the NBI current density associated to the slowed-down

distribution is computed and shown in figure 3.7a. The inclusion of the FLR correction related

to the Baños drift is found to yield an increase of ≈ 4% to the computed NBI driven current

from models (B) as compared to (A) after slowing-down, reflecting the shift in the source

distribution seen in figure 3.5.

Models (A) and (B) have similarly been compared for the helical branch with helical displace-

ment δh = 0.23 [CGP+10,PGC15]. Again, inclusion of the Baños drift correction has been found

to lead to an increased NBI-driven current in model (B) as compared to (A). In this case, the
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(a) Geometry of RMP coils.
(b) Radial component of RMP field δBr ≡ δB ·
∇ψ/|∇ψ| on the LCFS.

Figure 3.8 – Model of RMP perturbation coils in MAST (5.6kA). The colors in (a) indicate the
direction of current in the coils, corresponding to the sign of the normal component of the
magnetic perturbation (δBr > 0 (red), δBr < 0 (blue), no current in coil (black)).

difference between the computed currents after slowing-down is found to be higher by ≈ 8%,

when comparing (B) to (A). The resulting current density profiles are compared in figure 3.7b.

It is observed that the largest difference in the current profiles occur in the high-current region

near the axis.

3.4.3 Unbalanced NBI losses due to RMP

We consider the axisymmetric branch of the equilibrium of the last section, but in addition,

add RMP in the vacuum approximation (neglecting the plasma response). The assumed RMP

coil configuration has a n = 3 symmetry, with 0◦-phase [Pfe15, PMCG15], as shown in figs.

3.8a and 3.8b. The RMP coil currents are set to 5.6kA. Again, we compare two models for NBI

with and without inclusion of the Baños drift. In the case of RMP, we expect the shift in the

deposition distribution in λ, which reflects the inclusion of the Baños drift, to affect the overall

particle losses, which are due to resonances with the magnetic field perturbations [PMCG15].

As deeply passing particles are less affected by such perturbations, we would expect the Baños

drift visible in figure 3.5, to increase NBI particle confinement, i.e. to reduce the fast ion heat

flux to the LCFS. The results of slowing-down simulations for the two models are shown in

figure 3.9. The saturation of the total computed heat flux over the simulation time is shown

in figure 3.9a, the toroidal distribution of the heat flux is shown in 3.9b, where we take into

account the n = 3 symmetry of the applied perturbation, and show only the heat flux for

φ ∈ [0,2π/3]. The results of these simulations agree qualitatively with the expected results. At a

neutral beam injected power of 1500kW, the total heat fluxes computed with inclusion of the

Baños drift are 138.8kW as compared to 148.2kW without this drift. The inclusion of the Baños

drift is thus seen to reduce the expected losses by 6.3% in the present case. The inclusion of

the Baños drift is therefore seen to affect the expected resonant behaviour of ions with MHD
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3.4. Application to slowing-down simulations

(a) Evolution of total heat flux through the LCFS
over simulation time.

(b) Local heat flux through the LCFS as function
of toroidal variable φ.

Figure 3.9 – Comparison of predicted NBI heat fluxes through the LCFS computed in presence
of RMP. Compared are two NBI models, one neglecting and one including the Baños drift
correction in the initialisation of guiding-centre distributions. For the loss distribution in φ
the results are plotted for φ ∈ [0,2π/3], taking into account the n = 3 symmetry of the resonant
magnetic field perturbations. Subfigure (a) shows the temporal evolution of the lost / injected
power over the simulation. A steady state is reached after about 0.06 s. Subfigure (b) shows the
local heat flux at steady state as a function of toroidal angle φ. The solid lines show the heat
fluxes obtained for the two considered models in presence of RMP. For comparison, the pale
lines correspond to a simulation in the absence of RMP, i.e. axisymmetric background.

perturbations.

3.4.4 Balanced NBI with RMP

The previous applications demonstrate that the Baños drift correction can be non-negligible

for unbalanced NBI in a MAST-like equilibrium. To show that the corrections discussed in

the present work may also have implications for balanced NBI, we consider a (hypothetical)

balanced NBI model for the axisymmetric MAST-like equilibrium. This model is obtained

by doubling the number of beam lines in comparison to the unbalanced model, adding the

mirror image of each beam-line with respect to the vertical plane running parallel to the

beam-line, and containing the R = Z = 0 axis. Again, models (A) and (B) are obtained in

the same way as before, with model (B) accounting for the Baños drift correction. The same

external magnetic (RMP) perturbations are applied (see figure 3.9). Figure 3.10 collects results

from this simulation. For this application, the deposition depicted in figure 3.10a replaces the

unbalanced deposition shown in fig. 3.5. It is seen that the balanced model without Baños

drift correction has a distribution symmetric in λ. This symmetry is broken by the Baños drift

correction (3.23). Overall, the losses for both models are clearly dominated by the injection

with λ> 0, due to the well-known finite orbit-width effects. The Baños drift (FLR) correction

leads to improved confinement forλ< 0, while it increases the losses forλ> 0 (cp. figure 3.10b).

For a NBI power of 1500kW, the losses for model (B) with inclusion of the Baños drift are found
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to be 585.0kW, as compared to 559.8kW for model (A). This corresponds to an increase of 4.6%.

The saturated currents are shown in figure 3.10c. The fast ion current is of course weak for

balanced neutral beam injection. The Baños drift is found to lead to a relative increase of more

than 28% over the weak but finite current obtained for balanced injection without Baños drift.

It is noted that although the current is weak for balanced injection, the distribution function is

nevertheless distorted for the Baños case. One may expect such modifications to be important

for pressure driven MHD instabilities, where e.g. it has been mentioned in chapter 1 that such

modes are modified by weak corrections to the equilibrium.

3.4.5 Fusion α particle loss in DEMO

We investigate the sufficiency of the conventional guiding-centre equations for the current

European DEMO design, focusing in particular on toroidal field ripple induced losses. The

study is based on an 18 toroidal field coil design. A detailed description of the equilibrium used

for this study, as well as a discussion of the expected toroidal field ripple in DEMO, can be found

in [PCFG16] and [WAA+17]. For our slowing-down simulations, the (axisymmetric) background

is computed using the free-boundary version of the VMEC equilibrium code in realistic

coil geometry. The ripple field perturbation is computed in the vacuum approximation and

algebraically added to the axisymmetric background (termed “2D+vacuum” approximation

in [PCFG16]).

The physical fusionαbirth distribution density is assumed isotropic, i.e. of the form f = f (x ,E ).

As derived in (3.23), the corresponding guiding-center distribution F is then functionally the

same F (X ,E) = f (X ,E) to first order in Larmor radius (3.23), which is to say that ε f = 0 in

this case. The higher-order corrections considered in this section are given by (3.36) and the

R-term in (3.5). Note that the anisotropic push-forward corrections of the last section are not

relevant for this application, due to the intrinsic isotropy of the alpha distribution (see earlier

discussion).

As discussed in [Pfe15, sec. 4.7.2] the correct inclusion of the guiding-centre Jacobian (3.36)

can be represented by a weight proportional to B∗
|| . A marker weight ∝ B∗

|| has already been

employed in earlier studies using the VENUS-LEVIS code, where the correct factor was found

by inspection of the canonical volume element associated to (3.21). Therefore, even though

the consistent switching based on Lie transform methods was not available previously, the

results presented in [PCFG16] are consistent with the higher-order relations (3.8)-(3.11). In

the following, we consider the possible effect of higher (O(εB
2)) order drifts arising from the

R-terms in equation (3.5). To this end, two slowing-down simulations have been performed

first neglecting higher-order drifts (simulation B, based on (3.21)) and then including higher-

order drifts (simulation C, based on (3.4)) for identical birth distributions. The results of these

simulations are shown in table 3.1. In addition, we also evaluated the losses obtained when

neglecting the higher-order correction in the marker weights (simulation A, based on (3.21)),

i.e. under the approximation B∗
|| ≈ B .
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3.4. Application to slowing-down simulations

(a) Deposition rate (initial source) of NBI markers
in terms of parallel guiding-centre pitch variable λ
for the balanced injection model. The sign of the
Baños drift correction is independent of the sign of
λ, leading to an overall shift of the guiding-centre
distribution.

(b) Loss rate of NBI markers in terms of initial paral-
lel guiding-centre pitch variable λ (solid lines). Also
indicated is the deposition rate (pale lines). Losses
are dominated by counter-current injection due to
finite orbit width effects (λ> 0).

(c) Evolution of the fast ion guiding-centre current
over simulation time.

Figure 3.10 – Comparison of models including/neglecting the Baños drift correction (3.23) for
(hypothetical) balanced NBI in a MAST-like equilibrium, in the presence of RMP.
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PLCFS PLCFS/Pfus ∆P/P(B)

(A) 736±6 kW 0.1223 % 0.11±0.96 %

(B) 736±6 kW 0.1222 % 0.0±0.84 %

(C) 762±7 kW 0.1255 % 3.65±0.84 %

Table 3.1 – Comparison of computed total heat flux to LCFS, as predicted by guiding-centre
approximation at different orders in εB for fusion α-particles in DEMO. (A) was based on
Lagrangian L0, marker weights w ∝ B , (B) based on Lagrangian L0, marker weight w ∝
B∗
|| , (C) based on Lagrangian L , weight w ∝ B∗

|| . Shown are the heat fluxes to the LCFS
after saturation. The uncertainty in these values is estimated as the standard deviation after
saturation of the fluctuations about the mean value (numerical/Monte-Carlo noise).

Due to the large machine size and strong B-field, no essential differences were observed when

comparing the higher-order and conventional guiding-centre models for the case of fusion α

particles in the European DEMO design. Differences are within other modelling uncertainties

as discussed in detail in [PCFG16]. It is interesting to note that, for these simulations, the

difference between simulations (A) and (B), which is due to the neglect of first-order terms

in B∗
|| , is in fact smaller than the difference in simulations (C) and (B), which formally differ

in the addition of second order drift terms. This can be explained in part by the fact that

α-particle losses in DEMO occur dominantly close to the last closed flux surface (LCFS) on the

outboard side, where b ·∇×b = µ̂0 j||/B = 0. Therefore, we have B∗
|| ≈ B to high accuracy for

almost all guiding-centres that are lost to the LCFS. The difference between simulations (B)

and (C) on the other hand is to be attributed to second-order drifts. These drifts are non-zero

(though still essentially negligible) even close to LCFS, as indicated by the finite value of the

O(εB )-correction (≈−µτbz /q) to Pφ on the LCFS.

3.5 Discussion

In this section, the importance of the push-forward operation is discussed and summarized

for cases where source distributions are anisotropic. In particular, auxiliary heating systems

such as NBI give rise to highly anisotropic energetic particle populations (cp. figure 3.5). For

such distributions, the first-order correction term in the push-forward (3.23) is finite due to

the non-trivial dependence of the distribution function on the parallel particle pitch λ||, and

can become non-negligible due to the particles’ large Larmor radii.

The neglect of the correction term of equation (3.23) is expected to lead to an error

∆ j ∼ εB
τ(p⊥−p||)

B
b +O(εB

2) (3.42)

in the estimated current density (cp. the difference between the current profiles in figure 3.7).

This error evidently only vanishes if the distribution function is isotropic. Furthermore, ∆ j is

expected to be biggest in the region with highest field-line twist τ, usually near the magnetic
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axis (cp. also with eq. (3.43)). Formally, we have ∆ j ∼ εB j , in agreement with the size of the

correction to the current profiles visible in figure 3.7.

In the case of the estimation of NBI losses due to RMP, the correction to the guiding-centre

distribution given by eq. (3.23), is seen to predict an decreased fraction of trapped particles

and, as a consequence, lower particle losses are obtained. This effect clearly depends on the

sign of the equilibrium parallel current, since from Ampère’s law:

µ̂0 j||,eq ≡ µ̂0b · jeq = b ·∇×B = Bτ, (3.43)

where µ̂0 denotes the vacuum permeability. The hat serves to distinguish µ̂0 from the magnetic

moment at particle position µ0 introduced earlier. Equation (3.38) may now equivalently be

written as

F ≈ f − µ̂0 j||,eq
µ

qB

∂ f

∂v||

∣∣∣
E

, (3.44)

with F the guiding-centre distribution function, f the physical particle distribution function,

µ̂0 the vacuum permeability, j||,eq the parallel component of the equilibrium current density,

µ ≈ mv2
⊥/B the magnetic moment and q the charge of the species under consideration.

Equation (3.44) reflects the gyroaveraged relation

U = b(X ) · Ẋ = 〈v||〉+ µ̂0 j||,eq
µ

qB
. (3.45)

Equation (3.45) indicates that in the case of co-current injection, the Baños drift correction

expresses a shift of the NBI guiding-centre distribution towards the deeply passing region,

which yields a reduction of losses. For counter-current injection, the Baños drift causes a shift

towards the barely passing or trapped regions of phase-space, which tends to enhance losses.

It is emphasized that the Baños drift correction is purely a finite-Larmor radius effect, which is

not to be confused with finite orbit width effects which affect losses and similarly depend on

co-/counter-current injection.

3.6 Summary and conclusions

Guiding-centre equations based on the Lie transformation approach, including a switching

algorithm consistent with the near-identity transformation to O(εB
2) and retaining higher-

order drift terms have been implemented in the VENUS-LEVIS code for the first time. The

resulting higher-order guiding-centre model has been compared with the conventional model

used in most guiding-centre following codes.

Higher-order corrections, in particular the first-order Baños drift parallel to the field lines

expressed by the push-forward relation (3.23), have been discussed in detail. It has been

shown that first-order drift parallel to the field lines can be accounted for even when relying

on the conventional guiding-centre Lagrangian. This necessitates an appropriate choice of
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guiding-centre variables and the inclusion of higher-order corrections in the relation between

particle and guiding-centre, distinguishing between the physical particle parallel velocity and

that of its associated guiding-centre. It has been shown that these corrections can affect the

expected resonances of particles with RMP, as well as the estimated NBI driven current in a

MAST-like equilibrium by up to 8%.

Additional higher-order drift terms arising from the higher-order correction to the symplectic

part of the Lagrangian (3.5) have have been considered in combination with 3D effects for

the study of toroidal field ripple induced losses in the European DEMO design. A clear need

for the inclusion of such terms has not been found. Our results suggest that conventional

guiding-centre following is sufficient for the purpose of estimating ripple induced fast ion

losses in DEMO. The difference between conventional and higher-order models has been

found to be within other modelling uncertainties. In general, the fast ion heat load due to

toroidal field ripple has been found to be of minor concern for the European DEMO design,

with a value well below the expected wall-load limit [WAA+17].

Guiding-centre simulations including all drift terms at order εB can only be assured if higher-

order corrections in the full-Lorentz/guiding-centre correspondence are implemented either

at the single-particle level, as expressed by equations (3.8)-(3.11), or at the level of distribution

functions, given by the push-forward operation (3.38), (3.36), which is directly derived from

(3.8)-(3.11). Higher-order corrections to the Lagrangian (3.21) are however not necessary when

drift terms of O(εB
2) and higher can be neglected, as explained in section 3.2.2. The relevance

of corrections in the push-forward correspondence between full-Lorentz/guiding-centre has

been discussed in detail for models of neutral beam injection in a MAST-like equilibrium.

Existing guiding-centre codes should benefit from the improved accuracy and consistency

provided by the inclusion of the higher-order order corrections discussed in the present work.
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4 Kinetic-MHD

4.1 Introduction

Plasmas of relevance to fusion research operate at high temperatures and low collisionality.

The conditions found in such plasmas clearly place them outside the domain of validity of

fluid models such as ideal magnetohydrodynamics (MHD), which are derived based on an

assumption of high collisionality. Despite this fact, MHD has proven to be an indispensable

and robust tool for the analysis of experiments and remains one of the main sources of

understanding of macroscopic instabilities. This ‘unreasonable effectiveness’ of MHD even

at high temperatures and corresponding long mean-free path lengths of ions, is commonly

understood to arise as a consequence of the presence of a strong magnetic field; Perpendicular

to the field lines, a fluid description may be justified, because the short mean-free path that

is found in collisional regimes (allowing fluid closure in MHD) is effectively replaced by the

small Larmor radius of particles even at low collisionality. However, parallel to the field lines

the particles are free-streaming in strongly magnetized near-collisionless plasmas and kinetic

effects such as resonant wave-particle interaction can become important.

The study of collisionless, strongly magnetized plasmas was pioneered by Chew, Goldberger

and Low [CGL56]. In [CGL56], an attempt was made to derive fluid equations based on an

expansion in the parameter εB ∼ ρi /L ¿ 1, where the Larmor radius of ions ρi is assumed to

be small relative to the characteristic length scales of the (macroscopic) plasma motion. As

a result of the asymptotic expansion of moments of the Vlasov equation in εB , it was found

that the leading-order form of the pressure tensor is no longer isotropic, but instead is given

in the so-called Chew-Goldberger-Low (CGL) form P = p||bb +p⊥(I −bb). Here b is the unit

vector pointing along the magnetic field, and p||, p⊥ denote the parallel and perpendicular

pressure components, respectively. The derivation in [CGL56] does not lead to a closed set

of fluid equations because the equations which determine p||, p⊥ depend on heat fluxes

which are not provided by the model. If these heat fluxes are simply neglected, the CGL double

adiabatic fluid model is obtained, according to which the evolution of p|| and p⊥ is determined
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by [CGL56]:

d

d t

(
p||B 2

ρ3

)
= 0,

d

d t

(
p⊥
ρB

)
= 0. (4.1)

Here, d/d t ≡ ∂/∂t +u ·∇ is the total time derivative with u the fluid velocity, B the magnetic

field strength and ρ denotes the mass density. The derivation of Chew, Goldberger and Low

was restricted to lowest order in the εB -expansion. It was subsequently recognized that finite

Larmor-radius (FLR) effects can exert a stabilizing influence on plasmas. Such FLR effects are

reflected by higher-order εB -corrections to the pressure tensor and independent of collisional-

ity. Among the early papers on this subject, Roberts and Taylor [RT62] have pointed out the

importance of the additional (higher-order in εB ) components of the pressure tensor which

persist in the limit of vanishing collisionality and are closely related to diamagnetic flows.

These components form a tensor π∧ that is commonly referred to as the gyroviscous tensor. It

was shown that the inclusion of the resulting gyroviscous force F∧ ≡−∇·π∧ in the momentum

equation leads to a gyroviscous cancellation, where F∧ approximately cancels out the effect

of diamagnetic flows in the fluid inertia. A number of authors have subsequently extended

the initial results of [RT62] to include additional effects, such as temperature variations and

stress tensor drift [CC92], temperature gradients and higher-order moments of the distribution

function [Smo98], or the combined effects of collisions and FLR corrections [Kau60, MT71].

Most of these results are obtained in simple slab geometry – a discussion of the assumptions

required for the validity of this approximation has for example been given by Hazeltine and

Meiss [HM85, Section 4.3.3]. In complex geometry, an expression for the gyroviscous pressure

tensor has first been obtained under the fast flow ordering ∂/∂t ∼ u · ∇ ∼ vth/L by MacMa-

hon [Mac65], whose result remains the state-of-the-art in collisionless fluid theory under these

assumptions. The findings of [Mac65] have recently been confirmed by Ramos [Ram05a], who

presents a comprehensive discussion of fluid models for collisionless plasmas including alter-

native orderings. In a later publication [Ram05b], an explicit expression for the gyroviscous

force F∧ in complex geometry is also provided.

While the fluid moment approach provides useful information on extended fluid effects

(diamagnetic flows, heat fluxes, higher-order moments), it does not provide a closed set of

equations describing the dynamics of collisionless plasmas, except under very particular

circumstances which are not usually found [CGL56]. In general, some form of ad hoc closure

remains necessary.

The present chapter is based on the publication [LGPC19]. Following [LGPC19], this chapter

focuses on an approach where a closure can be achieved from the solution of a reduced

kinetic (guiding-centre or gyrokinetic) equation, taking into account both FLR as well as other

kinetic corrections. Our approach shares some similarity with the one recently adapted by

several authors in gyrokinetic theory [Bri92, Bel01]. In the gyrokinetic approach, a dynamical

reduction is first employed to transform the Vlasov equation to suitable gyro-centre coordi-

nates, thereby eliminating the fast time-scales associated with gyro-motion. The gyrokinetic
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reduction allows FLR effects to be retained under the ordering k⊥ρi ∼ 1, where the Larmor

radius of ions is allowed to be of the same order of magnitude as the characteristic length scale

of the perturbations. This comes at the expense of limiting consideration to small amplitude

fluctuations of the electromagnetic fields about a long-wavelength background equilibrium.

The gyrokinetic derivation of reduced fluid equations including FLR corrections has first been

proposed by Brizard [Bri92]. In [Bri92], a set of gyrofluid equations has been obtained in

gyrocentre coordinates and then transformed to physical particle space. Using this method,

gyroviscous cancellations are automatically accounted for and extensions to arbitrary order

in k⊥ρi can be systematically carried out. Building on these ideas, an expression for the non-

linear gyroviscous force has subsequently been obtained by Belova [Bel01]. The results of

[Bel01] are in agreement with the fluid results [Smo98], but are only established for electrostatic

perturbations and in slab geometry. To the knowledge of the authors, no derivation of FLR

corrections to the pressure tensor is available in the existing literature from a reduced kinetic

description and in complex geometry.

The present work fills this gap by giving a detailed derivation of the collisionless gyroviscous

tensor in complex geometry. In contrast to [Bri92, Bel01], we will follow the guiding-centre

approach which allows for arbitrary amplitude perturbations, while requiring k⊥ρi ¿ 1. Strong

flows are allowed for and full electromagnetic perturbations are retained. In this way, a guiding-

centre kinetic-MHD model for strong flows including diamagnetic (FLR) effects is obtained.

The pressure coupling approach is followed; closure of the momentum equation is achieved

by expressing the pressure moment in terms of the solution of the guiding-centre equations. It

is shown that the higher-order corrections to the Larmor motion that describe the deviation

of a particle trajectory from circular motion around the magnetic field play a crucial role in

determining the off-diagonal components of the pressure tensor. Our derivation naturally

leads to a consistent hybrid kinetic-MHD description of collisionless plasmas in which the

exact fluid equations are closed by approximate pressure moments obtained from the solution

of a reduced kinetic equation. The proposed model accounts for kinetic effects such as Landau

damping, includes an exact treatment of finite orbit-width effects and allows the investigation

of strong flows and diamagnetic effects based on the consistent framework of guiding-centre

theory. Special consideration is given to the kinetic-MHD equilibrium, and a set of equations

suitable for the study of linear dynamics within the proposed model is derived. In particular,

the model equations derived here generalise the results of Porcelli [PSK94] and Antonsen,

Lee [Ant82] to include centrifugal effects, and FLR corrections in the fluid contributions to the

plasma inertia.

The kinetic-MHD approach taken in the present chapter should be contrasted with gyroki-

netic [CZ16], gyrofluid [Sco07] and two-fluid approaches [LL10], that have previously been

used to investigate diamagnetic effects. Gyrofluid models are based on taking moments of the

gyrokinetic equation, and therefore both gyrokinetic and gyrofluid models intrinsically rely

on a splitting between background fields and small-scale fluctuations. Instead, we follow a

more classical kinetic-MHD approach which does not require such a splitting. Our approach
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is instead restricted to the study of macroscopic, long-wavelength perturbations. Further-

more, our objective is not the derivation of a self-consistent set of fluid equations including

FLR corrections for the study of small-scale turbulence. Rather, our goal is to discuss how

several important, missing kinetic effects can be added to fluid descriptions of macroscopic

instabilities. In particular, the present work concerns the interplay between the fluid and

guiding-centre descriptions of plasmas, and shows how they can be combined in a consistent

framework.

The present approach may more naturally be viewed as being complementary to a (two-)fluid

approach, such as is for example implemented in the XTOR-2F code [LL08, LL10]. Where

instead of employing an ad hoc fluid closure, a kinetic closure is achieved, thus taking into

account kinetic effects such as wave-particle resonances. As mentioned at the beginning of

this introduction, a kinetic closure for the pressure is required at weak collisionality. Our work

presents a model including both fluid effects and a reduced kinetic equation. It is explicitly

shown that the kinetic description is consistent with two-fluid effects such as diamagnetic

drifts. Our equations do however not form a superset of the two-fluid model employed by

XTOR-2F. In particular, collisions and related diffusive processes are not included in our

collisionless kinetic description. Nevertheless, we do give attention to quasi-neutrality, and

corrections to the parallel electric field, which some kinetic-fluid codes and treatments sim-

plify.

This chapter is organized as follows. In section 4.2, a set of guiding-centre equations is de-

veloped in a local frame moving with a time-dependent background flow u(x, t ). Important

higher-order corrections due to gradients of the background flow are considered in detail in

section 4.3.1. Before advancing to the general calculation of the pressure tensor including

gyroviscous corrections, the discussion of section 4.3.1 focuses on a special case in simple

geometry; this provides an intuitive picture of the meaning and origin of the gyroviscous

stresses, and clearly relates them to deviations of particle trajectories from circular motion.

Section 4.3.2 then presents our derivation of the general form of the gyroviscous pressure

tensor from guiding-centre theory, making use of the results presented in chapter 2. The

derivation is shown to recover MacMahon’s results [Mac65]. The full set of non-linear kinetic-

MHD equations is discussed in Section 4.4.1. The kinetic-MHD equilibrium is considered

in section 4.4.2. Equations suitable for the computation of the linear kinetic response are

derived in section 4.4.3. Combining the results of the current work, a linear kinetic-MHD

model is finally obtained by extending the Frieman-Rotenberg equation [FR60] to include

the kinetic equations of section 4.4.5. An argument for the efficiency of the kinetic-MHD

pressure closure as opposed to an alternative purely kinetic approach based on current closure

is given in Section 4.4.4, where we point out that the present kinetic-MHD approach appears

to require only O(εB ) corrections to the guiding-centre equations to be retained, whereas

a fully kinetic approach would require O(εB
2) corrections to be considered. Further details

on the calculations of the gyroviscous pressure components as well as several mathematical

identities that may be of interest in other contexts are provided in the appendix.
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4.2. Guiding-centre equations in co-moving frame

4.2 Guiding-centre equations in co-moving frame

For the derivation of the FLR corrections to the pressure tensor, it will be useful to utilize a

set of guiding-centre equations based on the velocity variable decomposition v = u(x , t )+w

as developed in chapter 2, where u is the (leading-order in εB ) fluid velocity and w can be

viewed as a thermal fluctuation. It is interesting to emphasize at this point that the gyroviscous

corrections to the pressure are analogous in their origin to the guiding-centre polarization

corrections to the density moment and magnetization corrections to the velocity moment, re-

spectively. Therefore, the subtle distinction between the higher-order displacement expressed

in guiding-centre Zgc versus physical particle coordinates Zphy, which has previously been

pointed out and discussed in detail by Brizard [Bri10] for the non-rotating (u = 0) case, is

important also in the present context. Even though the important distinction occurs in a

second-order (εB
2) term when expressing the particle position x in terms of the guiding-centre

position X (in guiding-centre variables) in the form (cp. the first equation of (2.34) in chapter

2)

x = X +εBρ0 +εB
2ρ1 +O(εB

3), (4.2)

the second-order correction ρ1 will play an important role in calculating the correct first-order

εB -correction to the pressure tensor. This perhaps perplexing fact can be understood as follows:

The pressure moment is written in terms of the physical particle velocity v = ẋ = Ẋ +ρ̇0+ρ̇1+. . ..

While the higher-order guiding-centre displacement ρ1 is ordered at O(εB
2), the velocity

associated with the second-order displacement is ρ̇1 ≈Ω∂ζρ1. Because the gyrofrequency

Ω∼ εB
−1 is a formally large term, it causes the velocity contribution due to ρ1 to be of order

εB relative to Ẋ ∼O(1); therefore, indicating the ordering in εB we find that

ẋ = Ẋ + ρ̇0 +εB ρ̇1 +O(εB
2)

=W +εB Vgc + ρ̇0 +εB ρ̇1 +O(εB
2),

and εB ρ̇1 is of the same order of magnitude as the guiding-centre ∇B- and κ-drifts contained

in εB Vgc (defined in (4.8), below), and therefore needs to be retained when evaluating the

particle velocity including O(εB )-corrections.

A detailed derivation of the equations has been presented in chapter 2. In the current section,

we will summarize the main results which are of relevance for the computation of the pressure.

We use the guiding-centre coordinates (X , w,µ,ζ), of which X , µ and ζ are summarized in

section 2.3.2, and we recall that we retain the leading-order parallel flow component of u,

so that u = u|| +uE . We will choose u|| in a way that is suitable for the given application.

Correspondingly, in our formulation the parallel velocity variable w is chosen so that Ẋ || =
u||(X , t)+wb(X , t). The guiding-centre Lagrangian to the relevant order (neglecting O(εB

2)
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corrections in (2.26)) is here written

L = [
q A +mW

] · dX + J dζ−H dt

H = qΦ+ 1

2
mW 2 +µB.

(4.3)

with W ≡ wb(X , t)+u(X , t) the leading-order guiding-centre velocity and J ≡ m
q µ the gy-

roangle action. The phase-space transformation corresponding to this form of the guiding-

centre Lagrangian is generated by the phase-space vector field G = G1 + εBG2 according to

Z α
gc = Z α

phy + εBGα
1 + εB

2
(
Gα

2 + 1
2G1 · dGα

1

)
. Following (2.53), the inverse transformation ex-

pressed in guiding-centre coordinates is given by

Z α
phy =Z α

gc −εBGα
1 −εB

2
(
Gα

2 − 1

2
G1 · dGα

1

)
. (4.4)

As pointed out above, for the purposes of the present work, the second-order correction to

the spatial component of the guiding-centre transformation is required. Comparing (4.2) and

(4.4), we can identify x = X +εBρ0 +εB
2ρ1, where (recall equations (2.57) and (2.36))

ρ0 =−G x
1 , (4.5)

ρ1 =−G x
2 + 1

2
G1 · dG x

1 . (4.6)

As in chapter 2, we fix a perpendicular frame e1(X , t ),e2(X , t ) consisting of unit vectors such

that e1,e2,b form a right-handed orthonormal basis at each point. We recall from (2.37) that

the leading-order displacement is given in terms of the gyroangle-dependent unit vector ρ̂ as

ρ0(X ,µ,ζ, t ) =
√

2µ

mB(X , t )
ρ̂(X ,ζ, t ), (4.7)

with ρ̂ = cos(ζ)e1 − sin(ζ)e2. The leading order velocity is then along

⊥̂⊥⊥(X ,ζ, t ) ≡ ∂ζρ̂ =−sin(ζ)e1(X , t )−cos(ζ)e2(X , t ).

By (2.36), the higher-order displacement can be written

ρ1 =−(
gµ∂µ+ gζ∂ζ

)
ρ0 − 1

Ω
(b ·∇×W )ρ0 −

(
G X

2,||+
1

2
ρ0 ·∇b ·ρ0

)
b.

where (cp. (2.72), (2.73))

gµ =Gµ
1 −µρ0 ·∇ logB ,

gζ =Gζ
1 +ρ0 ·R ,

with R ≡ (∇e1) ·e2. Explicit expressions for the components gµ, gζ are given by (B.5),(B.6) in

appendix B. Correcting an error in [Mad10], the parallel component G X
2,|| is found to be given by

(2.42). The guiding-centre equations of motion are obtained from variations of the Lagrangian
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x1

x2

x3

E ×B

E

B

∇E2

Figure 4.1 – Assumed slab geometry.

(4.3). For the computation of the pressure, the following explicit expressions will be used (see

also (2.32) in chapter 2)

Ẋ =W +εB Vgc +O(εB
2),

Vgc = µ

qB
b ×∇B + b

Ω
×

(
∂

∂t
+W ·∇

)
W ,

ζ̇= εB
−1Ω+εB

0
[

R ·W +S + 1

2
b · (∇×b)

]
+O(εB ).

(4.8)

Here S is the “time-like” analogue of R , namely S = (∂t e1) ·e2.

4.3 Pressure in guiding-centre coordinates

4.3.1 Intuitive picture in slab geometry

To provide an intuitive account of the guiding-centre corrections described in the last section,

we focus here on the particle motion and implications of these corrections in a simplified

magnetic geometry. Following [Kau60], we assume a cartesian slab geometry described by

coordinates (x1, x2, x3) and constant magnetic field B = Bb, pointing in the x3-direction. We

assume the E ×B velocity u to be orientated in direction e1, with amplitude linear in x2, such

that

u(x) = u1,2x2e1,

corresponding to an electric field E = E2(x2)e2 = u1,2B x2e2 (cf. Figure 4.1). Here, we denote by

u1,2 ≡ ∂u1/∂x2 the partial derivative of the x1-component of u.
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Particle trajectory

We first derive the motion of a charged particle with mass m, charge q as predicted by guiding-

centre theory. We find

ρ1 ·b = 0,

1

2µ
gµ =− 1

2Ω
b ·∇×u + 1

4Ω
(ρ̂⊥̂⊥⊥+⊥̂⊥⊥ρ̂) : ∇u,

gζ =− 1

4Ω
(ρ̂ρ̂−⊥̂⊥⊥⊥̂⊥⊥) : ∇u

where b ·∇×u =−u1,2, and ∇u = u1,2e2e1. AlsoΩ≡ qB/m is the gyrofrequency. So that

(ρ̂⊥̂⊥⊥+⊥̂⊥⊥ρ̂) : ∇u = u1,2
[
sin2(ζ)−cos2(ζ)

]
,

(ρ̂ρ̂−⊥̂⊥⊥⊥̂⊥⊥) : ∇u = u1,2 [−2cos(ζ)sin(ζ)] .

We then find from equations (4.5)-(4.7): ρ0 = ρ0 (cos(ζ)e1 − sin(ζ)e2), and

ρ1 =
3ρ0u1,2

4Ω
ρ0 +

ρ0u1,2

2Ω
sin(ζ)e2.

Introducing a ≡ ρ0

(
1+ 3u1,2

4Ω

)
, we can finally write

ρ ≈ρ0 +εBρ1 = a cos(ζ)e1 −a

(
Ω−εB

1
2 u1,2

Ω

)
sin(ζ)e2.

Observing also that Ẋ = u(X ) with X (t = 0) = X (0)
1 e1+X (0)

2 e2 implies X = X (t = 0)+u1,2X (0)
2 te1,

it follows from x = X +ρ that
x1(t ) = X (0)

1 +u1,2X (0)
2 t +a cos(ζ(t )),

x2(t ) = X (0)
2 −a

(
Ω−εB

1
2 u1,2

Ω

)
sin(ζ(t )).

(4.9)

In addition, we note that the guiding-centre equations of motion yield

ζ̇=Ω+εB
1

2
b · (∇×u) =Ω−εB

1

2
u1,2. (4.10)

We can compare these guiding-centre results with the results obtained from the Lorentzian

equations of motion [Kau60]. According to [Kau60, equation (20)], the general solution of the

resulting Lorentzian equations of motion is given by
x1(t ) = x(0)

1 +u1,2x(0)
2 t +a cos

(√
Ω(Ω−εB u1,2)t +α

)
,

x2(t ) = x(0)
2 −a

(
Ω−εB u1,2

Ω

)1/2

sin
(√
Ω(Ω−εB u1,2)t +α

)
.

(4.11)
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Figure 4.2 – Particle motion in slab geometry with ∇E2 6= 0: motion in lab frame with E×B drift
clearly visible (left). Motion in frame co-moving with the guiding-centre (right) clearly shows
deviation from circular motion due to ∇E2. In this figure, epsilon stands for ε≡ |∇uE |/Ωc =
|∇E2|/BΩc .
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Figure 4.3 – Trajectories intersecting r = 0 and corresponding anisotropic velocity distribution.

where x(0)
1 , x(0)

2 , a,α are constants to be determined from the initial conditions. By inspection

of (4.9) and (4.11), we can immediately identify x (0) = X (0), and we see that the leading-order

approximation

ζ=√
Ω(Ω−εB u1,2)t +α ⇒ ζ̇≈Ω−εB

1

2
u1,2 =Ω−εB

1

2
b · (∇×u),

is consistent with the guiding-centre picture (cp. equation (4.10)).

Effects due to higher-order corrections

The fact that the particle trajectory has an elliptic shape, rather than a circular one, turns out

to cause off-diagonal terms in the pressure tensor. To see this, we fix a physical position r = 0

and consider all particle trajectories that intersect r , as depicted in Figure 4.3. The fact that

the trajectories are elliptical rather than circular translates into an anisotropy in the velocity

distribution at r (cf. Figure 4.3 (right)).

The off-diagonal componentsΠ12 ∼ 〈v1v2〉,Π11 −Π22 ∼ 〈v2
1 − v2

2〉 of the pressure tensor are

non-zero because this anisotropy corresponds to correlations between v1, v2 as depicted in

Figure 4.4, leading toΠ 6= 0. Here we have denoted the gyro-average by 〈. . .〉 ≡ (2π)−1
∫

dζ(. . .).
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Figure 4.4 – Terms related to off-diagonal components Π12 and Π11 −Π22 as function of
gyroangle ζ at fixed r (solid), and their gyroaverages (dashed). Here: vx ≡ v1, vy ≡ v2.

4.3.2 General expression for pressure

Approach

Let u = u +εB u∗+O(εB
2) denote the (macroscopic) mass fluid velocity, including a leading-

order term u with respect to which the guiding-centre equations are defined. The exact form of

u in our context will be specified later on, for now we only require that the difference between u

and u is of higher order in εB . We wish to evaluate the pressure tensor, retaining effects related

to gradients in u to first order in εB . The first step is to recognize that the distinction between

u and u will be unimportant for the evaluation of the pressure. The difference between these

velocities, εB u∗, is a diamagnetic flow, which itself is of collective (distribution) origin. To see

why the contribution due to εB u∗ is unimportant, let us first write the pressure tensor P in

guiding-centre coordinates.

P (r ) =
∫

d3v m
[

v −u(r )
][

v −u(r )
]

f (r , v )

=
∫

d6Zphys δ(x − r )m
[

v −u(r )
][

v −u(r )
]

f (Zphy)

=
∫

d6Zgc δ(X +ρ− r )m
[

v −u(r )
][

v −u(r )
]

F (Zgc).

We have denoted Zphy = (x , v) the particle phase-space coordinates and Zgc the guiding-

centre phase-space coordinates, and f , F are the distributions functions expressed in particle

and guiding-centre coordinates, respectively.

Expanding now u = u + εB u∗, and recognizing that the leading order particle velocity v =
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u +wb + ρ̇0 +O(εB ), we find

P (r ) =
∫

d6Zgc δ(X +εBρ0 − r )m [v −u(r )] [v −u(r )]F (Zgc)

+
∫

d6Zgc δ(X +εBρ0 − r )m [v −u(r )] [−εB u∗(r )]F (Zgc)+ (T)+O(εB
2)

=
∫

d6Zgc δ(X +εBρ0 − r )m [v −u(r )] [v −u(r )]F (Zgc)

−εB u∗(r )
∫

d6Zgc δ(X − r )m
[
wb + ρ̇0

]
F (Zgc)+ (T)+O(εB

2).

We denote by (T ) the transpose of the second term. Now, we find that the second term in the

last equation is of order εB
2, because∫

d3vgc m[wb + ρ̇0]F (Zgc) =O(εB ),

by our choice of parallel velocity variable w as an (approximate) thermal fluctuation. We

conclude that

P (r ) =
∫

d6Zgc δ(X +εBρ0 − r )m [v −u(r )] [v −u(r )]F (Zgc)+O(εB
2).

The goal of this section is to expand this expression for P , retaining all corrections at order εB .

In guiding-centre coordinates Zgc, we find

v = ẋ = Ẋ + ρ̇.

The guiding centre velocity Ẋ can be written in the form (cp. eq. (4.8))

Ẋ = wb(X )+u(X )+εB Vgc +O(εB
2)

It is important to note that u(r ) 6= u(X ). To the required accuracy,

Ẋ −u(r ) = Ẋ −u(X )−εBρ0 ·∇u(X )+O(εB
2),

so that

P (r ) =
∫

d6Zgc δ(X +εBρ0 − r )m
[
wb + ρ̇gc +εB Vgc −εBρ0 ·∇u

]⊗2 F (Zgc)

Expanding δ(X +εBρ0−r ) = [1+εBρ0 ·∇]δ(X −r )+O(εB
2), integrating by parts, and neglecting

terms at order O(εB
2) and higher throughout, we arrive at

P (r ) =
∫

d6Zgc δ(X − r )m
[
wb + ρ̇+εB Vgc −εBρ0 ·∇u

]⊗2 F

−∇·
∫

d6Zgc δ(X − r )mρ0
[
wb + ρ̇][

wb + ρ̇]
F.
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We will furthermore write the (canonical) phase-space volume in the form d6Zgc = dX dvgc,

where the guiding-centre velocity volume element is dvgc ≡ m−1B∗
|| dw dµdζ and B∗

|| ≡ b ·B∗

is defined in terms of B∗ defined in chapter 2, equation (2.30).

Let us note that both ρ̇ ≡ ρ̇(0) + εB ρ̇
(1) +O(εB

2) and ρ0 are purely oscillatory in gyroangle.

Expanding the above expression for P and taking into account that several terms gyro-average

to zero, we obtain (assuming a single ion species)

P (r ) =
(∫

d3vgc mw2F

)
bb +

(∫
d3vgc mρ̇(0)ρ̇(0)F

)
(4.12)

+εB

∫
d3vgc mw

[
bVgc +Vgcb

]
F (4.13)

+εB

∫
d3vgc m

[
ρ̇(0)ρ̇(1) + ρ̇(1)ρ̇(0)]F (4.14)

−εB

∫
d3vgc m

[
ρ̇(0) (ρ0 ·∇u

)+ (
ρ0 ·∇u

)
ρ̇(0)]F (4.15)

−εB∇·
∫

d3vgc mwρ0
[
bρ̇(0) + ρ̇(0)b

]
F. (4.16)

We remind the reader that in these expressions F denotes the guiding-centre distribution. We

also note that we are not including O(εB
2)-terms, so that we may use

d3vgc ≈ m−1B dw dµdζ (4.17)

to calculate the first-order correction terms (4.13)-(4.16).

Leading-order expression

Observing that

ρ̇(0) =Ω∂ζρ0 =
√

2µB/m⊥̂⊥⊥≈ v⊥,

we find that the gyroaverage m〈ρ̇(0)ρ̇(0)〉 = 2µB〈⊥̂⊥⊥⊥̂⊥⊥〉 = µB(I −bb), and the CGL form of the

pressure tensor is recovered to lowest order

P = P⊥(I −bb)+P||bb +O(εB ).

In these expressions, we define the perpendicular and parallel guiding-centre pressure mo-

ments as

P⊥ =
∫

d3vgc µB F, P|| =
∫

d3vgc mw2F.
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For future reference, we also define the guiding-centre parallel fluxes of parallel heat q ||
|| and

transverse heat q⊥
|| as follows:

q ||
|| =

∫
d3vgc mw3F, q⊥

|| =
∫

d3vgc wµBF.

Higher-order correction

Detailed calculations for the higher-order terms have been included in appendix B. Here we

only cite the final results. It is convenient to decompose the pressure tensor as follows:

P = P CGL +Πδ(e2e2 −e1e1)+Π12(e1e2 +e2e1)+b ⊗Πb⊥+Π⊥b ⊗b,

where the last two contributions are defined as

Πb⊥ ≡ b ·P · (I −bb), Π⊥b ≡ (I −bb) ·P ·b,

and we note that by symmetryΠb⊥ =Π⊥b . The three contributionsΠb⊥ =Π⊥b ,Πδ,Π12 arise

from corrections to P in each of (4.13), (4.14), (4.15), (4.16). These corrections in each equation

are listed below:

Correction (I) (eq. (4.13)): From perpendicular Ohm’s law, we have [db/dt ]⊥ ≈ [b ·∇u]⊥. This

term therefore gives the following non-zero contributions

Πb⊥ = b ⊗
{

1

Ω
b ×

[
2P||b ·∇u +q⊥

|| ∇B +2q ||
||κ

]}
Πδ = 0

Π12 = 0.

Correction (II) (eq. (4.14)): We find

Πb⊥ = b ⊗
{

1

Ω
b ×

[
−q⊥

|| κ−P⊥b ·∇u
]}

Πδ =
1

2Ω
Iγ :

[
P⊥∇u +q⊥

|| ∇b
]

Π12 = 1

2Ω
Iδ :

[
P⊥∇u +q⊥

|| ∇b
]

.
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Correction (III): (eq. (4.15))

Πb⊥ = b ⊗
{

1

Ω
b × [P⊥∇u ·b]

}
Πδ =

1

Ω
Iγ : [P⊥∇u]

Π12 = 1

Ω
Iδ : [P⊥∇u] .

Correction (IV): (eq. (4.16))

Πb⊥ = b ⊗
{

1

Ω
b ×

[
∇q⊥

|| −q⊥
|| ∇B −q⊥

|| κ
]}

Πδ =
1

Ω
Iγ :

[
q⊥
|| ∇b

]
Π12 = 1

Ω
Iδ :

[
q⊥
|| ∇b

]
.

Sum of all terms (I-IV): Based on the above expressions, we finally obtain:

Πb⊥ = b ⊗
{

1

Ω
b ×

[
(2P||−P⊥)b ·∇u +P⊥(∇u) ·b

+2(q ||
|| −q⊥

|| )κ+∇q⊥
||

]}
,

Πδ =
1

2Ω
Iγ :

[
P⊥∇u +q⊥

|| ∇b
]

,

Π12 = 1

2Ω
Iδ :

[
P⊥∇u +q⊥

|| ∇b
]

.

(4.18)

In addition, usingΠ⊥b = (Πb⊥)T , we have for completion,

Π⊥b =
{

1

Ω
b ×

[
(2P||−P⊥)b ·∇u +P⊥(∇u) ·b

+2(q ||
|| −q⊥

|| )κ+∇q⊥
||

]}
⊗b

(4.19)

This form of the gyroviscous tensor, as derived from guiding-centre theory, recovers MacMa-

hon’s result [Mac65, eq. (11)-(13)]. Macmahon’s result remains the most general expression

for the gyroviscous tensor for collisionless dynamics, and under the present fast-dynamics

ordering, with fluid velocity of the order of the ion thermal velocity u ∼ vth,i . Note that the

more conventionally cited expression for the gyroviscous tensor due to Braginskii [Bra65] is

instead based on the assumption of fast dynamics and high collisionality, and hence may

be appropriate if fluid equations with an ad hoc closure are discussed, but does not pertain

in the present context. A thorough discussion and comparison of several alternate order-

ings for FLR corrected fluid equations has been given by Ramos [Ram05a, Ram05b], and we

refer the interested reader to that work for further information. For the present work, it is
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interesting to point out that those contributions to the gyroviscous tensor, which are pro-

portional to gradients in u, are the same for all the various orderings discussed in [Ram05b].

It is this contribution proportional to ∇u which is most commonly considered, and which

is responsible for the approximate gyroviscous cancellation. For a discussion of the deriva-

tion of the gyroviscous force from the gyroviscous tensor, and the approximate gyroviscous

cancellation in the momentum equation that is implied by the gyroviscous force, we refer

to [CC92, Smo98, Kau60, MT71, HM85, Ram05b, Bra65]. In particular, our derivation shows that

the generalized guiding-centre theory developed in the present work is consistent with the

inclusion of finite Larmor-radius effects (diamagnetic flows) in the momentum equation.

4.4 A Kinetic-MHD model for strong flows

4.4.1 Nonlinear formulation including diamagnetic effects

Kinetic-MHD model

Based on the above development of guiding-centre theory in terms of the MHD-like velocity

u, and the demonstration that this formulation is consistent with the gyroviscous cancellation,

we can now re-write the exact momentum equation, obtained in the limit me → 0: As already

pointed out in Section 1.3, to avoid additional complications due to inertia contributions by

multiple ion species, we shall assume that the inertia is dominated by single bulk ion species,

in the following discussion.1 The exact momentum equation in this limit is given in terms of

the ion flow velocity (“i” denotes the dominant bulk ion species) u = u +u∗,i +O(εB
2):

mi n

(
∂u

∂t
+u ·∇u

)
+∇·Πi = j ×B −∇·P CGL.

While the derivation in the last section has been based on a guiding-centre calculation, the

resulting expression forΠi agrees with known results obtained from fluid theory. Therefore

following [Aib16], and employing the approximate gyro-viscous cancellation,2 we write

mi n

(
∂u

∂t
+u ·∇u

)
+∇·Πi ≈ mi n

(
du

dt
+u∗,i ·∇u⊥

)
, (4.20)

with d
dt = ∂t +u ·∇ the convective derivative along u. Thus, we find the following form of the

momentum equation

mi n

(
du

dt
+u∗,i ·∇u⊥

)
= j ×B −∇·P CGL, (4.21)

1An extension to contributions to the inertia by multiple ion bulk species would be straight-forward if us ≈ u
for all bulk ion species “s”, though. The general case is left for future work.

2We employ the approximate form of the gyroviscous force at this point, rather than the exact expression as e.g.
derived in [Ram05b], mainly for simplicity of the resulting equations.
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where

u∗,i =
b ×∇P⊥,i

Z enB

is the ion diamagnetic flow. In this last expression, we have allowed for a general diagonal Chew-

Goldberger-Low form P CGL, instead of the isotropic form P CGL = p I , which was assumed in

the fluid treatment [Aib16]. The density n in (4.21) satisfies the continuity equation

∂n

∂t
+∇· (nu) = 0. (4.22)

Assuming E|| ≈ 0, Ohm’s law can be written:

E +u ×B = 0.

This form of Ohm’s law then leads to the conventional ideal MHD result

∂B

∂t
=∇× (u ×B ). (4.23)

Finally, closure is provided by the solution of the collisionless guiding-centre Vlasov equation

∂t Fs,gc + Ẋ ·∇Fs,gc + ẇ
∂Fs,gc

∂w
= 0. (4.24)

for each species s ∈ {i ,e}. We note that

Ẋ = w
B∗

B∗
||
+ E∗×b

B||
, ẇ = qs

ms

E∗ ·B∗

BB∗
||

, (4.25)

with E∗ ≡−∇H/q − ∂A∗
∂t , B∗ ≡∇× A∗ and A∗ ≡ A + m

q W , are derived from the guiding-centre

Lagrangian L (cp. equation (4.3)). The pressure tensor P CGL is computed at leading order as

P CGL =∑
s

P CGL
s ,

P CGL
s = Ps,||bb +Ps,⊥(I −bb),

(4.26)

where

Ps,|| ≡
∫

ms w2Fs,gc d3vgc,

Ps,⊥ ≡
∫
µBFs,gc d3vgc.

The resulting system of equations is written in term of the variables (n,u,B ,Fs), where n is the

ion number density, u is the leading-order fluid velocity, B is the total magnetic field, and Fs

denote the guiding-centre distribution functions for each species s. The numerical solution of

the non-linear kinetic-MHD system requires the evolution of n according to equation (4.22),
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u is solved for from equation (4.21) and the solution of Ohm’s law (4.23) is needed to advance

B . In addition, the guiding-centre distributions are evolved according to the collisionless

guiding-centre Vlasov equation (4.24), from which the CGL-contribution to the pressure are

obtained according to (4.26). The resulting system of equations can be used to study the

non-linear dynamics of low-frequency modes for which diamagnetic effects are important, i.e.

when ω∼ nω∗,i . Both FLR, as well as particle wave interactions (precession resonance) are

included in this non-linear model.

Discussion of the non-linear kinetic-MHD model

The kinetic-MHD approach has a long history going back at least to the pioneering work

of Rosenbluth and Rostocker [RR59]. In this section we would like to point out a subtlety

that make this approach particularly suitable for the study of kinetic effects on macroscopic

instabilities. To explain why, we start out by introducing the formal ordering of the terms

appearing in the momentum equation (4.21):

mi n

(
du

dt
+εB u∗,i ·∇u⊥

)
= εB

−1 j ×B −∇·P CGL. (4.27)

In order to obtain a consistent set of equations, we need to provide closure relations for j

and P CGL. The crucial point of kinetic-MHD is that it is beneficial not to compute the current

density directly from the particle distribution function fs (cp. the classic work by Rosenbluth,

Rostocker [RR59, p.25], or the book by Freidberg [Fre14, p.391]). Indeed, if we were to write

j = qs
∫

v fs d3v , we would require knowledge of fs including corrections at order εB
2, in order

to compute j to an order that is consistent with the other terms in (4.27). Instead, we express j

in terms of B using Ampère’s law ∇×B =µ0 j , and the evolution of B is governed by equation

(4.23).

Thus, the only variable that requires kinetic closure is now the CGL-part of the pressure tensor

P CGL. And comparing with the ordered momentum equation (4.27), we find that the pressure

can be consistently computed from knowledge of the distribution function fs including FLR

correction to order εB . In this way, the kinetic-MHD approach with pressure closure achieves

an efficient use of kinetic information, in the sense that the guiding-centre distribution Fs ,

computed based on guiding-centre theory including all O(εB )-corrections is sufficient. Higher-

order corrections at O(εB
2) are not required in a kinetic-MHD approach, whereas they would

be required to compute all terms in the momentum equation (4.27) from a purely kinetic

approach.

Previous versions of the kinetic-MHD model, as e.g. discussed in [Fre14, Chap. 9.5], have

focused on leading-order effects, for which only information about the zeroth-order distri-

bution function is necessary. In this work, we also consider first-order corrections in the

guiding-centre equations which lead to important particle drift effects, and which allow us

to consistently include the effects due to the diamagnetic drift velocity in the momentum
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equation (4.27). We emphasize that the above non-linear model is based on the MHD form of

Ohm’s law (also parallel to the field lines), and hence does not include kinetic effects due to

E∥ 6= 0. In sections 4.3 and 4.4 below, we will instead consider a linearized kinetic-MHD model

where the effects due to E∥ 6= 0 are included.

In closing our discussion of the non-linear kinetic-MHD model, we remark that a similar

pressure-coupling approach is for example followed in the numerical code XTOR-K, which is

currently under development. XTOR-K is a extension of the two-fluid code XTOR-2F [LL08,

LL10]. In XTOR-K, kinetic closure is achieved by computing the particle distribution function

fs , based on direct solution of the Vlasov equation, rather than a set of reduced guiding-

centre equations. Numerically, this puts more stringent demands on the maximum allowed

time-step size, since the fast gyro-motion of particles needs to be resolved in XTOR-K. In

contrast the fastest motion in the guiding-centre description is on the order of the bounce-

frequency of particles. The model proposed in this work could thus serve as a computationally

less demanding alternative to provide kinetic closure for XTOR-K, in the collisionless limit.

Similarly to our non-linear model, XTOR-K also does not determine E∥ from a self-consistent

quasi-neutrality relation.

In comparison to non-linear, global gyrokinetic codes [JBA+07, GLB+11], we expect that the

kinetic-MHD system might be less computationally expensive to solve in practice, due to the

fact that the considered modes are long-wavelength, in contrast to the small-scale turbulence

considered in gyrokinetics. Hence, we would expect such modes to require less spatial resolu-

tion. In addition, the kinetic-MHD treatment requires no (non-local) gyroaveraging operations

to be carried out, and thus fewer operations per time-step.

While the guiding-centre equations which we used to derive the expression for the gyroviscous

tensor (4.18) have naturally led to a non-linear kinetic-MHD model, the main goal of the

present work is the derivation of a linear model, allowing for a non-zero parallel electric field.

The following sections are devoted to the derivation of such a linear model.

4.4.2 Equilibrium

Disclaimer: In the following, we will consistently write fields as a sum of equilibrium and

perturbed parts. Perturbed quantities will be denoted with a δ. To ease notation, we will

however not indicate all equilibrium quantities with a subscript 0, e.g. we shall replace

B (x , t ) → B (x)+δB (x , t ). Unless otherwise specified, henceforth any quantity without a δ will

refer to an equilibrium quantity.

Before deriving equations to study the linear dynamics, we briefly discuss the magnetohy-

drodynamic equilibrium from a kinetic point of view. We will assume for simplicity that the

equilibrium is isotropic. So that the CGL equilibrium pressure tensor becomes a scalar. Note

though that the lowest order perturbed pressure is not isotropic. Following [Bri95], we will
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assume an axisymmetric equilibrium with nested flux surfaces, so that we can choose flux

coordinates (ψ,θ,φ) with ψ the poloidal flux variable, θ the poloidal angle and φ the toroidal

angle. We furthermore assume the equilibrium flow, defining the co-moving frame, to be

purely toroidal and given by

u0 =Ω(ψ)R2∇φ,

whereΩ(ψ) is the leading-order toroidal rotation frequency and R = R(ψ,θ) is the major radius.

This is consistent with lowest-order kinetic theory for all collisionalities in an axisymmetric

plasma [CBT87]. We remind the reader that the rotation frequency is related to the leading-

order potentialΦ(0)(ψ) byΩ=−dΦ(0)/dψ [Bri95].

Guiding-centre equations allowing for strong toroidal flows have been developed in [Bri95],

where the following form of the equilibrium guiding-centre Lagrangian was derived:

Γ0 =
[
q A +mW

] · dX + m

q
µdζ−H0 dt ,

H0 = 1

2
mW 2 +µB +qΦ(0) +qΦ(1),

(4.28)

where W = u0+wb,Φ(0) is the leading-order electrostatic potential, A denotes the equilibrium

vector potential, and b = B/B with B =∇φ×∇ψ+F (ψ)∇φ the magnetic field. We have allowed

for a higher-order electrostatic correction Φ(1), which is induced by centrifugal effects and

which will be computed from quasi-neutrality below. It is imposed that the flux surface average

of Φ(1) vanish. We will denote the total electrostatic potential by Φ=Φ(0) +Φ(1). As guiding-

centre variables, we take the guiding-centre position X , the guiding-centre parallel velocity w

measured in a frame moving with u0, the magnetic moment µ suitably defined in the moving

frame [Bri95], and the gyroangle ζ. We point out that (4.28) can be viewed as a special case of

the non-linear guiding-centre Lagrangian (4.3) when the fields are at equilibrium.

Since the equilibrium is assumed axisymmetric and stationary, the coefficients of the La-

grangian do not explicitly depend on toroidal angle φ and time t , nor are they dependent on

the gyroangle ζ. Correspondingly, we have following the three constant of equilibrium guiding-

centre motion: toroidal momentum Pφ ≡ q Aφ+mWφ, total energy E = 1
2 mW 2 +µB +qΦ and

magnetic moment µ.

The equilibrium Hamiltonian H0 corresponds to the energy E as measured in the lab frame,

and contains the formally large contribution qΦ(0) ∼ εB
−1 1

2 mW 2. It turns out that it will be

useful to introduce a new constant of motion, E , which does not contain such formally large

terms. To this end and following Brizard [Bri95], we define a pseudo-radial variable ψ∗ via the

toroidal momentum Pφ:

ψ∗ ≡−Pφ/q =ψ− m

q
Wφ =ψ+∆ψ,

where ∆ψ=−m
q Wφ is the banana width in units of ψ. Clearly, ψ∗ is a constant of motion in
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axisymmetric equilibria, so that we can define a new constant of motion as the combination

E ≡ E −qΦ(0)(ψ∗). Expanding

Φ(0)(ψ∗) ≈Φ(0)(ψ)− m

q
Wφ

dΦ(0)

dψ

=Φ(0)(ψ)+ m

q
W ·u0,

and W = wb +u0, then including order ∆ψ corrections, we can write

E = E −qΦ(0)(ψ∗)

≈
[

1

2
mw2 +mwb ·u0 + 1

2
mu2

0 +qΦ(ψ)

]
−q

[
Φ(0)(ψ)+ m

q
(wb +u0) ·u0

]
= 1

2
mw2 +µB +qΦ(1) − 1

2
mu2

0 .

Thus, E corresponds to the energy measured in the rotating frame. Under collisionless dy-

namics, the equilibrium distribution function F0 = F0(Pφ,E ,µ) of a given species must depend

on the constants of motion, only. Instead of Pφ and E , we can equivalently use the constants

of motion ψ∗ and E . For thermal species (s = i ,e), we shall impose F0 = F0(ψ∗,E ) to be

Maxwellian in E , so that

F0,s(ψ∗,E ) ≡ Ns(ψ∗)(
2πTs(ψ∗)/ms

)3/2
exp

(−E /Ts(ψ∗)
)

(4.29)

with Ns(ψ),Ts(ψ) given profiles. Notice that this equilibrium distribution is isotropic p|| =
p⊥ = p. That the temperature Ts(ψ) is a flux function is consistent with Fokker-Planck equa-

tion solutions of arbitrary collisionalities [CBT87]. Thermal gradients cannot build up along

magnetic field lines, where particles can freely stream.

We next show that this natural choice for F0,s can be used to recover the ideal MHD equilibrium

relations. The physical ion and electron densities are given by

ns(ψ,θ) =
∫

d3vF0,s

≈ Ns(ψ)exp

(−qsΦ
(1) + 1

2 msR2Ω2

Ts(ψ)

)
.

Assuming quasi-neutrality between electrons and ions, ne = Z ni , and neglecting centrifugal

effects for electrons (me ¿ mi ), we obtain

qΦ(1) = miΩ
2

2(1+Ti /Te )

(
R2 −〈〈R2〉〉) ,

where 〈〈. . .〉〉 denotes flux-surface averaging. Assuming in addition that Ti = Te , we find that
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the mass density and pressure p = pi +pe are poloidally dependent and of the form

ρ(ψ,θ) ≈ ρ(ψ)exp

(
mi

(
R2 −〈〈R2〉〉)Ω2

4T (ψ)

)
,

p(ψ,θ) ≈ p(ψ)exp

(
mi

(
R2 −〈〈R2〉〉)Ω2

4T (ψ)

)
.

We can now write

∇p = ∂p

∂ψ

∣∣∣
R
∇ψ+ ∂p

∂R

∣∣∣
ψ
∇R,

and recall that u0 ·∇u0 =−Ω2R∇R. From the parallel projection of equilibrium force balance,

b · (ρu0 ·∇u0 +∇p
)= 0, we then find the following relationship between ρ, p,T :

ρ = mi p

2T
⇐⇒ p = 2ρT /mi .

Note that ρ = mi ni and p = pi + pe = 2pi , so that the above is equivalent to 2pi = 2ni T .

Recalling that p = 2pi and n = ne +ni = 2ni , we arrive at the equation of state for an ideal gas

p = nT .

Radial force balance leads to the conventional form of the Grad-Shafranov equation for

toroidally rotating plasmas

∆∗ψ+µ0R2 ∂p

∂ψ

∣∣∣
R
+ 1

2

dF 2

dψ
= 0, ∆∗ψ≡ R∇· (R−1∇ψ)

,

where we recall that the magnetic field is represented as B = ∇φ×∇ψ+F (ψ)∇φ and φ is

the geometric toroidal angle. We have thus shown that our assumed Maxwellian form of the

distribution function is consistent with ideal MHD equilibria. Note that a similar result was

summarized in [GW17]. In the present work, we have shown that the derivation of [GW17] is

consistent with the guiding-centre equations in a co-moving frame (cf. section 4.2).

4.4.3 Linear Perturbation

Next, we wish to derive suitable equations for the linear kinetic response. The physical param-

eters to consider are εB ∼ ρi /LB with ρi the thermal ion Larmor radius and LB the background

equilibrium length scale, δ ∼ δB/B the amplitude of the perturbations and k⊥ρi , with k⊥
the perpendicular wave vector of the perturbed quantities. The validity of the guiding-centre

transformation requires that εB ¿ 1. The study of linear dynamics imposes δ¿ 1. Different

forms of the linearized kinetic equation can then be derived assuming k⊥ρi ¿ 1 (guiding-

centre approach), or allowing for k⊥ρi . 1 (gyrokinetic approach). Clearly, for the study of the

linearized dynamics, the gyrokinetic approach is the more general one, motivating us to follow

that approach in the following.
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x

v

Xgc

(E ,µ,ζ)

Xgy

(E ,µ,ζ)

Zphy Zgc Zgy

Tgc Tgy

Figure 4.5 – Two-step transformation from physical particle (phy) to gyro-centre (gy) coordi-
nates via guiding-centre (gc) coordinates.

Gyrokinetic transformation

We shall initially allow for k⊥ρi ∼ 1, before discussing the long-wavelength limit k⊥ρi ¿ 1 in

section 4.4.3. In section 4.4.3, we show that the results obtained from gyrokinetic theory in the

long wavelength limit are consistent with the linearization of the guiding-centre equations of

section 4.2.

The gyrokinetic approach, as developed in [BH07, and references therein], is a two-step

process: In a first step, a near-identity transformation is carried out to pass from particle

coordinates Zphy to guiding-centre coordinates Zgc, defined with respect to the equilibrium

fields. In a second step, perturbations are introduced. To obtain a reduced set of kinetic

equations taking into account both background inhomogeneities as well as the perturbations,

a second transformation to gyrocentre coordinates Zgy is carried out (cf. Figure 4.5).

After the guiding-centre transformation with respect to the equilibrium fields, explained in

detail in chapter 2 (see also [Bri95]), the Lagrangian in guiding-centre coordinates now takes

the form Γ= Γ0 +δΓ1 with Γ0 given by equation (4.28), and the perturbed Lagrangian (first

order with respect to the perturbation parameter δ),

Γ1 = qδA(X +ρ) · d
[

X +ρ]−qδφ(X +ρ)dt .

We denote by ρ the guiding-centre displacement, written in guiding-centre coordinates, such

that the particle position x is related to the guiding-centre position X by x = X +ρ. Clearly,

the perturbed Lagrangian Γ1 is gyro-angle dependent, because of the gyro-angle dependent

terms in ρ. To remove this gyroangle-dependence we carry out a near identity transformation

to gyrocentre coordinates induced by the phase-space vector field G1. While the final result

has previously been obtained in [Bri95], we here supply a detailed discussion of the derivation.

Following [BH07], the components of the perturbed Lagrangian in gyrocentre coordinates are

related to the components of G1 by

G
a
1 = {S1,Z a}0 + (Γ1b −Γ1b)J ab

0 , (4.30)
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where S1 is a gauge function, solving the equation

d0S1

dt
= ã(

H1 −H 1

)
− ã(
Γ1a −Γ1a

)
Ż a

0 ,

and Ż a
0 = {Z a , H0} is the time derivative along an unperturbed orbit. Here, given any phys-

ical quantity X , we denote by X̃ ≡ X −〈X 〉 the gyro-angle oscillatory part of X , and 〈X 〉 ≡
(2π)−1

∮
X dζ is the gyro-average of X . We shall choose a Hamiltonian representation, mean-

ing that only perturbed terms in the Hamiltonian are present, i.e. we choose Γ1 = (. . .)dt , with

vanishing dX -components. It then follows that

d0S1

dt
= qδ̃∗φ−q

[
δ∗A · [Ẋ + ρ̇]]ã ,

where we have introduced δ∗φ ≡ δφ(X +ρ), and δ∗A ≡ δA(X +ρ), following the notation

in [Bri95].

With this choice of G1 and S1, the perturbed Hamiltonian in gyrocentre coordinates is given by

H 1 = 〈H1〉−
(
Γ1a −Γ1a

)
Ż a

0 − {S1, H0}0

= q〈δ∗φ〉−q〈δ∗A · [Ẋ + ρ̇]〉.
where 〈. . .〉 denotes gyro-averaging.

Collisionless linear gyro-kinetic equation

In Hamiltonian gyrocentre coordinates, the perturbation only affects the Hamiltonian part, so

that the Poisson bracket (which is determined by the symplectic part of the Lagrangian) is for-

mally the same as for the guiding-centre equilibrium dynamics {·, ·}0 with strong toroidal flow

u0 [Bri95]. We will denote this Poisson bracket simply by {·, ·} in the following. The collisionless

gyrokinetic equation is given by

dF

d t
= ∂F

∂t
+ {F, H } = 0.

We write the total distribution (in gyrocentre coordinates) in the form F = F0 +δ f as a sum of

equilibrium and perturbation. Similarly, the Hamiltonian is written in terms of its equilibrium

part H0 and the perturbation H 1. Then, to order O(δ0) in δ:

d0F0

d t
≡ ∂F0

∂t
+ {F0, H0} = 0,
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expressing the fact that the equilibrium distribution function F0 is a function of the constants

of the unperturbed motion, E ,Pφ,µ (in gyrocentre coordinates). To first order O(δ), we obtain

d0δ f

d t
≡ ∂δ f

∂t
+ {δ f , H0} =−{F0, H 1} = {H 1,F0}.

Writing now F0 = F0(E ,Pφ,µ;σ), whereσ is an additional label, allowing to distinguish between

co-passing and counter-passing orbits, we find

{H 1,F0} = {H 1, H0}
∂F0

∂E
+ {H 1,Pφ}

∂F0

∂Pφ
+ {H 1,µ}

∂F0

∂µ
.

We can simplify the first term by noting that d0H 1/dt = ∂t H 1 + {H 1, H0}, so that

{H 1, H0} = d0H 1

dt
− ∂H 1

∂t
.

Furthermore, it is easy to show from a general property of Lagrangians with symmetries that

{·,Pφ} = ∂

∂φ
, {·,µ} = q

m

∂

∂ζ
,

because the toroidal angle φ is conjugate to Pφ and the gyroangle ζ is conjugate to the gyroac-

tion J = mµ/q . We thus find

d0δ f

dt
=

(
d0H 1

dt
− ∂H 1

∂t

)
∂F0

∂E
+ ∂H 1

∂φ

∂F0

∂Pφ
,

having used that H 1 is gyro-angle independent to eliminate the ∂/∂ζ term. We may equiva-

lently write this in terms of the non-adiabatic part

δh ≡ δ f −H 1
∂F0

∂E
,

as

d0δh

dt
= ∂H 1

∂φ

∂F0

∂Pφ
− ∂H 1

∂t

∂F0

∂E
. (4.31)

A similar equation for the non-adiabatic part has previously been found by Porcelli et al.

[PSK94] in the absence of strong flows. The relative brevity of the present calculation compared

to that of [PSK94] is evident.

Pull-back to guiding-centre coordinates

The gyrokinetic distribution, as written in gyrocentre coordinates, has now been shown to be

of the form Fgy = F0 +δ f , where F0 = F0(Pφ,E ,µ;σ) is a function of the constants of motion.

The corresponding distribution in guiding-centre coordinates, is given by Fgc = Fgy +G1 ·
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dFgy +O(δ2), or more explicitly

Fgc = F0 +δ f +G
Pφ

1
∂F0

∂Pφ
+G

E
1
∂F0

∂E
+G

µ
1
∂F0

∂µ
,

with G
a
1 given by eq. (4.30). The component G

Pφ

1 is found from

G
Pφ

1 =G1 ·dPφ = eφ ·
(
G1 · dΓ0

)
= eφ ·

(
Γ1 + dS1

)
= Γ1φ+ ∂S1

∂φ
.

Similarly, we find

G
µ
1 =G1 ·dµ= eζ ·

(
G1 · dΓ0

)
= eζ ·

(
Γ1 + dS1

)
= Γ1ζ+

∂S1

∂ζ
.

Finally, G
E
1 is determined from the relation H 1 = H1 −G1 · dH0 = H1 −G

E
1 :

G
E
1 = H1 −H 1.

Using these expressions and writing δ f = H 1∂F0/∂E +δh, we obtain the general expression

(valid to arbitrary order in k⊥ρ):

Fgc = F0 +G
Pφ

1
∂F0

∂Pφ
+H1

∂F0

∂E
+G

µ
1
∂F0

∂µ
+δh. (4.32)

The non-adiabatic perturbed distribution function δh is given by equation (4.31).

Note that Helander et al. [HGHM97] have argued that the perturbed distribution δ f should be

of the form δ f =−δI · ∂F0
∂I , where δI = (δE ,δPφ,δµ) are the perturbed constants of motion

including adiabatic and non-adiabatic contributions. In [HGHM97], it is also claimed that this

is true to arbitrary order in εB . This is in accordance with our results based on modern gyro-

kinetic theory. In fact, our derivation shows that this is the case even in the presence of a strong

electric field at equilibrium (which was assumed to vanish in [HGHM97]).3 Furthermore, from

our derivation following a Lie perturbation two-step reduction (to guiding-centre coordinates,

then to gyro-centre coordinates), we have an algorithm to compute higher-order corrections

in εB .

3Of course, to obtain an explicit expression for δ f from (4.32) to a given order in εB , one would first need to
expand the guiding-centre Lagrangian to that order. What is claim here is that the abstract form of (4.32) remains
the same to arbitrary order in εB .
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Long-wavelength limit εB ∼ k⊥ρ¿ 1

In the long-wavelength limit, we have F̃gc ¿〈Fgc〉, where F̃gc ≡ Fgc−〈Fgc〉. By direct calculation,

we find 〈GPφ

1 〉 ≈ qδAφ, 〈H1〉 ≈ qδφ, and

〈Gµ
1 〉 ≈ 〈qρ ·∇δA ·∂ζρ〉 =−µδB||

B
.

Therefore, in the long-wavelength limit where we are justified to drop oscillatory contributions

in gyroangle, one obtains to leading order:

Fgc = F0 +qδAφ
∂F0

∂Pφ
+qδφ

∂F0

∂E
−µδB||

B

∂F0

∂µ
+δh, (4.33)

where the non-adiabatic contribution δh is a solution of the drift-kinetic equation

d0δh

dt
= ∂H dk

∂φ

∂F0

∂Pφ
− ∂H dk

∂t

∂F0

∂E
. (4.34)

with

H dk ≡ qδφ−qδA · Ẋ +µδB||. (4.35)

These equations allow for strong flows on the order of ion sound velocity, and in this re-

spect generalize the result of Porcelli et al [PSK94], despite the calculation being much more

compact.

Consistency with non-linear guiding-centre equations

To show that the linearized kinetic equation derived in the previous section is consistent

with the linear limit of the non-linear guiding-centre Lagrangian of section 4.4.1, we briefly

consider the linearization of (4.3). To this end, we write L in the form L =L0 +δL , where

L0 is the equilibrium Lagrangian and δL collects all perturbed terms, and is given by

δL = [qδA +mδW ] · dX − [mδW ·W0 +µδB||+qδφ]dt .

We have introduced the convenient notation δW ≡ wδb +δu, which is the perturbed counter-

part of of W0 = wb +u0. By a near-identity phase-space transformation to “Hamiltonian”

coordinates, we can achieve that the Lagrangian written in these new “Hamiltonian” coordi-

nates takes the form

δL =
{

[qδA +mδW ] · d0X

dt
− [mδW ·W0 +µδB||+qδφ]

}
dt .

We are thus able to move the perturbation from the symplectic part to the Hamiltonian part of

the Lagrangian.
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Writing Ẋ0 ≡ d0X /dt , we can express the perturbed Lagrangian in Hamiltonian coordinates as

δL =−[
qδφ−qδA · Ẋ0 +µδB||

]
dt − [

mδW · (Ẋ0 −W0
)]

dt

=−[
qδφ−qδA · Ẋ0 +µδB||

]
dt +O(εB

2),

having taken into account that mδW ∼ εB qδA · Ẋ0 and Ẋ0 = W0 +O(εB ) in the last equality.

Clearly, we then have δL = −H dk dt in the long-wavelength limit (4.35), and the kinetic

equation (4.34) can be recovered also from guiding-centre theory.

Quasi-neutrality

We now show how to recover the leading-order quasi-neutrality equation first derived by

Antonsen, Lee [Ant82]. Note that (4.33) expresses the pull-back in terms of F0 = F0(Pφ,E ,µ).

Taking F0 to be a function of ψ∗ ≡−Pφ/q, E , instead, we find from E = E −qΦ(ψ∗):

∂F0

∂E

∣∣∣
Pφ

= ∂F0

∂E

∣∣∣
ψ∗ ,

q
∂F0

∂Pφ

∣∣∣
E
=− ∂F0

∂ψ∗
∣∣∣
E
=− ∂F0

∂ψ∗
∣∣∣
E
− ∂E

∂ψ∗
∣∣∣
E

∂F0

∂E

∣∣∣
ψ∗ .

Using
∂E

∂ψ∗
∣∣∣
E
=−q

dΦ(0)

dψ
,

and choosing the ideal MHD gauge δA = ξ×B , we have

δAφ = [ξ×B ]φ = ξψ,

and obtain

δ f =−ξψ ∂F0

∂ψ∗
∣∣∣
E
+q

(
δφ+ξψ dΦ(0)

dψ

)
∂F0

∂E

∣∣∣
ψ∗ +δh.

Writing δφ=−ξψ dΦ(0)

dψ +δφL , where δφL is the “Lagrangian” perturbation, we can express this

equivalently in the form

δ f =−ξψ ∂F0

∂ψ∗
∣∣∣
E
+qδφL

∂F0

∂E

∣∣∣
ψ∗ +δh.

The result of Antonsen and Lee [Ant82] is now recovered by making the approximation ψ∗ ≈ψ
in the pull-back relation, so that

ξψ
∂F0

∂ψ∗ ≈ ξ ·∇F0,
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where F0 ≈ F0(ψ,E ). We can then express the pull-back (4.33) in the form

δ f ≈−ξ⊥ ·∇F0 +qδφL
∂F0

∂E
+δh.

Integrating over velocity space and summing over species, we find the Lagrangian perturbation

0 =∑
s

qsδns =
∑

s
qs

∫
d3vgc δhs +δφL

∑
s

q2
s

∫
d3vgc

∂F0s

∂E
, (4.36)

where we have assumed quasi-neutrality at equilibrium
∑

s qsn0s = 0. For Maxwellian distribu-

tions, ∂F0/∂E =−1/T0, so that the leading-order quasi-neutrality equation leads to

δφL = ρ−1
Φ

∑
s

qs

∫
d3vgc δhs , (4.37)

where ρΦ ≡ ∑
s q2

s n0s/T0s . As explained below, in section 4.4.5, δφL directly determines the

parallel electric field (measured in a frame moving with u0). Therefore, (4.36) corrects ideal

Ohm’s law.

Clearly, 4.37 is only the leading-order expression for δφL . In a current-closing gyrokinetic

approach, it is necessary to retain polarization drift effects in the quasi-neutrality equation, in

order to correctly reproduce the dispersion relation for drift-waves from gyrokinetic theory

[DKOL83]. Let us therefore indicate how such additional FLR corrections may be obtained

from the present approach. In taking the long-wavelength limit in section 4.4.3, we have

dropped the gyro-angle dependent contribution F̃gc to the guiding-centre distribution. If we

retain this contribution, then we find to the required accuracy

F̃gc ≈ q(ρ ·∇)ξψ
∂F0

∂Pφ
+q(ρ ·∇)δφ

∂F0

∂E
≈−(ρ ·∇)ξψ

∂F0

∂ψ∗ +q(ρ ·∇)δφL
∂F0

∂E
,

where Fgc = 〈Fgc〉+ F̃gc. Correspondingly, instead of the quasi-neutrality relation (4.36), we

now obtain an additional term in the general expression for the physical number density of

species s,

ns(r ) =
∫

d3vgc Fgcδ(X +ρ− r )

≈
∫

d3vgc 〈Fgc〉δ(X +ρ− r )+
∫

d3vgc F̃gc
(
ρ ·∇δ(X − r )

)
.

After an integration by parts in the last term on the right, we now have to retain an additional

term in the quasi-neutrality relation, which arises due to the ρ ·∇δφL-correction in F̃gc:

0 =∑
s

qs

∫
d3vgc δhsδ(X +ρ0 − r )+

(∑
s

q2
s

∫
d3vgc

∂F0s

∂E

)
δφL

−∇·
[(∑

s
q2

s

∫
d3vgc ρ0ρ0

∂F0s

∂E

)
·∇δφL

]
.
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For Maxwellian distribution functions, and neglecting the FLR-correction due to electrons,

this can be re-written in the form

0 =∑
s

qs

∫
d3vgc δhsδ(X +ρ0 − r )−

(∑
s

q2
s n0s

T0s

)
δφL

+∇·
(

q2
i n0i

T0i
ρ2

i ∇⊥δφL

)
,

(4.38)

where ρi ≡ p
mi T0i /(qi B) denotes the thermal gyroradius of the ions. Equation (4.38) is

the relevant quasi-neutrality relation including FLR-corrections. As will be seen now, these

corrections are irrelevant for a pressure closing kinetic-MHD model. Hence, it will be shown

that (4.36) is all that is required to recover e.g. drift waves.

4.4.4 Efficiency of kinetic-MHD pressure closure

As seen from (4.38), the additional FLR corrections to the quasi-neutrality relation appear

at order (k⊥ρi )2 ∼ εB
2 in the long-wavelength limit. As we have argued in section 4.4.1, the

kinetic-MHD model only requires guiding-centre corrections up to order εB to consistently

provide pressure closure in the ordered momentum equation including diamagnetic effects

(4.27). In addition, as explained in the same section 4.4.1, the current density needs to be

known to order εB
2 to consistently close the momentum equation. We recall that δ j is obtained

from µ0δ j =∇×δB , and δB is found from Faraday’s law

−∂δB

∂t
=∇×δE .

Crucially for the present approach, the electrostatic contribution ∇δφ to δE cancels in the

above equation. Therefore, the calculation of δB (and δ j ) to the required higher order does

also not require knowledge of higher-order corrections to δφL . Thus, owing to the convenient

cancellation of the electric field upon summation of the momentum equation over species

(using quasi-neutrality), and thanks to the cancellation of the electrostatic contribution in

Faraday’s law, the consideration of higher-order corrections in (4.38) does not appear to

be necessary within the kinetic-MHD approach followed in the present work.4 Consistent

with the above observations, the authors of [AB93] have used the leading-order form of the

quasi-neutrality relation (4.36) to study the combined effects of diamagnetic flows and a

parallel electric field, based on a self-consistent kinetic-MHD model with bounce-averaged

kinetic closure for trapped particles. In addition to resolving MHD instabilities, the model of

Ref. [AB93] also obtained electrostatic instabilities, and the coupling between them.

4We remind the reader that it is assumed that k⊥ρi ∼ εB ¿ 1 in the derivation of this model. This ordering
assumption might potentially break down for certain radially strongly localized modes. For such modes, it may be
interesting to compare results obtain with and without the inclusion of the higher-order corrections in (4.38). In
general, we however remark that the inclusion of kinetic effects have been observed to tend to broaden the mode
structure due to finite orbit-width effects. [PSK94]
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The convenient cancellations in a kinetic-MHD approach are thus to be contrasted with a

purely kinetic approach, where a consistent treatment would have forced us to derive from

reduced kinetic equations all the necessary terms in the momentum equation5

msns

(
∂us

∂t
+us ·∇us

)
=−∇·Ps +εB

−1qsns
(
E +us ×B

)
. (4.39)

In this case, we would then clearly have had to retain second-order corrections to E ≈ E (0) +
εB E (1) +εB

2E (2) (and hence higher-order corrections to δφL), in order to consistently include

the required diamagnetic terms (entering at order εB ) in equation (4.39). The inclusion of

such effects within a purely guiding-centre kinetic approach would consequently require the

derivation (and solution) of the guiding-centre equations including all εB
2 corrections – a

formidable task!

4.4.5 Linear kinetic-MHD model including centrifugal and diamagnetic effects

A non-linear form of the kinetic-MHD model has been presented in section 4.4.1. In this

section, we will propose a more refined, linear kinetic-MHD model for a two-component

plasma consisting of thermal electrons (e) and thermal ions (i), and self-consistently taking

into account centrifugal, diamagnetic as well as kinetic effects due to e.g. precession reso-

nance. Furthermore, the model also allows the effects due to a parallel electric field to be

taken into account via the solution of a quasi-neutrality equation. We will assume perturbed

quantities have the following time- and toroidal dependencies δX ∼ exp(−iωt + i nφ). In

section 4.4.2, we have shown that, under the assumption of Maxwellian distributions for

s = i ,e, the kinetic equilibrium is consistent with MHD equilibria allowing for strong flows. A

drift-kinetic equation to determine the linear kinetic response to fluctuating electro-magnetic

fields, and including finite-orbit width effects as well as resonances has been presented in

section 4.4.3. We next want to combine the kinetic derivation with suitable fluid equations

in a linear kinetic-MHD model suitable to study the stability properties of strongly flowing

plasmas.

Frieman and Rotenberg [FR60] were the first to consider the hydrodynamic stability of strongly

flowing plasmas within ideal MHD. Their derivation of the linearized stability equations is

based on a Lagrangian displacement ξ, which measures the difference between fluid elements

advected by the perturbed and equilibrium flows. In [FR60], it was found that – in contrast

to the stability problem in ideal MHD for a static plasma which is written in terms of a

Hermitian operator – the corresponding operator for stationary plasmas with strong flows is

non-Hermitian, admitting a much more complex structure of the spectrum. More recently,

Aiba [Aib16] has extended the Frieman-Rotenberg approach to include diamagnetic effects in

addition to strong flows. The results of [Aib16] are obtained under the assumption of a closure

relation for the pressure analogous to the one employed in ideal MHD. In this section, we will

combine the kinetic equation with a version of a Frieman-Rotenberg-like equation including

5Here written in non-linear form for notational convenience.
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diamagnetic effects [Aib16], to obtain a linear MHD model with kinetic closure suitable to

study the combined diamagnetic and centrifugal effects.

We now follow largely [Aib16], but we include a Lagrangian perturbation δφL 6= 0 as well as a

kinetic expression for the pressure tensor. We first follow the discussion in Section 1.2.3, where

the Frieman-Rotenberg formulation of ideal MHD in terms of a plasma displacement ξ was

described. We use perpendicular Ohm’s law

E⊥+u ×B = 0,

for the lowest-order (MHD-)velocity u, and impose δB = ∇× (ξ⊥ × B) in terms of a new

variable ξ, which will be identified as the displacement. Correspondingly, we choose the gauge

δA = ξ⊥×B and we find δE =−∂ξ⊥/∂t ×B −∇δφ. In this expression for δE , we have allowed

for an additional electrostatic contribution −∇δφ to δE , which was assumed to vanish in the

ideal MHD model discussed in Section 1.2.3. With this choice of gauge, we obtain the following

expression for the perturbed electric field δE ′, as measured in a frame co-moving with u0:

δE ′ ≡ δE +u0 ×δB =−∇δφL −
[
∂ξ

∂t
+u0 ·∇ξ−ξ ·∇u0

]
×B . (4.40)

Note in particular that δE ′
∥ =−∇∥δφL is uniquely determined by δφL . Thus, with the present

choice of gauge, a non-zero δφL is directly related to a non-vanishing parallel electric field

δE ′
∥ 6= 0. This is in stark contrast to a conventional gyrokinetic treatment, which is often

based on variables (δφ,δA∥), sometimes neglecting δB|| (see recent discussion on comparison

between MHD and gyro-kinetic variables in [GZB+19]). We note that the precise relation

between the present formulation in terms of (ξ,δφL) and a formulation in terms of (δφ,δA∥)

appears to be a challenging open problem. In fact, a comparison of these two approaches is

non-trivial even the simplified case where δφL = 0, as discussed in [GZB+19].

Continuing with the derivation of the linearized fluid equations, we can use the relation (4.40)

to express the perturbed (Eulerian) MHD-velocity δu by re-writing the perturbed form of

perpendicular Ohm’s law

δE⊥+δu ×B + [u0 ×δB ]⊥ = 0,

as follows

δu⊥ =
[
∂ξ⊥
∂t

+ (u0 ·∇)ξ⊥− (ξ⊥ ·∇)u0

]
⊥
− ∇δφL ×B

B 2 .

This establishes a relation for ξ⊥, but still leaves ξ|| undefined.6 We will define the parallel

component ξ||, by requiring without loss of generality that δu be conveniently expressed as

δu = ∂ξ

∂t
+ (u0 ·∇)ξ− (ξ ·∇)u0 − ∇δφL ×B

B 2 .

6When centrifugal effects are neglected, the parallel displacement is not required for the kinetic-MHD problem.
The potential δφ and the quasi-neutrality equation replaces ξ|| and parallel momentum equation for the MHD
problem. When centrifugal effects are important, parallel and perpendicular flows cannot be trivially decoupled.
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The corresponding Lagrangian velocity perturbation is then seen to be given by δuL = ∂ξ
∂t +

(u0 ·∇)ξ− (∇δφL ×B )/B 2, generalizing the corresponding result in [Aib16, eq. (34)] to include

an electrostatic contribution.

Based on the derivation in [Aib16], but allowing for a perturbed pressure tensor with kinetic

effects, and parallel electric fields, the following extended Frieman-Rotenberg equation for ξ

is derived from this form of the Lagrangian displacement:

ρ0

[
∂2ξ

∂t 2 +2(u0 ·∇)
∂ξ

∂t
+ (u0,∗i ·∇)

∂ξ⊥
∂t

]
+ρ0

[
∂

∂t
+ (

{
u0 +u0,∗i

} ·∇)

][−∇δφL ×B

B 2

]
+∇·δP CGL − j ×δB −δ j ×B

=∇⊗ [
ρ0ξ⊗ (u0 ·∇)u0 −ρ0u0 ⊗ (u0 ·∇)ξ

]
.

(4.41)

Here, we have defined the ion diamagnetic drift velocity as

ρ0u0,∗i ≡ 1

Ωci
b ×∇p0,i ,

withΩci = qi B/mi the ion cyclotron frequency, and we have retained fluid diamagnetic effects

only in the inertia where they are most important. This is justified if the additional diamagnetic

force terms [Aib16, e.g. eq. (40)] are dominated by either the fluid force terms, or the kinetic

pressure correction arising in ∇·δP CGL7. More precisely, we have neglected an additional force

term [Aib16, eq. (43)]

ρ0
[{

(ξ ·∇)u0,∗i − (u0,∗i ·∇)ξ+δu∗i
} ·∇]

u0,⊥,

and similarly, we have replaced u0 = u0 +u0,∗i by u0 on the right-hand side of equation (4.41).

To close the momentum equation (4.41), we note that δB =∇× (ξ⊥×B) and the perturbed

current is given by δ j =∇×δB/µ0. Finally, the perturbed CGL-contributions to the pressure

are given by

δP CGL = δp||bb +δp⊥(I −bb), (4.42)

with

δp|| ≡
∑

s

∫
d3vgc ms w2δ fs , δp⊥ ≡∑

s

∫
d3vgc µBδ fs . (4.43)

Here, the perturbed distribution function

δ fs = δ fs,a +δhs (4.44)

7Incidentally, based on analytic theory in the large aspect-ratio limit, we would indeed expect kinetic corrections
to dominate these diamagnetic fluid corrections, as has been shown explicitly for internal 1/1 kink modes [GHH00]

114



4.4. A Kinetic-MHD model for strong flows

for s = i ,e is given in terms of an adiabatic contribution δ fs,a and a non-adiabatic contribution

δhs . For the adiabatic contribution, we have found

δ fs,a =−ξψ ∂F0,s

∂ψ∗
∣∣∣
E
+qδφL

∂F0,s

∂E

∣∣∣
ψ∗ (4.45)

To express the non-adiabatic contribution, we first note that [GHH00]

∂F0

∂E

∣∣∣
Pφ

= ∂F0

∂E

∣∣∣
ψ∗ ,

∂F0

∂Pφ

∣∣∣
E
=− 1

q

∂F0

∂ψ∗
∣∣∣
E
− ∂F0

∂E

∣∣∣
ψ∗

1

q

∂E

∂ψ∗
∣∣∣
E

.

The drift-kinetic equation (4.35) can now be expressed in the form

d0δhs

dt
= i (ω−nΩ−nω∗,s)

∂F0,s

∂E
H dk, (4.46)

where Ω = Ω(ψ∗) = dΦ(0)/dψ|ψ=ψ∗ is a contribution due to the background flow and the

sum of the first two terms ωD ≡ ω−nΩ represents a Doppler shifted frequency. The third

contribution ω∗,s ≡ 1
qs

∂F0,s

∂ψ∗ /∂F0,s

∂E is a diamagnetic rotation frequency. Imposing the ideal MHD

gauge δA = ξ⊥×B , we can equivalently write the perturbed drift-kinetic Hamiltonian (4.35)

in the form

H dk = qδφL + [mw2 −µB ]ξ⊥ ·κ−µB(∇·ξ⊥)

−ξ⊥ · [m(u0 ·∇)u0 +2mw(b ·∇)u0] ,
(4.47)

where we have used several vector identities and ∇ ·u0 = 0. Equations (4.46),(4.47) extend

[GHH00, eq. (12)], taking into account centrifugal and Coriolis effects, together with correc-

tions associated with quasi-neutrality (δφL 6= 0).

The full system is written in terms of ξ,δhs and δφL . It consists of: the momentum equation

(4.41) to determine ξ; the closure relations (4.42)-(4.45); the kinetic equation (4.46) for δhs ,

which is expressed in terms of the Hamiltonian (4.35); and the quasi-neutrality equation (4.36)

for δφL . Note that we require from the kinetic equation three even moments: perpendicular

pressure, parallel pressure and density. The density is required only in the quasi-neutrality

relation. Clearly, this model does not require a direct evaluation of the current from kinetic

information, which as pointed out above is crucial for the kinetic-MHD approach.

Thus, we have arrived at the linear counterpart to the non-linear model of section 4.4.1. In

contrast to the non-linear model, this linear model now includes the effects due to a non-

vanishing parallel electric field δE∥ 6= 0. We remind the reader that, even though we have

assumed that the plasma inertia is dominated by a single bulk ion species, the kinetic pressure

closure includes naturally all collisionless kinetic species (δP =∑
s δPs).
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Linear model with weak flows

In the case of weakly flowing plasmas, centrifugal and Coriolis forces can be neglected. Never-

theless retaining weak flow and δφL , the momentum equation (4.41) is conveniently written

in terms of (ξ⊥,δhs), because the parallel component ξ|| is decoupled from ξ⊥ in this case.

Indeed, we then find

ρ0

[(
∂

∂t
+u0,∗i ·∇

)
∂ξ⊥
∂t

+
(
∂

∂t
+u0,∗i ·∇

) −∇δφL ×B

B 2

]
=−[∇·δP CGL]

⊥+ [
j ×δB

]
⊥+δ j ×B .

(4.48)

with δ j =∇×δB/µ0 and δB =∇× (ξ⊥×B ), and δP CGL is given by (4.42)-(4.45) as a function

of ξ⊥,δhs ,δφL . The latter variables are determined from the solution of the kinetic equation

(without centrifugal effects)

d0δhs

dt
= i (ω−nΩ−nω∗,s)

∂F0,s

∂E
H dk, (4.49)

where ω∗,s ≡ 1
qs

∂F0,s

∂ψ∗ /∂F0,s

∂E . The perturbed drift-kinetic Hamiltonian is given by

H dk = qδφL + [mw2 −µB ]ξ⊥ ·κ−µB(∇·ξ⊥). (4.50)

The quasi-neutrality equation reads(∑
s

q2
s n0s

T0s

)
δφL =∑

s
qs

∫
d3vgc δhs , (4.51)

These equations are identical to those of reference [GHH00], except that in [GHH00] the

parallel electric field was neglected (δφL = 0). In the system of equations of [GHH00], it was

found that weak flows do affect the kinetic corrections to MHD if the plasma rotation is

sheared.

The system of equations (4.48)-(4.51) is expressed in terms of ξ⊥, δhs and δφL and can be

used to study electrostatic effects on global MHD instabilities [AB93]. A very similar model

has previously been proposed in [Ant82, AB93], but in contrast to [Ant82] the derivation (from

gyrokinetics) adopted in this work makes no restriction on the allowed bounce-frequencies

and includes full finite-orbit width effects. In addition [Ant82, AB93] neglected diamagnetic

corrections in the inertia, and by neglecting finite orbit width effects in solving for the non-

adiabatic part δh, the kinetic inertia effects described in [GHH00] were also not included

in [Ant82, AB93].
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Linear model with strong flows, without parallel electric field and diamagnetic corrections

in the inertia

In the presence of strong equilibrium flows, the equations for ξ⊥ and ξ|| are no longer de-

coupled and the parallel dynamics can have an important effect on the stability analysis.

Neglecting diamagnetic and parallel electric field (δφL = 0), but retaining kinetic wave-particle

interaction, we arrive at the following model: The kinetic-MHD momentum equation (4.41)

now becomes a Frieman-Rotenberg-like equation with kinetic closure

ρ0

[
∂2ξ

∂t 2 +2(u0 ·∇)
∂ξ

∂t

]
=

−∇·δP CGL + j ×δB +δ j ×B

+∇⊗ [
ρ0ξ⊗ (u0 ·∇)u0 −ρ0u0 ⊗ (u0 ·∇)ξ

]
.

(4.52)

with δ j = ∇×δB/µ0 and δB = ∇× (ξ×B ), and δP CGL is given by (4.42)-(4.45) as a function

of ξ,δhs where we set δφL = 0. The δhs are determined from the solution of the kinetic

equation (4.46). In this limit, the model is expressed in terms of ξ and δhs , and it allows to

study the combined kinetic and centrifugal effects on MHD modes. Equation (4.52) is an

exact linearisation of the simplified non-linear model of (4.21) if u∗,i is neglected on the LHS

of (4.21). Retaining u∗,i effects on the LHS of (4.52) would render this linear model as the

linearisation of equation (4.21)

4.5 Summary

A kinetic-MHD model has been derived from a consistent set of guiding-centre equations. The

proposed kinetic-MHD model allows for strong flows and includes centrifugal as well as FLR

effects related to diamagnetic flows. Closure of the momentum equation is obtained from a

solution of the guiding-centre equations, thus accounting for finite orbit-width effects and

particle-wave interactions such as precession resonance.

For the first time, the full expression for the gyroviscous contribution to the pressure tensor

has been obtained from kinetic theory, without resorting to any simplifying assumptions on

the background geometry. Our detailed calculations demonstrate that the formulation of

guiding-centre theory proposed in this work can be used to study the influence of kinetic

effects on global MHD modes on time-scalesωD ∼ nω∗,i when the diamagnetic drift frequency

ω∗,i =−p ′
i /(Z eni B0r ) is of the order of the Doppler shifted rotation frequency ωD =ω−nΩ,

with n the toroidal mode number.

We have explicitly shown that for a two-component plasma (s = i ,e), and under the assumption

of Maxwellian equilibrium distribution functions, the usual ideal MHD equilibrium equations

are obtained from guiding-centre theory.

Linearized equations describing the evolution of long-wavelength (k⊥ρi ¿ 1) global (colli-
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sionless) kinetic-MHD modes have been obtained from a kinetic extension of the Frieman-

Rotenberg equations, allowing for centrifugal effects, diamagnetic fluid drift, as well as a

kinetic closure. The model naturally includes a drift-kinetic form of the quasi-neutrality equa-

tion, and allows the effects of a parallel electric field on global MHD modes to be studied

self-consistently.

As discussed in Section 4.4.4, the kinetic-MHD approach with pressure-closure relies on several

convenient cancellations of high-order terms. Kinetic information is only used to provide

closure for terms such as the pressure which are already formally small in the momentum

equation (in terms a guiding-centre ordering). In particular, the current is not computed

directly from the kinetic distribution, but is instead determined from the field equations. Based

on this, it is argued that the resulting kinetic-MHD model with pressure-closure achieves to

consistently include diamagnetic effects based on guiding-centre equations expanded to

order εB , whereas an equivalent kinetic model based on current-closure would have required

guiding-centre corrections to order εB
2 to be retained.

In closing, we mention that while the results of this work have focused on the collisionless

kinetic effects due to thermal species in a two-component plasma, an additional population

of supra-thermal ions (or electrons) can be added trivially in the pressure coupling scheme,

provided that their contribution to the inertia can be neglected and that either the suprather-

mal distributions are isotropic, or that their contributions to pressure gradients are weak. An

extension of the results presented in this chapter to the case of a multi-species plasma, in

which multiple ion species contribute significantly to the inertia, is left for future work.

The implications of the centrifugal, diamagnetic and electrostatic effects discussed in the

present work can be the subject of future investigations. The proposed model can also serve

as a starting point for analytical work, and is suitable for the derivation of a dispersion relation

taking into account the centrifugal effects on the kinetic response of thermal ions.
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5.1 Summary and conclusions

As pointed out in the first chapter, the contributions presented in this thesis have been moti-

vated in large part due to the need to consider various physical effects to assess the stability

of tokamak plasmas to the 1/1 internal kink instability. Due to the particular importance of

kinetic particle-wave interactions, kinetic-MHD models have been widely used to study and

analyse the stability of this mode. More recently, the importance of the stabilizing effect of

toroidal rotation has been revealed within an ideal MHD approach, both by analytical and

numerical work. Since strong toroidal rotation is usually achieved in devices with plasma

heating by (unbalanced) neutral beam injection, strong toroidal rotation frequencies are

often obtained in conjunction with a kinetic species of suprathermal particles. Under these

conditions, a complete analysis of the stability, including kinetic and centrifugal effects as

well as their interaction, should be based upon a consistent kinetic-MHD model, which takes

into account centrifugal effects in the kinetic equations and the fluid equations. However,

past work in this context has focused on either kinetic closure in the absence of rotation, or

centrifugal effects within a fluid model, and in particular within ideal MHD. In contrast to

non-rotating plasmas, the perpendicular and parallel dynamics in rotating plasmas is strongly

coupled. Fluid models do not provide an accurate description of the parallel dynamics of

high-temperature plasmas. A realistic model must take into account the long mean-free path

of particles in the direction parallel to the field-lines, and hence a consistent kinetic closure is

expected to be of particular importance for strongly rotating plasmas. Existing kinetic-MHD

models have thus far largely neglected centrifugal effects. Therefore, a gap has remained in

the research literature, calling for the need to develop a novel, consistent linear kinetic-MHD

model, which includes centrifugal as well as kinetic effects.

This thesis attempts to fill this gap, by providing a detailed derivation of such a linear kinetic-

MHD model with a kinetic closure based on guiding-centre theory: After a short review of

the main concepts of fusion research and ideal MHD, and the basic formulation of kinetic-

MHD models, several aspects of the 1/1 internal kink instability are reviewed in chapter 1.
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This first chapter is intended to provide the background and motivation for several original

contributions in this thesis, which are presented in chapters 2-4.

Since guiding-centre theory is central to the approach to kinetic-MHD taken in the present

thesis, a thorough discussion of the Lagrangian formulation of guiding-centre theory is given

in chapter 2. After an introduction including a short overview and several elements of the

historical development of guiding-centre theory, a formulation of the guiding-centre equations

of motion including centrifugal effects, and with respect to guiding-centre coordinates which

are particularly suitable for the development of a kinetic-MHD model, are presented. In

contrast to similar presentations in the literature, a particular concern, which runs throughout

this thesis, is the precise meaning of the guiding-centre coordinates and their relation to

the coordinates of the particle that this guiding-centre describes, including higher-order

corrections which are often neglected. In particular, the often overlooked subtlety arising

due to this distinction between guiding-centre and particle coordinates is pointed out in

appendix A, where an original discussion of the Baños drift parallel to the field lines in a

simple background magnetic field is given, based on the results presented in chapter 2. A

comparison of the physical particle motion (governed by the Lorentz equations) and the

guiding-centre motion is given, suggesting that a careful distinction should be made between

the parallel particle velocity and the parallel velocity of the corresponding guiding-centre

(Baños drift). The consequences of this higher-order correction parallel to the field lines is

investigated further in the context of full- f slowing-down simulations in chapter 3. The main

contribution of chapter 2 is the detailed derivation of the guiding-centre Lagrangian based on

Lie perturbation methods in section 2.4. While very similar expressions for the guiding-centre

Lagrangian have been derived by several authors in the past, a very limited amount of detail

(if any) of the mathematical derivation is usually provided. This does not only make such

derivations difficult to verify, but also represents an obstacle for students and researches

wishing to learn more about guiding-centre theory. While the reader is assumed to be familiar

with several mathematical prerequisites, a thorough discussion of the steps required in the

derivation is provided. It turns out that the derivation proved critically important for chapter 4,

where certain errors in the literature were discovered, enabling the final correct kinetic-MHD

model to be derived.

Chapter 3 presents a concrete application of the higher-order corrections derived in chapter 2.

The application is that of slowing-down simulations of NBI injection in a MAST-like device. For

this problem, higher-order guiding-centre equations have been implemented in the VENUS-

LEVIS guiding-centre following code, as well as an algorithm to switch between particle and

guiding-centre coordinates consistent with the theory presented in chapter 2. While higher-

order corrections to the guiding-centre Lagrangian are not found to be important for this

particular application, inclusion of the Baños drift is found to significantly affect the expected

resonances of NBI injected particles in the presence of RMP coils, as well as the NBI driven

current in a MAST-like equilibrium.

Finally, chapter 4 discusses the derivation of a novel kinetic-MHD model with pressure closure
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based on the guiding-centre theory developed in chapter 2. Besides the derivation of suit-

able equations for the evolution of the distribution function of guiding-centres of the kinetic

species, the other main issue is the evaluation of the pressure tensor from our knowledge

about the distribution of guiding-centres. Due to the complicated, spatially non-local nature

of the guiding-centre coordinates (all complicated functions of both the physical particle

position x and particle velocity v ), this turns out to be a non-trivial task. While leading-order

terms are readily computed and yield the conventional Chew-Goldberg-Lew contributions

to the pressure tensor, which are conventionally used in existing models, higher-order FLR

corrections are closely related to diamagnetic effects, and the so-called gyroviscous cancel-

lation. These higher-order FLR corrections are known to lead to off-diagonal, gyroviscous

contributions to the pressure tensor.

Chapter 4 begins with a short survey of past work on this problem. Before advancing to

the general derivation of the pressure tensor including gyroviscous components, simplified

geometry is considered in section 4.3.1 to provide an intuitive picture of the origin and meaning

of these gyroviscous contributions to the pressure tensor. It is observed by explicit calculation

both based on the Lorentz equations and from guiding-centre theory, that small (second-order)

corrections to the circular motion of the particles’ gyration around the field lines result in

elliptically shaped trajectories, which directly causes off-diagonal components in the pressure.

After this introductory discussion, the full expression for the pressure tensor including higher-

order corrections is presented in section 4.3.2. This represents the first time that these gyro-

viscous corrections to the pressure have been obtained directly from guiding-centre theory

allowing for a sonic-ordered E ×B velocity, and without making any simplifying assumptions

on the background geometry. As a direct application of this calculation, a non-linear formula-

tion of a kinetic-MHD model with pressure closure based on guiding-centre theory is obtained

in section 4.4.1.

A discussion of the kinetic-MHD equilibrium, and how the conventional rotating Grad-

Shafranov equation can be obtained to leading order from our guiding-centre formulation

is presented in 4.4.2. This discussion is important from a practical point of view, because it

provides a form of the equilibrium distributions, which would need to be considered when

solving the linearized kinetic-MHD equations numerically and which is consistent with the

background equilibrium which would, at least in a first step, be computed by a Grad-Shafranov

solver based on ideal MHD.

In section 4.4.3, linearized kinetic equations are developed. These equations are required

for the solution of the perturbed kinetic distribution function δ f in the linearized kinetic-

MHD model. Our discussion is based on the long-wavelength limit of gyrokinetic theory.

An original and concise derivation of the results of Porcelli et al. [PSK94] and an extension

of these results to the rotating case is provided, based on the gyrokinetic formalism. The

adiabatic contribution to δ f , initially found by Porcelli et al. [PSK94], is explicitly identified as

that contribution to δ f which arises due to the pull-back from gyrocentre to guiding-centre
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coordinates. A discussion is also given towards the appropriate quasi-neutrality equation that

can be used in our kinetic treatment, if the effects of a non-zero parallel electric field δE|| 6= 0

are to be taken into account.

A main benefit of a kinetic-MHD model over a purely kinetic model is discovered. It is argued

that – under the assumed approximations – a kinetic-MHD approach makes more efficient

use of the kinetic information (in terms of an expansion in Larmor radius), in comparison to a

purely kinetic approach.

Finally, these kinetic equations are combined with a fluid model formulated in terms of a

plasma displacement in section 4.4.5. The main original results of this thesis are combined, re-

sulting in a linear collisionless kinetic-MHD model, including centrifugal effects, diamagnetic

effects, kinetic effects and providing a quasi-neutrality equation allowing for the consideration

of a non-zero perturbed electric field. This model is derived based on a consistent set of

guiding-centre equations. Kinetic-MHD models that can be obtained in appropriate limits,

such as the limit of weak background rotation and with vanishing parallel electric field, are also

presented. The derived kinetic-MHD model allows for strong toroidal rotation on the order of

the ion sound velocity and can in particular be used to study the combined effects of rotation

and kinetic particle-wave interactions on the 1/1 internal kink. Other modes such as GAMs and

Kelvin Helmholtz instabilities in a toroidally rotating plasma [CWGW11,WGC13,WG16,GW17]

may also be considered with this kinetic-MHD model.

5.2 Future perspectives

5.2.1 Analytic considerations

A natural direction for future work would be to extend the analytic work of Graves et al.

[Gra13] to include centrifugal effects in addition to the effects of sheared flow. To this end,

the expressions for the bounce frequencies and toroidal drift precession, as e.g. derived

analytically in [Gra13], should be extended to include the additional guiding-centre drifts

discussed in chapter 2. We remark that the analytical expressions which are commonly used

in the non-rotating case, rely on the conservation of energy

E = 1

2
mw2 +µB ,

to obtain the expression w =±√
2(E −µB)/m for the parallel guiding-centre velocity w . As

both the guiding-centre energy E and the magnetic moment µ are constant of motion, and

the poloidal flux along a particle trajectory τ 7→ψ(τ) = 〈ψ〉+εB∆ψ(〈ψ〉,θ(τ)) remains approxi-

mately constant. This allows the velocity variable to be directly related to the poloidal angle

τ 7→ θ(τ) along the particle trajectory, in addition to the constants of motion E , µ and the

bounce-averaged poloidal flux 〈ψ〉 [Gra13]. This fact allows the average drifts to be com-

puted analytically by suitable averaging in the poloidal angle for large aspect-ratio equilibria.
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In the rotating case, the corresponding guiding-centre energy is instead given by the more

complicated expression

E = qΦ+ 1

2
m [u +wb]2 +µB.

This expression apparently exhibits a more complicated dependence of w on the poloidal

angle, as w is the solution of a general quadratic equation of the form w2 +αw +β= 0, where

α= 2b ·u 6= 0. That this complication is only apparent can be inferred from the discussion of

section 4.4.2, from which it follows that the “energy in the rotating frame” E , which we may

define as

E ≡ E −qΦ(0)(〈ψ〉),

can be approximately expressed, upon taking into account the guiding-centre’s radial drifting

motion, in the form

E ≈ 1

2
mw2 +µB +qΦ(1) − 1

2
mu2

0 .

This allows the much simpler expression w =±√
2(E −µB −qΦ∗)/m for w , where we have

introduced the effective potential in the rotating frame qΦ∗ ≡ qΦ(1) − 1
2 mu2

0. A formulation

in terms of the constant of motion E , µ, and 〈ψ〉, in addition to the poloidal angle θ could

therefore be suitable to form the basis of an extension of the analytic results in [Gra13], to

include centrifugal effects. Of course, other modes of interest may also be investigated, e.g.

Kelvin Helmholtz and resistive wall modes, etc.

5.2.2 Numerical implementation

Another direction for future work is the numerical implementation of the proposed kinetic-

MHD model, perhaps neglecting diamagnetic effects and assuming vanishing parallel electric

field δE|| = 0 in a first step. Schematically, such a linear kinetic-MHD stability code would have

the structure depicted in figure 5.1.

Such an implementation needs two basic ingredients: A MHD solver, which discretizes the fluid

equations for the macroscopic fields such as the plasma displacement, and a kinetic solver,

which discretizes the kinetic guiding-centre equations to solve for the perturbed distribution

function δ f . In addition, a coupling code must be implemented to pass information about the

electromagnetic fields (e.g. the perturbed electromagnetic potentials δA, δφ) to the kinetic

solver, and in return outputs fields necessary for the kinetic closure (the perturbed pressure)

to the MHD solver.
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Figure 5.1 – Flow chart of an implementation of the linear kinetic-MHD model.

MHD stability code

A first “beta”-version of an adaptable MHD stability code (tentatively named VENUS-MHD)

have been undertaken within the framework of this thesis. VENUS-MHD is written in Fortran.

The representation of the MHD equilibrium is taken from the guiding-centre pushing code

VENUS-LEVIS [PCGM14,Pfe15]. The first ingredient in this stability code is a program SATIRE2sfl.x
to carry out the mapping of the equilibrium produced by the VMEC equilibrium solver (includ-

ing toroidal rotation [CH87, CBF+15]) to straight-field line coordinates. To this end, equation

(1.9) of chapter 1 is discretized and solved by a Fourier decomposition on each flux surface.

In addition, the VMEC radial variable s = Φ/ΦN (normalized toroidal flux) is remapped to

ρtor ≡
p

s. The remapped equilibrium is output in right-handed SFL coordinates (ρtor,θSFL,φ).

Given the remapped SFL equilibrium, the MHD stability equations are discretized using

a Galerkin projection approach. To increase flexibility of the resulting code, this Galerkin

discretization is first formulated in terms of a general linear system of the form

B
∂σX

∂tσ
= AX , (where σ= 1 or 2). (5.1)

Here X = (X1, . . . , XN ) are the numerical variables (N depends on the particular model under

consideration), and A and B are matrices of differential operators, i.e. A is of the form

A =



A11 A12 A13 . . . A1N

A21 A22 A23 . . . A2N

A31 A32 A33 A3N
...

...
. . .

...

AN 1 AN 2 . . . AN N

 ,

124



5.2. Future perspectives

where we assume each Ai j to be a differential operator of the form

Ai j f = a(0)
i j f +

3∑
k=1

a(1);k
i j

∂ f

∂xk
+

3∑
k,`=1

a(2);k,`
i j

∂2 f

∂xk∂x`
(5.2)

Here (x1, x2, x3) ≡ (ρ,θ,φ) and we have assumed partial derivatives of at most second-order to

be present. The coefficientsα(0)
i j ,α(1);k

i j ,α(2);k,`
i j are expressed in terms of equilibrium quantities

and have to be derived based on the fluid model under consideration, and the choice of

numerical variables X1, . . . , XN . As a consequence of the assumed axisymmetric equilibrium,

all the coefficients α(0)
i j ,α(1);k

i j ,α(2);k,`
i j are assumed to be functions of ρ,θ, but independent of

the toroidal angle φ.

To give a concrete example, for the ideal MHD model formulated in terms of a displacement ξ,

one could take N = 3 with numerical variables X = (ξρ ,ξθ,ξφ), and we would have B = ρ0I ,

where I is the 3×3 identity matrix, and A would need to be determined by identifying the

dependency of each component of the ideal MHD force operator

δF (ξ) =−∇δp +δ j ×B + j ×δB .

To this end, explicit expressions for δp, δ j , δB need to be derived and written in terms of

X1 = ξρ , X2 = ξθ, X3 = ξφ, to identify the coefficients Ai j of A.

For the numerical discretization, each numerical variable Xµ (µ = 1, . . . , N ) is expanded in

terms of a poloidal and toroidal Fourier series

Xµ(ρ,θ,φ, t ) =
m∑

m=−m
X(µ,m)(ρ)e i mθ+i nφ+λt . (5.3)

The toroidal mode number n, and the range of poloidal modes m ∈ [m,m] can be specified by

the user. The growth rate λ (which is in general a complex number), is to be determined. To

discretize the operators A and B , the “weak form” of equation (5.1) is now considered: X is a

solution of the weak form, provided that

λσB (Y , X ) = A(Y , X ),

for all Y = (Y1, . . . ,YN ), where each “test-function” Yµ is itself of the form (5.3). Here A(Y , X ) is

defined by

A(Y , X ) ≡
∫

Y ∗ · AX d x .

Here Y ∗ denotes the complex conjugate of Y . The Fourier expansion in θ and φ is particularly

convenient, since it allows us to replace differentiation with respect to θ and φ, by a simple
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multiplication:

∂

∂θ
→ i m,

∂

∂φ
→ i n.

The weak form of an operator A can now be represented as follows: In general for vectors Y , X :

A(Y , X ) =
N∑

µ′,µ=1
Aµ′µ(Yµ′ , Xµ),

with Aµ′µ(Yµ′ , Xµ) representing the weak form of Aµ′µ. assuming at most second order deriva-

tives to occur, we can then write this in the form

Aµ′µ(Yµ′ , Xµ) =
∫

dρdθ
∑
r ′,r

∑
p ′,p

α
r ′,p ′;r,p
µ′µ

[
∂r ′

∂ρr ′
∂p ′

∂θp ′ Yµ′

]∗[
∂r

∂ρr

∂p

∂θp Xµ

]
(5.4)

Here, radial derivative indices are denoted by r ′,r , and the poloidal derivatives by p ′, p. We

have already assumed the toroidal dependency ∼ exp(i nφ), so that toroidal derivatives corre-

spond to multiplication with i n, which can be incorporated in the coefficients αr ′,p ′;r,p
µ′µ =

α
r ′,p ′;r,p
µ′µ (ρ,θ;n). Since both Y and X have only one toroidal Fourier mode number, and

Y ∗
µ′ ∼ e−i nφ, whereas Xµ ∼ e i nφ, these factors cancel in (5.4), and hence an integration over φ

is not necessary. Due to the poloidal Fourier expansion the integration over θ can be carried

out analytically, leading to a coupled system in the radial direction, where the coupling of the

m′-th Fourier mode of the µ′-th component Y(µ′,m′) of Y with the m-th Fourier mode of the

µ-th component X(µ,m) of X is given by

A
(
Y(µ′,m′)e

i m′θ, X(µ,m)e
i mθ

)
=

∫
dρ

∑
r ′,r

[α]r ′;r
(µ′,m′),(µ,m)

[(
d

dρ

)r ′

Y(µ′,m′)(ρ)

]∗[(
d

dρ

)r

X(µ,m)(ρ)

]
.

Here, the coefficients [α]r ′;r
(µ′,m′),(µ,m) = [α]r ′;r

(µ′,m′),(µ,m)(ρ) are defined by

[α]r ′;r
(µ′,m′),(µ,m)(ρ) ≡ ∑

p ′,p

(− i m′)p ′(
i m

)p
(∫

dθ e i (m′−m)θα
r ′,p ′;r,p
µ′µ (ρ,θ)

)
.

Note that for a straight cylinder equilibrium (no toroidal effects), the magnetic background

has no dependency on θ, and hence all the coefficients αr ′,p ′;r,p
µ′µ are functions of ρ, only. In

particular, this implies that the coupling between different mode-numbers vanishes in this

case. In the above Galerkin formulation, this is equivalent to the vanishing of the coefficients

[α]r ′;r
(µ′,m′),(µ,m) = 0 for m′ 6= m. When toroidal effects are included, this is evidently no longer

the case, and the coupling between different mode numbers needs to be taken into account.

Up to this point, no discretization in the radial direction has been carried out. To discretize in

126



5.2. Future perspectives

ρ, we make an additional expansion in terms of radial bases. To this end, for each numerical

variable Xµ, we fix a set of radial basis functions Λ(µ)
k (ρ), where k = 1, . . . , Nr and Nr is deter-

mined from the number of radial grid points (specified by the user). In our implementation,

we have chosenΛ(µ)
k to be a basis of either 2nd- or 3rd-order Bsplines (with degree depending

on the numerical variable). As is well-known, a judicious choice of radial expansion functions

is required to avoid the phenomenon of “spectral pollution” [GR85]. Given a Fourier mode

number m, we expand X(µ,m) as

X(µ,m)(ρ) =
Nr∑

k=1
X̂(µ,m,k)Λ

(µ)
k (ρ).

Thus, the numerical variables X is can now be determined entirely in terms of the collection of

(complex) coefficients X̂(µ,m,k), where µ= 1, . . . , N , m = {m, . . . ,m}, and k = 1, . . . , Nr . Instead of

this triple of indices (µ,m,k), for the numerical implementation, we introduce a new (logical)

index ν
4= (µ,m,k). The numerical discretization is now completed by defining the matrix

coefficients

Âν′,ν ≡ Â(µ′,m′,k ′),(µ,m,k) ≡
∑
r ′,r

∫
dρ [α]r ′;r

(µ′,m′),(µ,m)

[(
d

dρ

)r ′

Λ
(µ′)
k ′

][(
d

dρ

)r

Λ
(µ)
k

]
.

The above procedure thus associates to an operator A, the corresponding coefficients Âν′,ν. In

terms of these coefficients, we have

A(Y , X ) = ∑
ν′,ν

Ŷν′ Âν′,νX̂ν ≡
N∑

µ′,µ=1

m∑
m′,m=m

Nr∑
k ′,k=1

Ŷ(µ′,m′,k ′) Â(µ′,m′,k ′),(µ,m,k)X̂(µ,m,k).

Thus, the original equation

B
∂σX

∂tσ
= AX , (where σ= 1 or 2),

is discretized as a generalized eigenvalue problem of the form

λσB̂ X̂ = ÂX̂ , (where σ= 1 or 2),

which can also be formulated in terms of an initial value problem

B̂
dσX̂

d tσ
= ÂX̂ , (where σ= 1 or 2).

The eigenvalue problem is presently solved by loading the discretized matrices in MATLAB and

using the eigs function (the implemented Stab MATLAB-class provides convenient wrappers

to the relevant function calls to carry this out in practice, and to illustrate the results including

spectra and eigenfunctions).

In practice, the operators A and B are determined by specifying the coupling coefficients of

127



Chapter 5. Final remarks and perspectives

the m′-th poloidal Fourier mode of the µ′-th numerical variable with the m-th poloidal Fourier

mode of the µ-th numerical variable for all µ′, µ and m′, m. A convenient short-hand notation

for this, which is in common use is to write down the explicit expressions for

A(k,`) ≡ ∑
p ′,p

(−i m′)p ′
(i m)pα

r ′,p ′;r,p
k`

∣∣∣
r ′=0,r=0

,

A(k ′,`) ≡ ∑
p ′,p

(−i m′)p ′
(i m)pα

r ′,p ′;r,p
k`

∣∣∣
r ′=1,r=0

,

A(k,`′) ≡ ∑
p ′,p

(−i m′)p ′
(i m)pα

r ′,p ′;r,p
k`

∣∣∣
r ′=0,r=1

,

A(k ′,`′) ≡ ∑
p ′,p

(−i m′)p ′
(i m)pα

r ′,p ′;r,p
k`

∣∣∣
r ′=1,r=1

,

...

and so forth, for a given model.

For the numerical implementation, this means that once these coefficients A(k,`), A(k ′,`),

A(k,`′), A(k ′,`′) are specified, the remainder of the Galerkin discretization of the operator

can be carried out abstractly and in general, following the derivation presented above. In the

present thesis, a numerical implementation of the Galerkin discretization has been carried

out. To increase flexibility of the resulting code, we have chosen to encapsulate the Galerkin

discretization of systems in an abstract Fortran type PDE_op, which contains procedure

pointers Aop_pt and Bop_pt. A new model can now be specified by creating a concrete

instance of this abstract PDE_op type, which provides explicit procedures to evaluate the

coefficients of the operators A and B in weak form. The PDE_op module then automatically

computes the corresponding matrices Â and B̂ for a given equilibrium, based on the specified

operator coefficients (cp. figure 5.2).

Once a model is written down, the determination of the operator coefficients is an arduous,

but mechanical process. For the currently implemented MHD models in the current version

of the code VENUS-MHD, we have made extensive use of Mathematica, to carry out the

necessary algebraic manipulations, and to write out the resulting operator coefficients which

can then be copied into the Fortran code.

The radial discretization allows the user to set not only the total number of radial grid points

to be used for this discretization, but also to specify values of the q-profile at which more

resolution is required. The code will then correspondingly create more densely packed mesh

points at the corresponding radial positions. The radial mesh packing is illustrated in Figure

5.3.

Several tests have been carried out on this preliminary implementation of the Galerkin dis-

cretization, including a tentative benchmark for a implemented discretization of the ideal
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5.2. Future perspectives

Figure 5.2 – Work flow of abstract implementation of Galerkin discretization. The choice of
model determines the functional form of the operator coefficients, based upon which the
discretization can be carried out uniformly. This allows new models to be added to the code
with relative ease.

MHD momentum equation formulated in terms of a displacement

λ2ρ0ξ= δF (ξ).

for an internal kink, shown in figure 1.6, chapter 1. A more thorough benchmarking of the

code and the various models that are currently implemented is however left for future work.1

Kinetic solver

The following approach to solving the spectral problem for the kinetic-MHD model of chapter

4, in the absence of rotation, diamagnetic effects in the fluid inertia or a quasi-neutrality

equation, has also been attempted. However, this project was abandoned due to several

practical difficulties, which we will summarize below. In the attempted approach, the goal is

to solve the following non-linear eigenvalue problem

−ω2ρ0ξ= δF (ξ)−∇·δPh(ξ;ω),

where δF (ξ) is the conventional ideal MHD force operator, and an explicit expression for the

perturbed (hot) pressure tensor δPh(ξ;ω) including full-orbit width effects has been given

by Porcelli et al. [PSK94]. This system describes the interaction of an ideal MHD mode with

a species of supra-thermal ions (e.g. generated by NBI or ICRH). Following the Galerkin

1Detailed derivations and explanations of the available models can be found by opening the various Mathemat-
ica Scripts that come with the code, and which have been used to generate the Fortran code for each of these
models.
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Chapter 5. Final remarks and perspectives

Figure 5.3 – Radial mesh-packing based on q-profile: Specification of the list of values q = 1,2
leads to more densely packed radial mesh points near the corresponding q-values, and enables
higher resolution of the singular layers in ideal MHD. Higher-order radial basis function (3rd
order B-splines) (top), lower-order radial basis functions (2nd order B-splines) (middle) and
corresponding q-profile (bottom).
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procedure described above, leads to an eigenvalue problem of the form

−ω2B̂ X = ÂX +Ĉ (ω)X ,

where the additional matrix Ĉ (ω) depends on the eigenvalue, and ω 7→ Ĉ (ω) is a holomorphic

function of ω in the upper half-plane (corresponding to unstable modes – we did not consider

continua). This approach thus suggests to treat the spectral problem of this kinetic-MHD

model as a “non-linear” eigenvalue problem, which asks to determine ω and X , such that

M(ω)X = 0, with M(ω) ≡ω2B̂ + Â +Ĉ (ω).

Major difficulties with this approach include the following:

• While there exist some numerical libraries such as SLEPC, which can in principle tackle

non-linear eigenvalue problems of this form, the methods are by far not as well devel-

oped as for usual eigenvalue problems.

• The matrix structure of M̂(ω) goes from a sparse to a full matrix with increasing radial

orbit width of the additional hot particle species. This poses problems with the available

memory.

Other codes, which successfully follow a similar strategy (such as MARS-K [LCCH08], LIGKA

[LGKP07]) make various simplifications to make this problem more tractable. As a conse-

quence they do not take into account full finite-orbit width (at least not in a completely

consistent way). Work by Porcelli et al. [PSBZ92] has in particular shown such effects to be

important for the internal kink, and therefore it would be desirable to not make such simplifi-

cations. Perhaps even more fundamentally, the problem of kinetic corrections to the inertia

(see [GHH00, appendix], or [ZC14]) are captured only on inclusion of the radial drift of a parti-

cle across the radial structure of the mode. Inertia corrections apply in particular to thermal

ions, so it appears that capturing the orbit width corrections is necessary for all ions, not just

minority ions.

Therefore, a fresh start appears necessary for the implementation of the kinetic-MHD system.

If only the most unstable mode is to be determined, then an initial value problem would be

suitable, which evolves the fluid and kinetic models congruently, suggesting a conceptually

simple PIC approach to this problem.
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A Banos drift in purely sheared back-
ground

A.1 Introduction

It is instructive to see how the inclusion of higher-order terms in equations (3.8)-(3.11) dis-

cussed in chapter 3 (based on the detailed derivation presented in chapter 2) can account for

the Baños drift for a simple example. The present discussion extends the results of [PGC15, Ap-

pendix A] and has been included in the publication [LPGC17, appendix].

We consider the sheared magnetic background B(x) = B0[sin(τx)ŷ +cos(τx)ẑ] in cartesian

coordinates (x, y, z). This field satisfies ∇ ·B = 0, ∇B = 0, κ ≡ b · ∇b = 0 and τ = b · ∇× b,

justifying our choice of the notation for the parameter τ. The analysis detailed in [PGC15]

shows that for small enough values of τ, a particle with initial data

x0 = 0 y0 = ρ0 z0 = 0

ẋ0 = u0 ẏ0 = 0 ż0 = v0
(A.1)

will follow a closed orbit in the (x, y) plane, and that to leading order in τ, we have

〈ż〉− v0 =
τu2

0

4Ω0
, (A.2)

〈v||〉− v0 =− τu2
0

4Ω0
, (A.3)

so that

〈ż〉−〈v||〉 =
τu2

0

2Ω0
= τµ

q
. (A.4)

This result is astonishing, because it implies that even in the absence of a finite v|| component,

the guiding-centre will drift along B . This guiding-centre motion is induced by the shear.
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Figure A.1 – Temporal evolution of x, y , z coordintes for particle with initialization (A.1). The
parameters were set as E = 10keV, τ= 1, B0 = 0.5T. The Baños drift in the z-direction is clearly
visible.

A.2 Derivation from Lie perturbation methods

We shall now explain how the above result based on the Lorentzian equations of motion can

be obtained from the equations presented in section 3.2. We fix e1 = x̂ , which determines

e2 = b ×e1 =−sin(τx)ŷ +cos(τx)ẑ . One obtains ∇b = τcos(τx)x̂ ŷ −τsin(τx)x̂ ẑ , so that

e1 ·∇b ·e2 = τ, e1 ·∇b ·e2 = 0,

e2 ·∇b ·e1 = 0, e2 ·∇b ·e1 = 0.

Using the definition (cp. equation (2.23)) of a1, we arrive at the simple relation

a1 : ∇b = τ/2
(
2cos2 ζ−1

)
. (A.5)

Using also the vanishing of the other terms in (3.9), the general relations evaluated at the

guiding-centre position X = Y = 0 reduce to first order in gyroradius to the simple form

x = ρ0 cos(ζ), (A.6)

y =−ρ0 sin(ζ), (A.7)

Z = z, (A.8)

U = v||+ µτ

q

(
cos2(ζ)+ 1

2

)
. (A.9)

The initialization considered here is then seen to correspond to ζ=−π/2, which yields the

following initialization of the guiding-centre: X0 = 0, U0 = v0 + µτ
2q . Due to the vanishing of ∇B ,

the guiding-centre velocity satisfies U̇ = 0 for this particular equilibrium, from which it follows

that U =U0 for all times, i.e. U = v0 + µτ
2q . Gyroaveraging equation (A.9) yields U = 〈v||〉+ µτ

q .
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A.2. Derivation from Lie perturbation methods

Equating the two expression for U , we find

〈v||〉− v0 = µτ

2q
. (A.10)

Observing that Ẋ = 0, Ẏ = 0 and Ż =U +ηµτ/q , we find

Ż − v0 = µτ

2q
. (A.11)

Equation (A.10) is equivalent with (A.3), whereas equation (A.11) recovers (A.2).

Substitution of ζ(t ) ≈Ωt −π/2 in (A.9) yields

U ≈ v||+ µτ

q

(
sin2(Ωt )+ 1

2

)
, (∗)

relating the temporal evolution of the full-Lorentzian parallel velocity v|| to the guiding-centre

parallel velocity U .
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Figure A.2 – Temporal evolution of v|| and the z-coordinate for the same particle of figure A.1.
Indicated in red are relevant expressions obtained from the Lie perturbation theory.

The temporal evolution of v|| ≡ b(x)·v computed from numerical integration of the Lorentzian

equations of motion is depicted in figure A.2. It is interesting to note that for the present case

under consideration the local particle expression for v|| does not even agree in sign with

the guiding-centre expression (∗) for the parallel guiding-centre velocity U , above. A careful

distinction should be made between the guiding-centre and local particle parallel velocities. In

figure A.2 on the right, it is shown that the predicted parallel drift recovers the average motion

in the z-direction to good accuracy.

We emphasize that these results have been obtained using the conventional guiding-centre
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Appendix A. Banos drift in purely sheared background

Lagrangian, without the additional high-order terms considered in (3.4). Consistent inclusion

of all first order corrections in (3.9) was necessary. In particular, this indicates that with a

judicious choice of guiding-centre variables, guiding-centre following based on the Lagrangian

(3.21) is sufficient to account for the particle dynamics induced by first-order variations in B ,

also parallel to the field lines.
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B Detailed derivation of gyroviscous
tensor components

In this appendix, we present the details of the derivation of the gyroviscous pressure tensor

components of chapter 4.

B.1 FLR correction (I) – evaluation of eq. (4.13)

We evaluate the contribution of∫
d3v mw

[
bVgc +Vgcb

]
F.

where we use (2.32)

Vgc = b ×
[
µ

qB
∇B + w2

Ω
b ·∇b

]
+ w

Ω
b ×

[
db

d t
+b ·∇u

]
+ 1

Ω
b × du

d t
.

The relevant contribution of this correction to P , is therefore

ΩPb⊥ = b ×
[

P||
(

db

d t
+b ·∇u

)
+q⊥

|| ∇B +2q ||
||κ

]
,

where κ≡ b ·∇b denotes the field line curvature.

B.2 FLR correction (II) – evaluation of eq. (4.14)

We evaluate∫
d3v m

[
ρ̇(0)

gc ρ̇
(1)
gc + ρ̇(1)

gc ρ̇
(0)
gc

]
F.
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This term requires the evaluation of the first order correction to ρ̇gc. We have

ρ̇gc = (∂t + Ẋ ·∇+ ẇ∂w + ζ̇∂ζ)ρgc

= ζ̇(0)∂ζρ0 +εB ζ̇
(1)∂ζρ0 +εB∂tρ0 +εB Ẋ (0) ·∇ρ0 +εB ζ̇

(0)∂ζρ1.

We note that

ρ0 = ρ0ρ̂ =
√

2µB(X , t )

m
ρ̂(X ,ζ, t ),

so that

∇ρ0 = 1

2
∇ logB ⊗ρ0 +ρ0∇ρ̂, (B.1)

∂tρ0 = 1

2
∂t logBρ0 +ρ0∂t ρ̂. (B.2)

Furthermore,

ζ̇(0) =Ω, ζ̇(1) = R ·W +S + 1

2
b ·∇×W ,

with R ≡ (∇⊥̂⊥⊥) · ρ̂ = (∇e1) ·e2, S = ρ̂ ·∂t ⊥̂⊥⊥= e2 ·∂t e1, and W ≡ u +wb. We can now write

1

ρ0
ρ1 = [R ·W +S]⊥̂⊥⊥+

[
1

2
b ·∇×W

]
⊥̂⊥⊥+Ω∂ζρ1/ρ0

+ 1

2

[
(∂t +W ·∇) logB

]
ρ̂+ (∂t +W ·∇) ρ̂.

We can further simplify this expression, by noting that

[∂t +W ·∇] ρ̂ =−(
[∂t +W ·∇]⊥̂⊥⊥· ρ̂)⊥̂⊥⊥− (

[∂t +W ·∇]b · ρ̂)
b

=− [S +W ·R]⊥̂⊥⊥−
([

db

d t
+wκ

]
· ρ̂

)
b.

(B.3)

Thus, we find that the terms involving R ,S cancel, leaving an expression that is written in

terms of derivatives of B and u:

1

ρ0
ρ̇1 =

[
1

2
b ·∇×W

]
⊥̂⊥⊥+Ω∂ζρ1/ρ0

+ 1

2

[
(∂t +W ·∇) logB

]
ρ̂−

([
db

d t
+wκ

]
· ρ̂

)
b.
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B.2. FLR correction (II) – evaluation of eq. (4.14)

We then find, using ρ̂ = b ×⊥̂⊥⊥ and hence A · ρ̂ =−b × A · ⊥̂⊥⊥, that

m〈ρ̇(0)
gc ρ̇

(1)
gc 〉 =

2µB

Ω
〈⊥̂⊥⊥ρ̇(1)

gc /ρ0〉

= µB

Ω
[b ·∇×W ]〈⊥̂⊥⊥⊥̂⊥⊥〉+ (2µB)〈ρ̂ρ1/ρ0〉

+ µB

Ω

[
(∂t +W ·∇) logB

]〈⊥̂⊥⊥ρ̂〉
+ 2µB

Ω
b ×

[
db

d t
+wκ

]
· 〈⊥̂⊥⊥⊥̂⊥⊥〉b

= µB

Ω

1

2
[b ·∇×W ] (I −bb)+ (2µB)〈ρ̂ρ1/ρ0〉

+ (AS)+ µB

Ω

(
b ×

[
db

d t
+wκ

])
b,

where (AS) is an anti-symmetric term, which will cancel in the final expression for the pressure,

which is symmetric. To complete this calculation, we still need to evaluate 〈ρ̂ρ1〉/ρ0. Since this

expression is a gyro-average, we only require the contributions to ρ1, which can be written as

odd polynomials in ρ̂,⊥̂⊥⊥.

In general, we have the following expression (cp. (2.36))

ρ1 =−G X
2 + 1

2

(
Gµ

1∂µ+Gζ
1∂ζ

)
G X

1 + 1

2
G X

1 ·∇G X
1 ,

where G X
1 =−ρ0. The perpendicular component of G X

2 can be written (cp. (2.41))

G X
2,⊥ = 1

2

(
gµ∂µ+ gζ∂ζ

)
ρ0 + 1

Ω
(b ·∇×W )ρ0,

where

Gµ
1 = gµ+µρ0 ·∇ logB ,

Gζ
1 = gζ−ρ0 ·R .

We find that

ρ1 =−G X
2,||b − (

gµ∂µ+ gζ∂ζ
)
ρ0 − 1

Ω
(b ·∇×W )ρ0

− 1

2
µ(ρ0 ·∇ logB)∂µρ0 + 1

2
(ρ0 ·R)∂ζρ0 + 1

2
ρ0 ·∇ρ0

=−G X
2,||b − (

gµ∂µ+ gζ∂ζ
)
ρ0 − 1

Ω
(b ·∇×W )ρ0

− 1

4
(ρ0 ·∇ logB)ρ0 + 1

2
(ρ0 ·R)∂ζρ0 + 1

2
ρ0 ·∇ρ0.

139



Appendix B. Detailed derivation of gyroviscous tensor components

By similar manipulations as in equation (B.3), we observe that the last term can be written

ρ2
0

2

[
(ρ̂ ·R)⊥̂⊥⊥+ ρ̂ ·∇ρ̂]=−ρ

2
0

2
ρ̂ ·∇b · ρ̂ =−1

2
ρ0 ·∇b ·ρ0,

and thus

ρ1 =−(
gµ∂µ+ gζ∂ζ

)
ρ0 − 1

Ω
(b ·∇×W )ρ0

−
(
G X

2,||+
1

2
ρ0 ·∇b ·ρ0

)
b.

This expression is still completely general, and recovers equation (49) [Bri10] in the limit u → 0.

Citing the results of chapter 2, equations (2.96), (2.84), (2.93) and (B.6), we find

G X
2,|| =− 1

Ω
ρ0 ·b × [b ·∇W +W ·∇b +∂t b]

− µ

4qΩ

[
ρ̂ρ̂−⊥̂⊥⊥⊥̂⊥⊥]

: ∇b
(B.4)

gµ =− µ
Ω

b ·∇×W + m

B
ρ0 · [(W ·∇)W ]

+ µ

2Ω
(ρ̂⊥̂⊥⊥+⊥̂⊥⊥ρ̂) : ∇W + m

B
ρ0 ·∂t W ,

(B.5)

gζ =− q

m
∂µs3

=− 1

4Ω

(
ρ̂ρ̂−⊥̂⊥⊥⊥̂⊥⊥)

: ∇W

+ρ0 · b ×∇B

B
− q

2µ

1

Ω
ρ0 ·b × [(∂t +W ·∇)W ] .

(B.6)

We only require the contribution to G X
2,|| that is linear in ρ̂,⊥̂⊥⊥ and the contributions to gµ, gζ

which are constant or quadratic in ρ̂,⊥̂⊥⊥. We can therefore take

G X
2,|| →− 1

Ω
ρ0 ·b × [b ·∇W +W ·∇b +∂t b]

gµ/(2µ) →− 1

2Ω
b ·∇×W + 1

4Ω
(ρ̂⊥̂⊥⊥+⊥̂⊥⊥ρ̂) : ∇W ,

gζ→− 1

4Ω

(
ρ̂ρ̂−⊥̂⊥⊥⊥̂⊥⊥)

: ∇W ,
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when carrying out the gyroaverage 〈ρ̂ρ1/ρ0〉.

〈ρ̂ρ1/ρ0〉 =−〈gµ/(2µ)ρ̂ρ̂〉−〈gζρ̂⊥̂⊥⊥〉
− 1

Ω
(b ·∇×W )〈ρ̂ρ̂〉−〈G X

2,||ρ̂〉b

= 1

2Ω
(b ·∇×W )〈ρ̂ρ̂〉+ 1

Ω

〈
ρ̂ρ̂

[
− (ρ̂⊥̂⊥⊥+⊥̂⊥⊥ρ̂)

4

]
: ∇W

〉

+ 1

Ω

〈
ρ̂⊥̂⊥⊥

[
(ρ̂ρ̂−⊥̂⊥⊥⊥̂⊥⊥)

4

]
: ∇W

〉
− 1

Ω
(b ·∇×W )〈ρ̂ρ̂〉

− 1

Ω
〈ρ̂ρ̂〉 ·

(
b ×

[
b ·∇W +W ·∇b + 1

2
∂t b

])
b

=− 1

4Ω
(b ·∇×W )(I −bb)

+ 1

Ω

〈
ρ̂ρ̂

[
− (ρ̂⊥̂⊥⊥+⊥̂⊥⊥ρ̂)

4

]
: ∇W

〉

+ 1

Ω

〈
ρ̂⊥̂⊥⊥

[
(ρ̂ρ̂−⊥̂⊥⊥⊥̂⊥⊥)

4

]
: ∇W

〉

− 1

2Ω

(
b ×

[
2wκ+b ·∇u +u ·∇b + 1

2
∂t b

])
b.

After carrying out the remaining gyro-averages, we find

(2µB)〈ρ̂ρ1/ρ0〉 =−µB

2Ω
(b ·∇×W )(I −bb)

µB

4Ω
[(∇1W2 +∇2W1)(e1e1 −e2e2)

+(∇2W2 −∇1W1)(e1e1 +e2e1)]

− µB

Ω
(b × [2wκ+b ·∇u +u ·∇b +∂t b])b.
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We therefore finally have

m
[
〈ρ̇(0)

gc ρ̇
(1)
gc 〉+〈ρ̇(0)

gc ρ̇
(1)
gc 〉

]
= µB

Ω
[b ·∇×W ] (I −bb)

+ (2µB)
[
〈ρ̂ρ(1)

gc /ρ0〉+〈ρ(1)
gc ρ̂/ρ0〉

]
+ µB

Ω

[(
b ×

[
db

d t
+wκ

])
b + (T )

]
= µB

2Ω
[(∇1W2 +∇2W1)(e1e1 −e2e2)

+(∇2W2 −∇1W1)(e1e1 +e2e1)]

+ µB

Ω

[(
b ×

[
db

d t
+wκ

])
b + (T )

]
− µB

Ω

[(
b ×

[
2wκ+b ·∇u + db

d t

])
b + (T )

]
= µB

2Ω
[(∇1W2 +∇2W1)(e1e1 −e2e2)

+(∇2W2 −∇1W1)(e1e1 +e2e1)]

+ µB

Ω
[(b × [−wκ−b ·∇u])b + (T )] ,

where (T ) indicates the transpose of the term to its left.

B.3 FLR correction (III) – evaluation of eq. (4.15)

We evaluate

(III) =−εB d3v m
[
ρ̇(0)

gc

(
ρ0 ·∇u

)+ (
ρ0 ·∇u

)
ρ̇(0)

gc

]
F.

We find

(III) =−εB

∫
d3v m

[
ρ̇gc(ρ0 ·∇u)+ (ρgc ·∇u)ρ̇0

]
F

=−εB

∫
d3v

2µB

Ω

[⊥̂⊥⊥(ρ̂ ·∇u)+ (ρ̂ ·∇u)⊥̂⊥⊥]
F

=−εB
p⊥
Ω

[e1(e2 ·∇u)−e2(e1 ·∇u)

+(e2 ·∇u)e1 − (e1 ·∇u)e2] .
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B.4. FLR correction (IV) – evaluation of eq. (4.16)

This can be further simplified as

(III) = P⊥
Ω

[(∇2u2 −∇1u1)(e1e2 +e2e1)

+(∇2u1 +∇1u2)(e1e1 −e2e2)]

+ P⊥
Ω

[b × (∇u ·b)+ (T )]

− P⊥
Ω

(b ·∇×u)(I −bb).

B.4 FLR correction (IV) – evaluation of eq. (4.16)

We evaluate

−∇·
∫

d3v mwρ0

[
bρ̇(0)

gc + ρ̇(0)
gc b

]
F =−∇·

∫
d3v

wµB

Ω
F

[
2〈ρ̂b⊥̂⊥⊥〉+2〈ρ̂⊥̂⊥⊥b〉]

=−∇·
(

q⊥
||
Ω

[
2〈ρ̂b⊥̂⊥⊥〉+2〈ρ̂⊥̂⊥⊥b〉]) ,

and

2〈ρ̂b⊥̂⊥⊥〉+2〈ρ̂⊥̂⊥⊥b〉 = e1(e2b +be2)−e2(e1b +be1).

We have

−∇·
(

q⊥
||
Ω

[
2〈ρ̂b⊥̂⊥⊥〉+2〈ρ̂⊥̂⊥⊥b〉])=−

(
1

Ω
∇q⊥

|| −
q⊥
||
Ω

∇ log(B)

)
· [e1(e2b +be2)−e2(e1b +be1)]

−
q⊥
||
Ω

∇· [e1(e2b +be2)−e2(e1b +be1)]

= 1

Ω

(
b ×

[
∇q⊥

|| −q⊥
|| ∇ log(B)

])
b

−
q⊥
||
Ω

∇· [e1(e2b +be2)−e2(e1b +be1)] .

Here

∇· [e1(e2b +be2)−e2(e1b +be1)] = b(b ×κ)+ (b ×κ)b

−2(b ·∇×b)bb + (b ·∇×b)(I −bb)

+ (∇1b1 −∇2b2)(e1e2 +e2e1)

+ (∇1b2 +∇2b1)(e2e2 −e1e1),
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hence

−∇·
∫

d3v mwρ0

[
bρ̇(0)

gc + ρ̇(0)
gc b

]
F = 1

Ω
b ×

[
∇q⊥

|| −q⊥
|| ∇ log(B)−q⊥

|| κ
]

b

−
q⊥
||
Ω

(b ·∇×b)(I −bb)

−
2q⊥

||
Ω

(b ·∇×b)bb

−
q⊥
||
Ω

[(∇1b1 −∇2b2)(e1e2 +e2e1)

+ (∇1b2 +∇2b1)(e2e2 −e1e1)] .

Interestingly, the contribution ∇ log(B) here exactly cancels a similar ∇B contribution from

eq. (4.13) which is obtained as a result of the magnetic ∇B drift, so that the final expression is

written in terms of the field line curvature κ≡ b ·∇b and not ∇B .

B.5 Identities involving moving frame

We have a moving frame e1,e2,b, as well as a rotating frame ρ̂,⊥̂⊥⊥,b (cp. (2.22)), where

ρ̂ = cos(ζ)e1 − sin(ζ)e2,

⊥̂⊥⊥= sin(ζ)e1 +cos(ζ)e2.

It follows that

〈ρ̂⊥̂⊥⊥〉= 1

2
(e1e2 −e2e1).

and hence

〈ρ̂b⊥̂⊥⊥〉= 1

2
(e1be2 −e2be1), 〈ρ̂⊥̂⊥⊥b〉 = 1

2
(e2be1 −e1be2).

Then

〈ρ̂b⊥̂⊥⊥〉+〈ρ̂⊥̂⊥⊥b〉 = 1

2
[e1(e2b +be2)−e2(e1b +be1)] .
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We compute

∇· [e1(e2b +be2)] = (∇·e1)(e2b +be2)+ [(e1 ·∇e2)b +b(e1 ·∇e2)]

+ [e2(e1 ·∇b)+ (e1 ·∇b)e2]

= [e1 ·∇e2 ·e1] (e1b +be1)

+ [∇·e1] (e2b +be2)

+2[e1 ·∇e2 ·b]bb

+2[e1 ·∇b ·e2]e2e2

+ [e1 ·∇b ·e1] (e1e2 +e2e1),

and, permuting 1 ↔ 2, we find

∇· [e2(e1b +be1)] = [e2 ·∇e1 ·e2] (e2b +be2)

+ [∇·e2] (e1b +be1)

+2[e2 ·∇e1 ·b]bb

+2[e2 ·∇b ·e1]e1e1

+ [e2 ·∇b ·e2] (e2e1 +e1e2).

Thus

∇· {[e1(e2b +be2)] − [e2(e1b +be1)]}

= [e1 ·∇e2 ·e1 −∇·e2] (e1b +be1)

+ [∇·e1 −e2 ·∇e1 ·e2] (e2b +be2)

+2[e1 ·∇e2 ·b −e2 ·∇e1 ·b]bb

−2[e2 ·∇b ·e1]e1e1

+2[e1 ·∇b ·e2]e2e2

+ [e1 ·∇b ·e1 −e2 ·∇b ·e2] (e1e2 +e2e1)

= [−b ·∇e2 ·b] (e1b +be1)

+ [b ·∇e1 ·b] (e2b +be2)

−2[e1 ·∇b ·e2 −e2 ·∇b ·e1]bb

−2[e2 ·∇b ·e1]e1e1

+2[e1 ·∇b ·e2]e2e2

+ [e1 ·∇b ·e1 −e2 ·∇b ·e2] (e1e2 +e2e1).
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We can combine the terms proportional to e1e1 and e2e2 by observing that

2[e2 ·∇b ·e1] = [e2 ·∇b ·e1 +e1∇b ·e2]+ [e2 ·∇b ·e1 −e1∇b ·e2]

= [e2 ·∇b ·e1 +e1∇b ·e2]−b ·∇×b,

2[e1 ·∇b ·e2] = [e1 ·∇b ·e2 +e2∇b ·e1]+ [e1 ·∇b ·e2 −e2∇b ·e1]

= [e1 ·∇b ·e2 +e2∇b ·e1]+b ·∇×b.

Therefore,

∇· {[e1(e2b +be2)] − [e2(e1b +be1)]}

= [κ ·e2] (e1b +be1)+ [−κ ·e1] (e2b +be2)

−2[b ·∇×b]bb + [b ·∇×b] (e1e1 +e2e2)

+ [e1 ·∇b ·e2 +e2 ·∇b ·e1] (e2e2 −e1e1)

+ [e1 ·∇b ·e1 −e2 ·∇b ·e2] (e1e2 +e2e1).

Finally, we observe that

[κ ·e2] (e1b)+ [−κ ·e1] (e2b) = [(κ ·e2)e1 − (κ ·e1)e2]b

= [(κ×b) ·e1e1 + (κ×b) ·e2e2]b

= (κ×b)b,

so

∇·{〈ρ̂b⊥̂⊥⊥〉+〈ρ̂⊥̂⊥⊥b〉}=∇· {[e1(e2b +be2)]− [e2(e1b +be1)]}

= [(κ×b)b +b(κ×b)]

−2[b ·∇×b]bb + [b ·∇×b] (e1e1 +e2e2)

+ [e1 ·∇b ·e2 +e2 ·∇b ·e1] (e2e2 −e1e1)

+ [e1 ·∇b ·e1 −e2 ·∇b ·e2] (e1e2 +e2e1).
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