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Abstract

The inviscid, incompressible Euler equations are an idealized model for flows at high Reynolds number.
Solutions of inviscid fluid models, such as the incompressible Euler equations, are highly sensitive to small
perturbations of the initial data. Mathematically, this is reflected by a lack of general uniqueness and
well-posedness results. For numerical approximations, this lack of stability implies that the convergence
of numerical schemes to a unique limit cannot be guaranteed for general (energy-admissible) initial data.
The present thesis studies the approximation of solutions of the incompressible Euler equations, focusing
on spectral methods. Besides extending the convergence theory of these methods in a deterministic
setting, we propose statistical solutions as a suitable framework to study the convergence of numerical
methods for rough solutions of the Euler equations, at low regularity. These statistical solutions are
time-parametrized probability measures on flow fields. The main observation of the present work is
that, for the approximation of solutions at low regularity, a marked contrast is observed numerically
between the failure of (strong) convergence in any classical, deterministic sense, versus the apparent
stability and convergence of statistical quantities at increasing numerical resolution. In addition to
presenting extensive numerical experiments to study different aspects of the convergence of statistical
quantities, we develop a theoretical framework of statistical solutions. This theoretical framework allows
us to interpret these empirical observations as the convergence of numerical approximants to a limiting
statistical solution. Building on the insights gained in the analysis of statistical solutions, we next
investigate the question of anomalous energy dissipation in the zero-viscosity limit of the Navier-Stokes
equations, and provide a characterization of energy conservative solutions of the incompressible Euler
equations in two dimensions, considerably going beyond the critical 1/3-Holder regularity for energy
conservation identified by Onsager. Finally, we address the practically important question of combining
available observational data with the underlying fluid model in a Bayesian formulation, and the use of
neural network based surrogate models to provide novel approximations of statistical solutions.
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Zusammenfassung

Ein idealisiertes Modell fiir Stromungen hoher Reynoldszahl sind die invisziden, inkompressiblen Eu-
lergleichungen. Losungen von invisziden Fluidmodellen, wie den inkompressiblen Eulergleichungen, sind
hochempfindlich gegeniiber Storungen der Anfangsdaten. Mathematisch spiegelt sich dies wider in der
Nichtverfiigharkeit von allgemeinen Ergebnissen zur Eindeutigkeit und Existenz von Losungen. Fiir nu-
merische Niaherungen bedeutet dieser Mangel an Stabilitdt, dass die Konvergenz numerischer Schemata
zu einem eindeutigen Grenzwert fiir allgemeine (energiezuliissige) Ausgangsdaten nicht garantiert wer-
den kann. Die vorliegende Arbeit beschéftigt sich mit der Approximation von Losungen der inkompres-
siblen Eulergleichungen, mit Schwerpunkt auf spektralen Methoden. Neben der Erweiterung der Kon-
vergenztheorie dieser Methoden in einem deterministischen Kontext schlagen wir statistische Losungen
der Eulergleichungen vor. Letzteres sind zeitparametrisierte Wahrscheinlichkeitsmasse auf dem Raum
der Stromungsfelder, welche uns zu einem besseren Versténdnis der Konvergenz numerischer Methoden
verhelfen, insbesondere wenn die zugrunde liegende Losung eine geringe Regularitét aufweist. Die wich-
tigste Erkenntnis dieser Arbeit ist, dass bei der numerischen Ann&herung von Losungen mit niedriger
Regularitéit ein deutlicher Kontrast beobachtet wird, zwischen dem Ausbleiben der (starken) Konver-
genz im klassischen, deterministischen Sinne gegeniiber der augenscheinlichen Stabilitdt und Konvergenz
statistischer Grossen bei steigender numerischer Auflosung. Neben der Prisentation umfangreicher nu-
merischer Experimente zur Untersuchung verschiedener Aspekte dieser Konvergenz statistischer Grossen,
entwickeln wir einen theoretischen Rahmen fiir statistische Losungen, der es uns erméglicht, eine Inter-
pretation dieser empirischen Beobachtungen als numerische Konvergenz zu einer statistischen Losung zu
geben. Aufbauend auf den gewonnenen Erkenntnissen fiir statistische Losungen untersuchen wir desweite-
ren die Frage der anomalen Energiedissipation im Nullviskositéts-Limes der Navier-Stokes-Gleichungen;
Wir geben eine Charakterisierung energieerhaltender Losungen der inkompressiblen Eulergleichungen in
zwei Dimensionen. Dieses Resultat geht deutlich iiber die von Onsager identifizierte kritische 1/3-Holder-
Regularitét fiir die Energieerhaltung hinaus. Abschliefend wenden wir uns der praktisch wichtigen Frage
zu, wie vorhandener Beobachtungsdaten mit dem zugrunde liegenden Fluidmodell in einer Bayes’schen
Formulierung kombiniert werden kénnen, und wir diskutieren neuronale Netzwerk-basierte Stellvertreter-
Modelle, um eine neuartige Darstellung statistischer Losungen zu erhalten.
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Outline of this thesis

For the convenience of the reader, we provide a brief outline of the contents of the present thesis.

In chapter [T} we introduce the incompressible Euler equations. These equations form the main object
of study of this work. After a short recapitulation of the physical meaning of the equations, we review
elements of their mathematical theory. We summarize short-time existence and uniqueness of classical
solutions, the concepts of weak and measure-valued solutions and point out the central role played by
the vorticity in their mathematical analysis. Furthermore, we discuss rough solutions with unbounded
vorticity in the two-dimensional case, and the connection of such rough solutions with physical theories
of turbulence. The first chapter also introduces spectral methods, and in particular the spectral (hy-
per-)viscosity (SV) scheme for the numerical approximation of the incompressible Euler equations.

In chapter [2] we study the convergence of the SV scheme to rough solutions. Using compensated
compactness methods, we show that a suitable choice of parameters for the SV scheme ensures that
approximate solution sequences computed by this discretization converge (subsequentially) to a weak
solution of the incompressible Euler equations, even for rough initial data. More precisely, we provide
a proof of convergence for initial data in the so-called “Delort class”. This result closes a long-standing
gap between the available existence theory and convergence results for numerical schemes. Chapter [2] is
based on the publication [LM20].

In chapter [3] we introduce statistical solutions of the incompressible Euler equations. We propose
an algorithm for their numerical approximation and study the convergence of approximate statistical
solutions, both analytically and by numerical experimentation. In particular, we emphasize the import-
ance of “structure functions” for the compactness and convergence theory of statistical solutions. These
structure functions are also central to physical theories of turbulence, and thus provide a natural link to
these physical theories. Chapter [3|reviews the main results of [LMPP21b].

In chapter @] we study the structure functions of the preceding chapter in further detail, and in
connection with the question of anomalous energy dissipation for the incompressible Euler equations.
We focus on the two-dimensional case, where we first provide a characterization of energy conservation
for physically realizable solutions, i.e. solutions which are obtained in the zero-viscosity limit of the
incompressible Navier-Stokes equations. We then discuss the energy conservation of statistical solu-
tions computed by numerical discretization. Numerical experiments for a number of rough initial data
demonstrate the relevance of the proposed estimates. This chapter summarizes the results of [LMPP21a].

In chapter [5| we point out two major limitations of the approach to statistical solutions introduced
in the preceding chapters. Initial steps at addressing these limitations are undertaken in the subsequent
chapters [6] and

In chapter [6] we show how available measurement data can be incorporated in the framework of the
present thesis, based on a Bayesian point of view: More precisely, we discuss Bayesian inversion and data
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assimilation /filtering for PDEs defining ill-posed forward problems, such as the incompressible Euler
equations. This chapter is based on [LMW?2I].

In chapter [7} we discuss the emerging field of operator learning and analyse a novel neural network
architecture, Fourier neural operators (FNOs), to approximate operators defined on infinite-dimensional
function spaces, i.e. mapping input functions to output functions. We review the universal approxim-
ation theorem for FNOs, showing that FNOs can approximate general continuous operators mapping
between Sobolev spaces, to arbitrary accuracy. In addition, we use ideas from spectral methods to de-
rive explicit complexity and error estimates for the FNO approximation of the solution operator of the
incompressible Euler and Navier-Stokes equations. We also indicate how FNO surrogates can be used
to provide an alternative numerical approximation of statistical solutions, and provide a rationale for
their potentially improved efficiency, compared to traditional numerical methods. This chapter is mainly
based on [KLM21], with elements taken from [LMK21].

Finally, in chapter [§] we present conclusions and remark on possible further research directions.

For reference, a list of commonly used symbols throughout this thesis has been included on page
A brief summary of basic results in harmonic analysis and measure theory are provided, respectively, in

Appendices [A] and



Chapter 1

Introduction

1.1 The incompressible Euler equations

The present thesis studies the numerical approximation of the incompressible Euler equations. The
incompressible Euler equations describe the motion of an ideal, incompressible fluid in the absence of
viscous effects, and are given by the following system of partial differential equations (PDEs) [MBO0Il
CMO90]:
{Gtu+(u-V)u+Vp0, (1L1.1)
div(u) =0, u(t =0) = .

Here, u : D x [0,T] — R%, (z,t) = u(z,t) = (ui(x,t),...,uq(x,t)) denotes the fluid velocity as a
function of the spatial location z = (z1,...,24) € D and at time ¢ € [0,7], with D C R%, d € {2, 3}, the
underlying domain. The function p : D x [0,7] — R, (z,t) — p(z,t) denotes the pressure. The vector
field @ : D — RY denotes the initial data, and it is assumed here and in the following that div(@) = 0
for any initial data. The incompressible Euler equations have to be complemented by suitable
boundary conditions. In the present thesis we will throughout assume periodic boundary conditions, i.e.
we assume that the domain D = T¢ can be identified with the 27-periodic torus T? ~ [0, 27].

We also recall that d;u is a compact notation for the partial derivative du /9t with respect to ¢, and
that V = (0z,,...,0s,) denotes the (spatial) gradient operator, such that

d d
Vp = (00,0, .-, 00,p) ERY, (w-V)u= Zujaxjul,...,Zujamjud € R%
j=1

j=1

We define the divergence of a matrix-valued function A : D — R4z A(z) = (Aij(x))i; by
div(A) = Z?:l 0z, A;j € RY Owing to the divergence-free constraint, div(u) = Zle Oz, u; = 0, we
then have the equality w - Vu = div(u ® u), where the tensor product w ® w is the matrix with entries
(ujuj);; € R4, This allows us to write (I.1.1)) in the (formally) equivalent form

div(u) =0, u(t =0) (1-1.2)

gl

{&u—f—div(u@u) +Vp=0,

3
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(a) Fluid element advected by the flow. (b) Fluid element C(z; Az) and normal 7.

Figure 1.1: Schematic for fluid elements: (a) advection and (b) outward unit normal n.

1.2 Physical meaning of the equations

1.2.1 Momentum equation and force balance

Physically, the first equation of describes the acceleration of fluid elements due to the force exerted
by the pressure. To see why, we consider an infinitesimal fluid element at the initial position = at t = 0,
and follow its evolution ¢t — ®(z) over time (cp. Figure . Here, x is treated as a parameter. The
fluid element is advected by the flow, yielding

dd
Cthfx) = u(®,(2),1), Polz) = . (1.2.1)
By Newton’s second law F' = ma, the acceleration of the fluid element is therefore given by
&2, (7Y F
_ ) . == 1.2.2
a e (Ou+u-Vu) @) T ( )

where F' is the force acting on the fluid element, and m is its mass.
The force F' due to the pressure acting on a small cube C'(z; Ax) of side length Az and center z (cp.
Figure [1.1b) is given by the integral of the pressure over its faces:

F=— dn(6),
/6 o, PO

where mn is the outward pointing normal to the surface. For small Az <« 1, we have

d
Az Az
F ~ —j; |:p <x—|— 2ej> —-p (:v - 2ej)] (Az)? ej,

where e; € R? denotes the j-th unit vector. Assuming a constant mass density = 1, we furthermore note
that

m= ldx = (Az)?,
C(z;Azx)
implying that the acceleration a is given by (for infinitesimal fluid elements):
. Jocwiaw PE) dn (&)
a= lim — = lim :
Az—0m Az—0 fC(m;A) 1ldx

d
. 1 Az Az
= &iﬁo*; Az [p (x * ﬁ') P <x B zejﬂ e = ~Vpla).
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Thus, if the total force acting on the fluid element is determined by the pressure alone, then
implies that
diu+u-Vu=—Vp,
yielding the first equation of the incompressible Euler equations (1.1.1]).
We also remark that if there are additional forces acting on the fluid elements, such as the gravitational
force or frictional forces between fluid elements, represented by a force density f : D x [0, T] — R9, then
the same argument shows that the momentum equation of the incompressible Euler equations becomes

ou+ (u-V)u+ Vp = f.

In particular, additional stresses due to internal friction of the fluid elements can be modeled by f =
V - (vVu) = vAu, where v > 0 denotes the viscosity, leading to the incompressible Navier-Stokes
equations

{3tu+ (u-V)u+ Vp=vAu, (1.2.3)

div(u) =0, u(t =0) = .

1.2.2 Incompressibility

%W%

Z

y(A)

Figure 1.2: The flow map ®;.

We next show that the divergence-free constraint div(u) = 0 reflects the incompressibility of the under-
lying fluid: Indeed, if A C R is any bounded subdomain, then by the change of variables formula with
y = ®¢(x), the volume of the domain ®;(A) transported by the flow is given by

Vol(®,(A)) = /

ldy = / | det(D, P¢(x))| da. (1.2.4)
D, (A) A

Taking a time-derivative of the integrand, we obtain

%det(Dw@’t(x)) = det(D,®(z)) tr( [D,®y ()] " - 0D, Py (x)),

where D, ®,(x) denotes the Jacobian matrix of ®;(z), and where equation (|1.2.2)) implies that
atqu)t(l') = Dzatq)t(l') = Dz [U(q)t(l'),t)] = Dzu\(q)t(z)?t) . qu)t(l')
It thus follows that

o _
57 det(Da®y(2)) = det(Dy @y (x)) tr([Dy®:(x)] ™" - Dyt (@, (2).0) - Da®i())
= det(D, Py ()) tr (Dytt| (@, (2).1))

= det(D$®t (I)) div (u) |(‘1>t(1)at)'
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Hence, assuming the divergence-free constraint div(u) = 0, it follows that J; det(D,®.(z)) = 0. From
(1:2.4), this implies that 4 Vol(®,(A)) = 0, or equivalently

Vol(®4(A)) = Vol(®g(A)) = Vol(A),

for any bounded subdomain A C T¢, i.e. that the flow associated with w is incompressible.

1.2.3 Kinetic energy

We finally note that the kinetic energy of a fluid element C(x; Az) of unit mass density, and hence
of mass m = (Az)?, is given by im|u|? = 1|u|?* (Az)®. Considering infinitesimal fluid elements, this
indicates that the energy density of the fluid is given by e(z,t) = %|u(x,t)|2 dz, and the total kinetic
energy at time t is given by

1 1
B() =5 [ lule.0F do = 3 Ju(®)F;.

A formal calculation based on the incompressible Euler equations (|1.1.1)) shows that

d
—E(t) = Td@tu-u:—/11‘d[(11J-V)11,+Vp]~uda:

dt
L2
=—f (u-V)|zul") de— Vp-udz
Td 2 Td
= f/ div (1|u|2u> dx+/ pdiv(u) dz
Td 2 Td

:O’

where we have integrated by parts and used the divergence-free condition div(u) = 0, as well as the
divergence-theorem on the last line, and we have assumed u to be sufficiently regular to justify all of
the manipulations. In particular, this argument shows that smooth solutions of the incompressible Euler
equations are energy-conservative.

1.3 Elements of the mathematical theory

Even though the incompressible Euler equations were formulated by Leonhard Euler already in 1757
[Eul57] and are amongst the first PDEs to have been devised, their mathematical analysis and under-
standing is still very far from complete. In this section, we will review some key elements of the available
mathematical theory which are pertinent to the contents and contributions of the present thesis. We
refer the reader to Appendix [A] for a brief summary of some fundamental facts on the Fourier transform
and Sobolev spaces.

1.3.1 Leray projection and Fourier transformed equations

Mathematically, the divergence-free constraint div(uw) = 0 implies that the pressure can be determ-
ined (up to an unimportant constant) from the velocity field u: Indeed, taking the divergence of the
momentum equation, and using that the divergence of d;u vanishes, we find

—Ap = div (div (u ®@ u)), (1.3.1)
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where Ap = Z?zl 6‘%1, p denotes the Laplacian applied to p. The equation for the pressure indicates
that the pressure is not a true dynamic variable, but instead acts as a Lagrange multiplier in (1.1.1)), to
ensure the divergence-free constraint div(u) = 0. In fact, the gradient term Vp in the incompressible
Euler equations acts as a L%-orthogonal projection of the non-linear term onto divergence-free vector
fields, as will be discussed next. To this end, let us first point out that in view of the close relation of the
L?-norm with the kinetic energy of the fluid, explained in the previous section, it is natural to assume
that the flow field w has finite energy, i.e. that sup,c(o 1) |lullzz < oo, for any physically admissible
solution. We will implicitly assume this in the following formal calculations.

To develop a better intuition for the meaning of the pressure term, it is instructive to consider the
Fourier transformed version of the incompressible Euler equations (|1.1.2)). To this end, we write u(z,t) =
> pezd Uk(t)e™® and p(x,t) = 3, cpa De(t)e™™™ in terms of their Fourier series. The incompressible
Euler equations then lead to the following system of equations for the Fourier coefficients uy, (k # 0):

W b wow), — ik, @owy= Y @) (1.3.2)
dt ezl

and % = 0 for k = 0. Equation (1.3.1)) for the pressure can now be expressed as p, = — (T,?f) (u®u),,
for k # 0, where we denote A : B = Zd A;jB;; for matrices A, B. Substitution of this identity for

ij=1
P in (1.3:2)), yields (k # 0)

duy, k®k . — — o~

—r= (]_ ST ) (—zk : (u®u)k) ;o (weu) =) (U @k, (1.3.3)

Lezd

where I € R?*? denotes the identity matrix. We furthermore observe that the divergence constraint

div(u) = 0 is equivalent to the condition that k - @y = 0, for all k& € Z%, i.e. that the k-th Fourier

coefficient of u is perpendicular to k. The matrix I — Tﬁ’;“ is clearly the orthogonal projection onto the

perpendicular complement of k, and hence multiplication with this matrix ensures that the right-hand
side of (1.3.3)) remains divergence-free.

We can define an associated operator P : L?(T4; R¢) — L?(T%;R?), v — Pv via the Fourier transform
as follows:

~ kk\ . .
ik-x . ik-x
P g Ve = E (I — 7|k|2 )vke . (1.3.4)

kezd kezZa\{0}

It is not hard to see that IP is an L2-orthogonal projection onto divergence-free vector fields. We will
refer to the projection P defined by as the Leray projection. Utilizing P, we can now eliminate
the pressure from the incompressible Euler equations, and formally write as an equation on the
space of divergence-free vector fields:

{atu + Pdiv(u ® u) = 0, (1.3.5)

u(t=0)=mu.
This evolution equation is formally equivalent to (1.3.3), and furnishes one of the most succinct formu-
lations of the incompressible Euler equations.
1.3.2 Well-posedness theory and the vorticity equation

Given a PDE such as the incompressible Euler equations (1.1.1), it is natural to ask whether there is
a function space X C L?(T% R%), on which the initial value problem is well-posed; i.e. there exists
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a solution operator . : X — X (t > 0), such that for any w € X, the time-dependent vector field
u(t) := Z(w) is the unique solution of equation (1.1.I). Natural candidate spaces include the whole
space of L2-bounded, divergence-free vector fields, or Sobolev spaces H* = H*(T%;R?), s > 0, consisting
of vector fields u, whose Fourier coeflicients uy, satisfy (cp. Appendix [A)

D (1 [K]) [ |* < oo
keza

Global well-posedness results have so far only been achieved in the two-dimensional case, where it can
be shown that solutions to smooth initial data (e.g. w € H?, for s > 3) remain smooth also at later
times, and are unique [MBOI]. In the three-dimensional case, no global in time existence and uniqueness
results are available. Short-time existence and uniqueness results for solutions starting from sufficiently
regular initial data are classical [MBO0I, Thm 3.4):

Theorem 1.3.1 (Short-time existence and uniqueness). Let w € H* be initial data for the incompressible
Euler equations on T. Assume that s > 4 + 2. Then there exists a time T > 0, depending on |[u| -,
such that there exists a unique solution uw € C([0,T); H®) of the incompressible Euler equations (1.1.1)).

The short-time existence and uniqueness Theorem [1.3.1]implies in particular, that for any initial data
w, there exists a mazimal time T* = T*(@w) > 0, such that there exists a solution u € C([0,7*); H®) of
the incompressible Euler equations with initial data w. For d > 3, it is not known whether one always
has T* = oo, or whether the H®-norm of w might blow-up for certain initial data @, at a finite time
T* < o0.

A crucial tool in the study of the regularity of solutions of the incompressible Euler equations is the
vorticity equation, describing the evolution of the vorticity curl(w). The vorticity equation is obtained
by taking the curl of . In the three-dimensional case, the vorticity is a vector field w = curl(u),
and the vorticity equation is given by

Ow+u-Vw=w-Vu. (1.3.6)

In the two-dimensional case, the vorticity is a scalar quantity w = curl(u) = 9,,us — 9z,u1, and the
vorticity equation reduces to the following transport equation

Ow~+u-Vw=0. (1.3.7)

Due to the divergence-free constraint div(u) = 0, this equation can also be written in the formally
equivalent form Oiw + div(uw) = 0. The importance of the vorticity equation is highlighted by the
following well-known blow-up criterion, due to Beale, Kato and Majda [BKM84]:

Theorem 1.3.2 (Beale-Kato-Majda criterion). Let s > % + 1 be an integer, and let uw € C([0,T*); H®)
be a solution of the incompressible Euler equations (1.3.8). If w cannot be extended to a solution on the
closed interval [0, T*], then we must have

.
/ lw(t)l| s dt = oo.
0

O

A consequence of Theorem [1.3.2] and the short-time existence and uniqueness Theorem [1.3.1]is that

if foT* |wl| Lo dt < oo, then the solution u can be extended to a strictly larger time interval [0, 7% + ¢),
for 6 > 0.
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Remark 1.3.3. In the two-dimensional case, the transport equation implies an a priori bound
lw(@)||Le < ||@||Lee, where @ := curl(w), at least for solutions constructed by a suitable regularization.
It therefore follows from Theorem that for any integer s > d/2 + 2 and initial data w € H?,
there exists a unique global-in-time solution of the incompressible Euler equations in uw € C([0,00); H?).

Corresponding a priori estimates for the three-dimensional case have so far not been obtained, because
of the presence of the additional (vortex stretching) term on the right-hand side of (1.3.6)).

In the three-dimensional case, it is a long-standing open problem whether solutions starting from
smooth initial data are globally well-defined (T™* = o0), or whether there exist smooth initial data @ for
which the corresponding (strong) solution is only defined on a finite maximal time-interval (T%* < c0).
A careful recent numerical study [LHI19] suggests that finite-time break-down of smoothness may be
possible. Even though global-in-time existence and uniqueness can be shown for solutions with sufficiently
regular initial data in the two-dimensional case, many flows of interest, such as vortex sheets, do not
possess the regularity required by the above well-posedness results. Hence, there is considerable interest
in going beyond the well-posedness theory of Theorem for both the two- and three-dimensional
incompressible Euler equations.

1.3.3 Weak solutions and measure-valued solutions

As pointed out in the previous section, the question of global (in time) well-posedness of classical solutions
of the incompressible Euler equations in three space dimensions, even with sufficiently smooth
initial data @, is not yet resolved. Moreover in two space dimensions, where one can prove well-posedness
of classical solutions as long as the initial data is sufficiently regular, many interesting initial data of
interest do not possess this regularity. Hence, it is imperative to consider weak solutions of ,
defined as follows:

Definition 1.3.4. A wector field uw € L>([0,T); L?(T% R%)) is a weak solution of the incompressible
Euler equations with initial data w € L?(T;R?), if

T
/ /u~8tcp+(u®u):V<pdxdt=—/ u-p(-,0)dx, (1.3.8)
o Jrd

Td

for all test vector fields, @(x,t) € CX(T? x [0,T);RY) satisfying div(e) = 0, and
c
/ u-Viypdr =0, (1.3.9)
Td

for all test functions v € C>=(T?) and for a.e. t € [0,T).

It is customary to require additional admissibility criteria in order to recover uniqueness of weak
solutions. A natural criterion in this context is given by the so-called dissipative or admissible weak
solutions: a weak solution u is (energy) admissible, if

w2 < @2, (1.3.10)

for a.e. t € [0,T]. In the general case, no coercive a priori estimates for solutions of the incompress-
ible Euler equations are known, beyond the physically natural energy admissibility constraint .
Although the global existence of admissible weak solutions in three space dimensions is open, one can
prove global existence of admissible weak solutions in two dimensions with very general initial data.

A general strategy for constructing weak solutions of the incompressible Euler equations is to
start from an a priori well-posed approximation of the incompressible Euler equations, e.g. obtained via



10 CHAPTER 1. INTRODUCTION

regularization or a numerical discretization depending on a parameter A > 0. This yields a sequence of
approximate solutions u” index by A — 0. The aim is then to prove the existence of a (suitable) limit u =
lima_,0 u?, and to show that this limit u is a weak solution of the incompressible Euler equations [MBO01].
A careful construction of the approximation often allows some uniform a priori control on quantities of
interest for the sequence u®, such as a uniform bound on the L?-norm, limsup, _, [|[u®|/z: < C < occ.
A suitable abstract notion of such approximate solution sequences has been introduced by Diperna and
Majda in [DMS8T7h]:

Definition 1.3.5 (Approximate solution sequence). Let A N\, 0 be a sequence. Let {u®} be a sequence
in L>=([0, T); L>(T% R%)). The sequence {u™} is an approximate solution sequence for the incom-
pressible Euler equations, if the following properties are satisfied:

1. The sequence {u®} is uniformly bounded in L>=([0, T); L?(T¢;R%)),
2. The sequence {u®} is uniformly bounded in Lip([0,T); H~*(T%; R%)), for some L > 1.
3. For any test vector field p € C°(T? x [0,T); R?) with div(e) = 0, we have:

T
lim/ / cpt-uA+(Vgo):(uA®uA)dxdt—|—/ o(-,0) - u(-,0)dz = 0.
AN0 0 Td Td

4. div(u®) =0 in D'(T? x [0,T)), i.e. in the sense of distributions.

While Definition[1.3.5 encompasses the available a priori estimates on approximate solution sequences
obtained in the zero-viscosity limit of the Navier-Stokes equations, or from many numerical schemes, these
properties are insufficient in general to guarantee the (weak) convergence to a weak solution [DMS&Th].

2
The uniform L2-bound for example guarantees the weak convergence (of a subsequence) u® B win L?,

but does not allow to pass to the limit in the quadratic term u® ® u® LA u ® u of the Euler equations,
even in a distributional sense. Instead, the limiting behaviour under such weak assumptions has to be
encompassed by a Young measure, leading to the concept of a measure-valued solution [DiP85, [DMS8Th].
We follow [AB97, BDLS11], and introduce the following definition of generalized Young measures.

Definition 1.3.6 (Generalized Young measure). We denote by P(X) the space of Borel probability
measures on a topological space X, and P(X) is given the topology of weak convergence of measures

(cp. Appendiz @) A generalized Young measure is a triple (vz ¢, A\, 155) consisting of the oscillation

I/OO

oty Such

measure Vg ¢, the concentration measure A = M\¢(dx) ® dt, and the concentration-angle measure
that

o \ = \/(dz)®dt is a Radon measure on T¢ x [0,T] that is singular with respect to Lebesque measure
dx dt, and [0,T) — P(T9), t +— X\, is Lebesgue measurable,

e the mapping T¢ x [0,T] — P(R?), (2,t) = v, is Lebesgue measurable,
e the mapping T x [0,T] — P(S*1), (x,t) = v is A-measurable.

We let T denote the following space of test functions:

T = {g € C(R%)

9°°(0) := lim 9(50) exists V0 € ST on the unit sphere}.

§—00 82

We will say that a sequence of functions u, € L? converges in the sense of Young measures to
(v, A\, v™>°), denoted uy, RA (v, A, v™>°), provided that

g(uy) dz dt N Va1, g) dx dt + <1/;’?t, 9°°) A (dz) dt,
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converges in the sense of measures, for every g € T, where

Werns) = [ 0@ vestde). g™ = [ 470 (d0)

We also define a Young measure as a generalized Young measure without concentration, i.e. for which
A=0.

Remark 1.3.7. We note that the quadratic term in the incompressible Euler equations (1.1.2)), (&) =
E®E, belongs to the space of test functions T of Deﬁnition with ¢ (0) =02 6.

Based on these Young measures, we extend the weak solutions of the incompressible Euler equations
given in Definition to the notion of a measure-valued solution, following [DMS87h]:

Definition 1.3.8 (Measure-valued solution). A generalized Young measure (v, \,v>°) is a measure-
valued solution of the incompressible Euler equations (1.1.1)) with initial data @, provided that it satisfies

T
/0 /Td<’/z,ta€> - OppH(Vp 1, ERE) : Vpdadt

- (1.3.11)
+/ / (15,0 © 6) : Vep \y(da) dit = —/ T o(-,0)ds,
0 Td Td
for all test vector fields, p(x,t) € C2(T? x [0,T);R?) such that div(e) = 0, and
/ (vat, &) - Vipdz =0, (1.3.12)
Td

for all test functions ¢ € C°(T%) and for a.e. t € [0,T]. A measure-valued solution (v, \,v>°) is said to
be (energy) admissible, if

1 1 1
f/ (Var, [€2) da + S2(T?) < f/ @ for ace. te[0,T]
']I‘d ’ 2 2 Td

2
Remark 1.3.9. We note that if (v, \,v*>°) is a measure-valued solution, such that A = 0, and vy, =
Ou(z,t) 15 a Dirac measure, then u(x,t) is a weak solution of the incompressible Euler equations. Hence,
measure-valued solutions extend the notion of weak solutions.

We can now state the following convergence theorem to measure-valued solutions, due to Diperna
and Majda (cp. [DM87h), Prop. 5.1)):

Theorem 1.3.10. If {u®}, A — 0 is an approvimate solution sequence of the incompressible Euler
equations, then there exists a subsequence Ax — 0, and a generalized Young measure (v, \,v°°), such
that u™* converges to (v, \,v>°) in the sense of Young measures. Any Young measure limit (v, \,v>°) that
can be obtained from the sequence u® is a measure-valued solution of the incompressible Euler equations.

One consequence of Theorem is that for any L? initial data @, there exists a (global-in-time)
measure-valued solution (v, A,v*°) of the Euler equations with initial data w.

Clearly, admissible measure-valued solutions are a very weak solution concept, with a lot of scope for
non-uniqueness. One may thus wonder whether this notion is in fact too weak to be of any practical sig-
nificance. We end our summary of weak and measure-valued solutions with the following two remarkable
results: The first results has been obtained in [BDLS11, Thm. 2|, and shows that — in the presence of a
classical solution u — any admissible measure-valued solution collapses to a Dirac delta concentrated on
u.
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Theorem 1.3.11 (Weak-strong uniqueness). Assume that u € C([0,T]; L?(T%;R%)) is a solution of the

incompressible Euler equations with fOT IVu|| e dt < oo, and let (v, \,v>°) be any admissible measure-
valued solution with the same initial data. Then A =0, and vyy = 6y (y ) for a.e. (z,t) € T? x [0,T].

Finally, we summarize the following result from [SW12], which shows that, in a precise sense, ad-
missible weak solutions actually have the same scope for non-uniqueness as admissible measure-valued
solutions (MVS).

Theorem 1.3.12 (MVS are generated by weak solutions). A Young measure (v, A,v>°) is an admissible
measure-valued solution of the Euler equations with initial data w if, and only if, there exists a sequence
u,, of admissible weak solutions to the Euler equations, such that u,(t = 0) — @ strongly in L? and .,
converges to (v, \,v™°) in the sense of Young measures.

1.3.4 Rough solutions in two dimensions

As pointed out in the last section, the two-dimensional Euler equations benefit from additional a priori
control on the solutions due to the fact that the (scalar) vorticity w = 0y, ug — Oy, u; (formally) satisfies
a transport equation dww + u - Vw = 0. This statement can be made precise for the two-dimensional
incompressible Navier-Stokes equations , allowing the construction of solutions of the Euler equa-
tions with similar bounds by passing to the zero-viscosity limit ©¥ — u, ¥ — 0. For the incompressible
Navier-Stokes equations, we have the following well-posedness result (cp. [Lio96, Thm. 3.1]):

Theorem 1.3.13 (Navier-Stokes well-posedness, d = 2). For any divergence-free w € L?(T?;R?), there
exists a unique weak solution w” € L2([0,T); H') N C([0,T); L?) of the incompressible Navier-Stokes
equations (1.2.3)) with viscosity v > 0 on T2. Furthermore, the solution u”(t) is smooth for anyt > 0,
and satisfies the energy identity

1, Lo 1,
Sl Ol +v [ IV Ol ds = Sl (1313)
Remark 1.3.14. We recall that, as shown by a straight-forward calculation,
[VurllLe = [[w”llzz, (1.3.14)

holds for any u” € HY, such that div(u”) = 0, curl(u”) = w”. One may therefore write (1.3.13)) in the
equivalent form

1 14 ! 14 1 —
Sl Ol +v [ o () ds = 5[l (13.15)
0

In particular, the smoothness guaranteed by Theorem [1.3.13] allows us to rigorously take the curl of
the Navier-Stokes equations at times ¢ > 0. In fact, we have the following (folklore) results:

Theorem 1.3.15 (Navier-Stokes vorticity, d = 2). Let u” be a solution of the Navier-Stokes equations
([1.2.3) with initial data w € L*(T?;R?). The vorticity w” = curl(u”) is a smooth solution of

ow” +u” - Vw” = vAw”, (1.3.16)
for any t > 0. The enstrophy €& = %”waig satisfies

d1, 5
Ziallw 172 = [ Vw”||Z. (1.3.17)
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Furthermore, the vorticity satisfies the following a priori estimates in terms of the initial vorticity W =
curl(@m):

[w”(O)llze < [@llzz, Yp € [l,00], t >0, (1.3.18)

[l .2
Vvt ’

Sketch of proof. We note that due to the smoothness of solutions at ¢t > 0 (cp. Theorem, equation
is immediate from taking the curl of the Navier-Stokes equations , which is rigorously
justified in this case. The enstrophy equation follows from upon multiplication by
w” and spatial integration. The a priori LP estimate on w” can be derived similarly by multiplying
with w”|w”[P~2 and integrating over T2. Finally, the vorticity bound can be derived from the
enstrophy equation, by observing that after an integration by parts we have

1/2 1/2
|w”|? do = —/ u” - Viw” dr < < lu”|? dx) </ |Vw”|2dx) ,
T2 T2 T2 T2

where V+ = (—0,,,0,,) is a “rotated” gradient; using also the energy identity (1.3.13)), this implies that
lw?llze < @ 52V [[14°, or equivalently, —v[[Vew |2, < —vllw” |4, /|[@]|2, (assuming wlog & # 0).
Substitution in the enstrophy equation ([1.3.17)) then shows that y, (t) = [|w"(t)||7 . satisfies the differential

inequality dgt” < —vy2/|[@l L. Integrating this differential inequality, it is straight-forward to show that

yu(t) < ||ﬂ||2L3/(1/t), for all t > 0, yielding (1.3.19). O

The preceding theorem can be used to show the existence of solutions of the incompressible Euler
equations for initial data with unbounded vorticity w € LP, using the a priori LP-estimate on
the approximate solution sequence u” obtained by considering the zero-viscosity limit of the Navier-
Stokes equations. Such an existence result for vorticity @ € LP , 1 < p < oo has first been obtained
by Diperna and Majda [DMS8T7a], utilizing the fact that a sequence u” with uniformly bounded vorticity
WY € LP is strongly compact in L?, by Sobolev embedding. The existence of a weak solution of the Euler
equations for initial data w € L? with @ € LP can thus be established by passing to the (subsequential)
limit ¥ — wu, as v — 0. Further extensions of the result of Diperna and Majda can be obtained by
similar compactness methods for initial vorticity @ belonging to Orlicz spaces such as @ € Llog(L)?,
a > 1/2, which are compactly embedded in H~! [Mor92, [Cha93) [Cha94, [LENLT00]. These methods
break down for @ € L!, as there is no compact embedding L' #+ H~! in this case. We also note that
in the special case where the initial vorticity is bounded, w € L*°, existence had already been shown by
Yudovich [Yud63], who not only proved the existence but also the uniqueness of solutions in this case.
The uniqueness result of [Yud63] has later been extended to vorticities belonging to slightly more general
spaces in [Vis98| [Vis99, [Yud95]. The uniqueness of the solutions constructed by Diperna and Majda in
[DMS8Tal, with initial vorticity in LP spaces for p < co, however, remains an open problem.

In his celebrated work [Del91], Delort has shown the existence of weak solutions to the Euler equations
with even more general initial vorticity @ = @’ + @”, where @’ is a finite, non-negative Radon measure
belonging to H~1, and @” € L' N H~!. We will subsequently refer to this set of initial data as the Delort
class. These initial data include the interesting case of vortex sheets, i.e. vorticity concentrated on curves
in the two-dimensional spatial domain [MBOI]. In [Del91] a rigorous proof of this existence result has
been given for w’ € LP, p > 1, with a remark on the possible extension to p = 1. A detailed proof of the
extension to @” € L! has subsequently been provided by Vecchi and Wu [VW93]. We recall from the last
section, that approximate solution sequences, as e.g. obtained by considering the zero-viscosity limit,

lw” ()] 22 < Vit > 0. (1.3.19)

converge (subsequentially) u” RA (v, A, ™) to a measure-valued solution in the sense of Young measures
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(cp. Theorem . If the the initial vorticity is a bounded measure, then it can be shown that there
are no oscillation effects in this limit, 7.e. the oscillation measure v = §,, is a Dirac measure. Delort’s
main observation is a compensated compactness result, which shows that for initial data in the Delort
class, the structure of the concentration measure satisfies additional constraints, which ensure that

// V.0 8) : Voo \y(dr) dt = 0,
'JI‘Z

for any solenoidal test function ¢. Delort’s result should thus be viewed a statement about the fine
properties of the concentration-angle measure v°°; in particular, no claim is made that A\ = 0, i.e
concentration effects are not ruled out, and hence there may be lack of strong L2-convergence u” /4 u
in the limit ¥ — 0. However, possible concentration effects in this limit are not seen upon integration
against a test function in the definition of measure-valued solutions , and hence the barycenter
u = {0y, &) = (1, €) of the (Dirac) oscillation measure defines a weak solution.

Apart from a generalization relying on special symmetry properties [LFLX0T], the result of Delort
[Del91] remains the most general existence result for the incompressible Euler equations in two dimen-
sions. The question of existence of solutions beyond this Delort class, for instance, when @ is an arbitrary
bounded measure in H~! with varying sign, remains open. The uniqueness of rough solutions in the
Delort class also remains unknown.

1.3.5 Turbulence and anomalous energy dissipation

The incompressible Euler equations can formally be obtained as the zero-viscosity limit v — 0 of
the incompressible Navier-Stokes equations (|1.2.3)). These equations have received considerable attention
in particular due to their connection with turbulence. Turbulence is conventionally described as an energy
cascade process, where energy cascades from large scales of the flow to ever smaller scales [Fri95]. For
a given viscosity v > 0, the incompressible Navier-Stokes equations formally satisfy an energy balance

dt2/ |u” \de*ﬂ// |V |2 dz.

Here, the left-hand side describes the time evolution of the kinetic energy E(t) = 3||u(t)]|2., while the

equation of the form

right-hand side term describes the energy dissipation (at small scales) by viscosity. Formally, taking the
limit ¥ — 0 in these equations suggests that solutions of the incompressible Euler equations should be
energy conservative. This is certainly true for sufficiently smooth solutions u of ; eg. ifu” = u
and || Vu”|| 2 remains uniformly bounded as v — 0, then the dissipation term will tend to zero. However,
in general, ||[Vu”| 2 may diverge as v — 0, so it is not clear a priori, whether Vfot ”quHQLg dt — 0
in the limit ¥ — 0. In three dimensions, it is one of the fundamental postulates of Kolmogorov’s
1941 physical theory of fully developed, homogeneous turbulence that (v||Vu”|| L2> — e >0, as v —

0 [Kol91l KLH'91]. Here, (...) refers to a suitable averaging over an ensemble of solutions. Based
on a series of physical arguments [Fri95], the following “2/3-law” is then derived for fully developed,
homogeneous turbulence:

<|u(x +h) — u(a:)\2> < |h|?3,  for length scales |h| > 1,

where n ~ 13/4 is the Kolmogorov dissipation scale, beyond which viscosity dominates. This indicates
that turbulent, dissipative solutions of the Euler equations, which are obtained in the zero-viscosity limit,
should (on average) obey a Holder-type regularity condition with exponent o = 1/3.
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The question of whether or not such anomalous energy dissipation is present in turbulent flows
described by the Euler equations has also been posed by Onsager [Ons49], see also [ES06] for a modern
account of this topic. In [Ons49], it was first argued that Holder continuous solutions of the incompressible
Euler equations uw € C® should conserve energy provided that o > 1/3, whereas solutions at lower
regularity a < 1/3 might exhibit anomalous dissipation of energy, even in the zero viscosity limit v — 0.
Onsager did not provide a rigorous proof of this claim, and his observation has subsequently been
formulated as a mathematical conjecture by Eyink [Eyi94], who referred to it as Onsager’s conjecture.
Eyink also gave the first mathematically rigorous proof of energy conservation assuming a somewhat
stronger regularity condition on w (which in turn implies u € C*, for some « > 1/3). For this positive
direction of Onsager’s conjecture (energy conservation for fractional regularity o > 1/3), a very short
and elegant proof has been found by Constantin, Titi, E [CET94], who prove energy conservation if
u e L3([0,T]; B§/3+E’°°), € > 0, where B9 denotes the Besov spaces.

The negative direction of Onsager’s conjecture is the statement that for any e > 0, there exists an
energy dissipative solution u € C'/37¢. A proof of this assertion has only recently been achieved by
Isett [IseI8] and Buckmaster, DeLellis, Szekelyhidi and Vicol [BALSV19], based on a series of technical
improvements of the celebrated break-through work of DeLellis and Szekelyhidi [DLS09]. In [DLS09],
the authors formulated a concept of subsolutions for the incompressible Euler equations; they show that
convex integration techniques can be used in this framework to construct solutions, in analogy with
the geometric convex integration developed by Nash [Nas54] in the context of isometric embeddings of
manifolds. The technique introduced by these authors in fact does not only exhibit single instances of
Holder continuous energy dissipative flows, but shows that there is a dense set in L2 of initial data for the
incompressible Euler equations for which there exist infinitely many weak solutions of the incompressible
Euler equations, infinitely of which conserve energy and infinitely of which dissipate energy at any given
(smooth) energy dissipation rate.

1.3.6 Anomalous energy dissipation in two dimensions

While the positive direction of Onsager’s conjecture is independent of the spatial dimension d, the negative
direction is so far restricted to d > 3. Since two-dimensional flows are more constrained than higher-
dimensional ones, it is not clear whether the Onsager critical exponent o = 1/3 can also be achieved
for d = 2. In general, the convex integration technique shows the existence (and density) of wild initial
data for which there exist infinitely many dissipative solutions of the incompressible Euler equations.
It does not, however, give any explicit examples of such wild initial data. In this direction, Szekelyhidi
[Szé11] has been able to show that the flat vortex sheet (with distinguished sign) is an explicit example
of initial data for which the convex integration method can be applied to construct infinitely many weak
solutions. We recall that vortex sheet initial data are initial data u € L2 for which the distributional
vorticity w = curl(@w) € M is a bounded measure; in the case of the flat vortex sheet, @ is concentrated
uniformly on a straight line.

For vortex sheet initial data in two dimensions, it can be shown by a priori estimates that if a solution
is obtained in the zero-viscosity limit ¥ — 0, then its vorticity w(t) € M is a bounded measure, and in
fact ||w(t)||lm < ||@||m for ¢ > 0, where || - || pm denotes the total variation norm. In contrast, for weak
solutions constructed via convex integration methods, there is no a priori bound on the vorticity, and it
is not a bounded measure in general. Thus, it remains unclear what the physical relevance of these wild
solutions is. It might also hint at the important role played by additional constraints on weak solutions
of the incompressible Euler equations, which are imposed by considering physically realizable solutions,
obtained in the zero-viscosity limit.

In two dimensions, it can be shown that Onsager-critical Holder regularity of u is achieved for @ €
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L3/%% ¢ > 0 [CFLS16]. This poses the question whether energy dissipative weak solutions of the
incompressible Euler equations can be constructed with vorticity bounded in LP, p < 3/2, and if so,
whether such energy dissipative solutions can be obtained in the physically relevant zero-viscosity limit
v — 0. Recently, the group of authors [CFLS16] have been able to give a negative answer to this last
question: They prove that if a weak solution of the incompressible Euler equations w with initial data
having vorticity w € L?, p > 1, is obtained as the limit u” — w of solutions u” of the v-Navier-Stokes
equations, then w is energy conservative. These solutions do not belong to any Holder space C, a > 1/3,
for p < 3/2. Thus — at least in two dimensions — Onsager criticality is not the last word on the question
of anomalous dissipation. We will come back to this question of anomalous energy dissipation in chapter
[4] where we provide a characterization of physically realizable energy conservative solutions of the Euler
equations in the deterministic case, and study the question of energy conservation also at the level of
statistical solutions. Our results imply that an arbitrary uniform Holder bound (« > 0) on the sequence
u” suffices to ensure energy conservation in the limit, thus going far beyond the Onsager criticality in
this case.

1.4 Numerical discretization: Spectral methods

A wide variety of numerical methods have been developed to robustly approximate the incompressible
Euler and the closely related incompressible Navier-Stokes equations. These include spectral methods
[DGO8&4], finite element methods [SS17], finite difference-projection methods [Cho68), [TBBG89] and vor-
tex methods [Kra86bl [Kra86al, IMBO1].

Although finite difference and finite element methods are very useful when discretizing the Euler
equations in domains with complex geometry, spectral methods, based on projecting into a finite
number of Fourier modes are the method of choice for approximating with periodic boundary
conditions. These methods are very efficient to implement (aided by the fast Fourier transform (FFT)),
fast to run and have spectral, i.e. superpolynomial convergence rates for smooth solutions of
[DGO8&4]. Consequently, spectral methods are widely used in the simulation of homogeneous and isotropic
turbulence [Gho96), [KK00]. In the present section we will review spectral methods, discuss the concept
of spectrally vanishing viscosity, first introduced by Tadmor in [Tad89)], and discuss elements of their
implementation in the SPHINX code, on which the numerical experiments presented in this thesis are
based. For further details on this code, we refer to the thesis [Leol8].

1.4.1 Fourier spectral methods: the SV scheme

To employ Fourier spectral methods for the numerical discretization of the incompressible Euler equa-
tions, we consider, for N € N, the finite-dimensional subspace L?V C L?, spanned by real-valued vector
fields u® € L?(T%;R?), of the form

UA(.I) = Z upet T, (ﬁk € (Cd) , (1.4.1)

A=1/N (1.4.2)

the “grid size” parameter, defined as the reciprocal of N. Clearly, A is a measure of the numerical
resolution of the scheme, with A — 0 the limit of infinite resolution. The requirement that u® in
be real-valued imposes the constraint @_j = conj (u) on the coefficients u, where conj(-) denotes the
complex conjugate.
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We will denote by Py : L? — L3 the orthogonal projection onto this subspace. In analogy with the
Leray projection P : L*(T%; R%) — L?(T%; R?) onto divergence-free vector fields introduced in (L.3.4)), we
introduce the truncated Leray projection Py : L?(T% R?) — L% (T4 R?) by v — Pyv := PyPv, which
is equivalently defined by

~ kk\ o .
Py Z ’Ukelk'x = Z (I — |];®2> ’UkeZk'z, (143)

kezd 0<|k|co <N

for all v.

Spectral hyper-viscosity scheme (SV scheme)

We consider the following spectral viscosity approximation of the incompressible Euler equations, which
follows an idea first proposed by Tadmor for the numerical approximation of scalar conservation laws
[Tad89, [Tad04]:

{atuA + Py (u - Vub) = —en|V|*(Qy * u®), (1.4.4)

div(u®) =0, u®|—o = Pyu.

Here Py is the spatial truncated Leray projection operator ([1.4.3)) and @ is a Fourier multiplier of the
form

Qn(@)= > Qe (1.4.5)

my<|k|<N

and we assume 0 < @k <1, and @k = 0 for |k| < my, so that dissipation is only applied on the upper
part of the spectrum, i.e. for |k| > my, thus preserving the formal spectral accuracy of the method,
while at the same time enabling us to enforce a sufficient amount of energy dissipation on the small scale
Fourier modes which is needed to stabilize the method. The additional hyperviscosity parameter s > 1
in can be chosen larger to enforce more numerical dissipation on the high Fourier modes, thus
allowing a larger part of the Fourier spectrum to remain free of numerical diffusion, while still ensuring
stability of the resulting numerical scheme. The sequence ey > 0 allow us to control the amount of
dissipation applied. A minimal requirement is that ey — 0, as N — oo, to ensure consistency with the
limiting Euler equations (|1.1.2]).

Following the derivation of the Fourier transformed FEuler equations on page we also note that
equation is equivalent to the following set of ODEs for the Fourier coefficients u (1), 0 < |k|oo < N:

diiy k@ k o veA
at = (I - |]€2> : Z (—ik - Ug) Up—¢ | — en|k]” Qruy. (1.4.6)
[loos |k —£oo <N

Hence (|1.4.4)) uniquely determines the numerical evolution of the Fourier coefficients, and thus defines
a semi-discretization of the incompressible Euler equations (1.1.1]), through the system of ODEs ([1.4.6).
We obtain a fully discretized scheme by combining (1.4.6) with a time-stepping scheme of our choice.

1.4.2 Numerical implementation and 2/3-dealiasing

As already mentioned at the beginning of this section, the numerical experiments presented in this thesis
have been obtained with the SPHINX code, written by F. Leonardi [LeoI8]. The SPHINX code solves
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the ODE system , employing the strongly stability preserving Runge-Kutta (SSP-RK) scheme
[GSTO1] of order 3 with adaptive time-stepping, and allows for parallel computations based on MPI and
OpenMP, and the use of GPUs based on CUDA kernels.

A direct implementation of the ODE system in the form would require O(N?¢) multiplication
operations, and hence imply a quadratic computational cost in the number of degrees of freedom (O(N?))
of the numerical scheme. Such a quadratic scaling would be prohibitive for the large-scale simulations
required for the numerical experiments of the following chapters. Therefore, the SPHINX code relies on
the so-called 2/3-dealiasing rule to reduce the computational cost to O(N?¢log(N)). The 2/3-dealiasing
rule allows for the efficient computation of the non-linear term

[uh - Vul], = (—ik - )ty (1.4.7)
¢
based on the availability of the fast Fourier-transform (FFT) algorithm [CT65], which computes the
d-dimensional Fourier transform (and its inverse) in O(N?log(N)) operations. More precisely, given the
function values u”(z;) on a equispaced grid {z;};c7y C T?¢ with grid spacing Az = 27/(2N + 1) in
each direction (cf. Appendix, the FFT computes the discrete Fourier transform

~ 1 A 77:]6-:67'
T BN 1) 2 wia)e
JEIN

for all k € Z9, |k|oo < N, and its inverse
u?(z;) = Z et
[kl <N

To reduce the computation complexity of the evaluation of (1.4.7), the idea is to replace the direct
evaluation in Fourier space of the quadratic term (|1.4.7)), by the following composition

= A
- u | wrET | uS(25) Apo\ o Ay FET Ao A
Uy — [zk % a]j = [VUA(%J = u”(x;) - Vu(z;) — [u? - Vud],
where the computational complexity of these mappings is O(N?), O(N¢log(N)), O(N?) and O(N%log(N)),
respectively; hence the total computation only takes O(N?log(NN)) operations, substantially outperform-
ing the naive O(N?2?)-algorithm for large N. The main difficulty is that the Fourier expansion of the
non-linear term u® - Vu® is

u® - Vu? = Z (il - Ty, )" kO
[Eloos£loo <N

and hence includes wavenumbers for which |k + f|oc > N. Thus, when the Fourier coeflicients of

[umA]k, |kloo < N, are computed based on a discrete Fourier transform on the grid points z;, this
inevitably leads to “aliasing errors”, as explained in detail in [Leol8| Chapter 6.2]. The 2/3-dealiasing
rule states that such aliasing errors can be avoided by computing the discrete Fourier transform on a
larger grid with a finer grid spacing Az ~ %Aaz. In practice, this can be accomplished in a numerical
implementation by zero-padding the Fourier spectrum of u®, i.e. writing

u(z) = Z upet
[kloo <N’
where N/ > %N , and setting @y := 0, for |k|o > N. For further details, and the mathematical
justification of the 2/3 dealiasing technique, we refer to [Leol8l Chapter 6.2]. This technique is used in
the SPHINX code to efficiently compute the non-linear term in the SV scheme.
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1.4.3 Stability properties of the SV scheme

Multiplying the evolution equation (T.4.4]) by u® and integrating by parts, we note the following energy
balance:

[ ()72 + 2(2m) €N/ Y QIR (r)P dr = [ut(t = 0)[72 < [ (1.4.8)
[k|oo <N
In particular, this implies that approximate solutions u® computed with the SV scheme satisfy the
a priori energy admissibility condition ||u® (t)|[zz < [[ul|r2 for all ¢ € [0,T7.
In fact, the approximations obtained by the spectral viscosity method are approximate solutions in
the sense of Deﬁnitionm To show the Lip-boundedness, we simply note that for any ¢ € C°°(T%; R?),

and 0 <t <t <T, we have from (1.4.4)
(P, ul (1) —u (- 11)) < Clta — 1)Vl Leo [u™ |7 (p0.17: 2
+en(ta — t)|IVI*@ll pee w? || Lo o,77:22)
< CEo(tz — t1) Vel e + en v/ Eo(tz — t1)[[IV[** |2,

where Ey = [, |u|? dz is (twice) the kinetic energy of the initial data @ (cp. (1.4.8)). Now we choose L
large enough so that, by Sobolev embedding:

HY(T%RY) < Whe(T%RY) N H?* (T4 RY).

Then
(@, ul () —uB (1)) < Clt2 — tallpll e,
with a constant C depending on sup, en (assumed finite) and Ey, but independent of N. Taking the
supremum of all ¢ € HE(T?; R?) N C*°(T?; R?) with ||¢||zz < 1 on the left, we find
||U’A('7t2) - uA('atl)”H*L < C|t2 - t1|a

proving that u® € Lip((0,T); H~%), with a uniformly bounded Lipschitz constant. The other two proper-
ties are easily shown; The consistency property has been shown in [LM15 Lemma 3.2], the divergence-free
property is satisfied exactly. Thus, we have shown:

Theorem 1.4.1. The sequence u™ obtained from the SV scheme for the incompressible Fuler equations
form an approximate solution sequence in the sense of Definition|1.5.5,

By Theorem [1.3.10] this immediately implies convergence to a measure-valued solution as A — 0:

Theorem 1.4.2. Let {u®} C L?, A =1/N — 0 be the sequence obtained by solution of the SV scheme
(1.4.4) at resolution A for given initial data w. Then there exists a subsequence Ay, — 0 and a generalized

Young measure (v, \,v>°), such that u™* RA (v, A\, ™) converges in the sense of Young measures.
As a consequence of weak-strong uniqueness, Theorem [1.3.11] we can also conclude:

Corollary 1.4.3. If the initial data @ admits a solution w, such that fOT [Vu(t)|re dt < oo, then the
sequence u™ computed by the SV scheme (1.4.4) converges u™ — w strongly in L*(T< x [0, T]).
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Chapter 2

Convergence of the spectral viscosity
scheme to rough solutions

2.1 Introduction

As explained in the last chapter, there is considerable interest in the analysis and the numerical ap-
proximation of rough solutions of the incompressible Euler equations, in both two and three spatial
dimensions. In the present chapter, we will discuss the numerical approximation of rough solutions
of the two-dimensional incompressible Euler equations by spectral methods. As opposed to the three-
dimensional case, the mathematical theory of solutions in two dimensions, even at low regularity, is
considerably more mature and several existence results for rough solutions (and, to a lesser extent,
uniqueness results) have been established, leveraging the additional a priori control on the vorticity in
this setting. In particular, we will focus on the convergence of numerical schemes for initial data in the
“Delort class”, i.e. having vorticity @ of the form W = &’ + @”, where @’ € M, N H~! is a finite, non-
negative Radon measure bounded in H~!, and @” € L' N H~!. These initial data include the interesting
case of signed vortex sheets, i.e. initial data for which the (non-negative) vorticity is concentrated on
curves in the two-dimensional spatial domain.

For numerical approximations of the incompressible Euler equations, rigorous convergence results
have been mostly available when the underlying solution is sufficiently smooth, see [BT15] for spectral
methods, [LMSI6] for finite-difference projection methods, [SS17] for discontinuous Galerkin methods
and [MBOI] for vortex methods. For rough initial data, only a few rigorous results are available. And
usually, these results either only prove convergence in a very weak sense (e.g. to a measure-valued
solution), or they rely on a direct discretization of the vorticity equation to provide the necessary a priori
control and hence the resulting numerical methods are specific to the two-dimensional case; A notable
result in this regard is the convergence of a central finite difference scheme ([LT97]) for the vorticity
formulation (cp. (L.3.7)) of the two-dimensional Euler equations [LT97]. This scheme was shown to
possess a discrete maximum principle for the vorticity. Hence, one can prove that it converges to a weak
solution of , as long as the initial vorticity @ € LP for 1 < p < oo [LENLT00]. However, it is
unclear if the convergence analysis for this scheme can be extended to the case where the initial data
w € L' N H™!, let alone in the Delort class. Similarly for spectral methods and for finite difference-
projection methods, the only available results for , are of convergence to the significantly weaker
solution framework of dissipative measure-valued solutions in [LMI5] and in [Leol8], respectively.

When @ € M N H~! is a bounded measure, the best available convergence results to date have been
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achieved by Liu and Xin for the vortex blob method in [LX95] and by Schochet for both the vortex point
and blob methods in [Sch96] (see also the related work by Liu and Xin [LXO01]). In [LX95 [Sch96| LX01],
it is shown that for initial data with vorticity @ € H~! a finite, non-negative Radon measure in M,
the vortex methods will converge weakly to a weak solution of the incompressible Euler equations with
w € M NH™! The assumption on the definite sign (either positive or negative in the whole domain) of
the initial vorticity appears to be an essential ingredient in these convergence results [LX95 [Sch96l [LX01]:
If @ has a definite sign, then the conserved Hamiltonian of these vortex methods can be leveraged to
provide a priori control the concentration of the discretized vorticity. When the initial vorticity @ is not
necessarily of definite sign, then the Hamiltonian no longer provides control on vorticity concentration
and the available convergence results are somewhat weaker in this case. Without any sign restriction,
convergence of the vortex point/blob methods has been shown by Schochet [Sch96] for initial data
with vorticity @w € L(log L). The fundamental difficulty that prevents the convergence results for vortex
methods to be extended to initial data of the form @ = @' +@”, 0w’ € M, NH', &w"” € L'NH~! considered
by Delort [Del91, VW93], apparently lies in the fact that at the continuous level, concentration of @’ € L*
is prevented by the incompressibility of the advecting flow. However, in the case of vortex methods,
incompressibility of the advecting flow is not known to be sufficient to prevent concentration of the
discretized vortices. In the definite sign case (@’ = 0), it turns out that the discrete energy conservation
can be used to circumvent this issue [Maj93] [LX95] [Sch96l [LX01]. Without any sign restriction, but
assuming that @ € L(log L), the conservation of phase-space volume (Liouville’s theorem) can be used
to show that no concentration occurs for suitable vortex approximations to the initial data @ [Sch96].
Therefore a considerable gap remains between the existence result of Delort and the available convergence
results for numerical methods, including even very specialized schemes such as vortex methods.

In the present chapter, we will present rigorous convergence results based on (compensated) com-
pactness techniques, for approximations by the spectral viscosity scheme of the two-dimensional Euler
equations with rough initial data in the afore-mentioned Delort class. The discussion in this chapter is
based on the original publication [LM20], where detailed proofs of all results, as well as refined estimates
on LP vorticity control for 1 < p < oo can be found. Here, we will streamline the discussion and focus
instead only on the Delort case, requiring as one key ingredient a priori L*-control on the approximations,
i.e. supp ||w?||z < oo.

2.2 A fine-tuned SV scheme

In the following, we will consider the following fine-tuned spectral vanishing viscosity (SV) scheme for
the incompressible Euler equations, which is a slight adaptation of the general SV scheme outline in
chapter ensuring additional a priori bounds even for very rough initial data: Given N € N, we fix a
“orid-scale” A = 1/N, and consider the following approximation of the incompressible Euler equations

(2.2.1)

div(u®) =0, u®|i=g = Koy * T,

{%A P Vud) — ex AQu + u),

with periodic boundary conditions. Here Py is the truncated Leray projection operator (|1.4.3)), mapping
onto divergence-free vector fields. @y is a Fourier multiplier of the form

On(@) = > Que*=, (2.2.2)

my<|k|<N
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and we assume

07 ‘k| gmNa

(2.2.3)
1, ‘kl > 2my.

0<Qr<1, @k‘{

The choice of parameters my and ey will be specified later.

Remark 2.2.1. In equation , we have assumed that the coefficients @k change only in the interval
|k| € [mn,2mpn]. This assumption could have been replaced by taking [my,cmy], for any constant ¢ > 1,
without changing the results of this chapter. We have chosen ¢ = 2 here for simplicity, and in order not
to introduce further parameters into the numerical scheme. In practice, a different choice may be more
suitable.

As a slight extension to the SV scheme discussed in chapter [1.4] we have introduced an additional
Fourier kernel K,, . This kernel gives an another degree of freedom in our numerical method, and will
be necessary to obtain suitably approximated initial data, providing further control on the numerical
solution. The Fourier kernel K, is a trigonometric polynomial of the form

Koy(@)= Y Kpe™™ K[ <1
[k|<an

The exact form of the kernel K,, and the choice of parameters ay will be specified later. However, we
shall assume that K,, satisfies a bound of the form

| Kaxllzr < Clog(N)?, forall N € N. (2.2.4)

The above discretization of the initial conditions will be necessary in our convergence proofs for un-
bounded initial vorticity, and in particular if the initial data is a vortex sheet as considered by Delort
[Del91].

Remark 2.2.2. The SV scheme for the incompressible Euler equations depends on the three parameter
sequences ex,my,ay. To fir ideas, we note that we will later on choose ex — 0, an ~ my ~ N? — 0o
for some 0 < %

Since the u® are smooth, and since the Fourier projection commutes with differentiation, it turns
out that we can equivalently write the system (2.2.1)) in its vorticity form
Dw™ + Py (u® - Vw?) = exA(Qn * w™),

curl(u?) = w?, (2.2.5)
wA|t:0 = curl (K, *0).

Here, Py : L? — L% is the L?-orthogonal Fourier projection (cp. Appendix [A|for further details). We
recall the following simple result, which will be of fundamental importance for the current work:

Proposition 2.2.3 (Lemma 3.10, [LM15]). The systems (2.2.1)) for u® and [2.2.5) for w® are equivalent.

Remark 2.2.4. Proposition allows us to focus on the vorticity formulation . The strategy
is then as follows: The vorticity formulation will be used to obtain uniform a priori control on the LP-
norm of the approzimate vorticities w®™, for some 1 < p < oco. The bounds on w™ in turn provide
additional control on the velocity u®, which can be used to prove the convergence of the non-linear
terms in the primitive variable formulation , The convergence of the non-linear terms will rely
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either on establishing pre-compactness of the sequence u™ in L*(T?;R?), following the original ideas of
Diperna and Majda [DM87d], or by employing compensated compactness results established by Delort
[Del91), [VW93, [Sch95). It is thus the interplay between the primitive and the vorticity formulation, which
will allow us to obtain convergence proofs even for rough initial data.

As a first step towards proving the convergence of the SV method, we make the error terms more
apparent. We rewrite the system (2.2.5) in the following form

Dw? +ul - Vw? — eyAw® = (I — Py)(u® - Vw?) + enAR,,, + W™ . (2.2.6)

=:err; =:errs

The left-hand side corresponds to the vorticity formulation of the Navier-Stokes equations in 2d with
viscosity en. The right hand side consists of a projection error (err;), and a ”viscosity” error (errz),
which is written in terms of a convolution with R,,, = 1 — Qn. We note that R,,, () has Fourier
coefficients

~ ~ 1, |k <
0<Rp<1, Ry—{b [KI=mw, (2.2.7)
0, |k| > 2mpy.
Similar to (2.2.4)), we will assume a bound of the form
|Rmnllr < Clog(N)2, for all N €N, (2.2.8)

for the kernel R,,, . For the construction of a kernel satisfying the last estimate, see Maday and Tadmor
IMT89, Appendix|, which generalizes to the two dimensional case via a tensor product.

2.3 Overview of the strategy

Given initial data @ in the Delort class, with vorticity w € (M+ + Ll) N H~', our goal is to show
that — up to the extraction of a subsequence — the sequence u®(t) € L? computed by the SV method
converges u® — u weakly in L? to a weak solution u € L*([0,T]; L?(T?;R?)) of the incompressible
Euler equations. In fact, we will show that any (weak) limit of this sequence is a weak solution. Our
proof of convergence will rely on the following fact, first (implicitly) established by Delort [Del91], and
later explicitly pointed out by Vechhi and Wu [VW93], see also the discussion in [Sch95].

Theorem 2.3.1 (Delort [Del91], Vecchi and Wu [VW93], Shochet [Sch95]). Let w™(z,t) be a sequence
of vorticities, satisfying the following conditions:

(i) |w? )|z < M, uniformly for A >0, and for t € [0,T],
(ii) [|w (-, )|l < M, uniformly for A >0, and for t € [0,T],

(i11) for all € > 0, there exists § > 0, such that
Al <5 — / WA (8 de < e, VEE[0,T], VA >0,
A

where [w]_:=max(0, —w?) > 0 denotes the absolute value of the negative part of w™.

Then there exists a subsequence A — 0, and a measure w € (./\/l+ + Ll) NH™, such that w™ — w in
the sense of measures. Furthermore, for the corresponding sequence of velocities u™*, one has u™* — u
weakly in L?, and for any divergence-free test function ¢ € C>°([0,T] x T?;R?), we have

T T
lim / / (uA’“®uA’“):V<pdxdt:/ / (u®wu): Vepdrdt.
k—oo Jo Jr12 0 JT?
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In particular, Theorem [2.3.1] implies that one can pass to the limit in the non-linear term of the
incompressible Euler equations, in the weak formulation.

To apply this theorem, our goal will thus be to prove (i) a uniform a priori bound on u® € L2,
(ii) a uniform L'-bound on the vorticity w®, and (iii) uniform control on the negative parts of the
vorticity (equi-integrability). The required L2-bound is straightforward, since Fourier spectral methods
are adapted to L2-spaces (cp. Proposition. To control the L'-norm of the vorticity and show equi-
integrability of the negative parts, we will rely on . To this end, we multiply by ¢'(w?) for
convex, Lipschitz continuous ¢, and integrate against x, to obtain

d

= | o) do < Lip(@) (I = Py)(u® - Vor)llpa + e ARy * ™ 11).
T2

We will show that the error terms in the bracket converge to 0, as N — oo, implying uniform control
P(w(2,t)) dz < B(w™(x,0)) dx 4+ o(1) < M + o(1),
T2 T2

provided that ¢(w?(z,0)) < M is uniformly bounded (cp. Proposition. For ¢(w) := |w|, this yields
L'-control. Equi-integrability of the negative parts will be deduced from the choice ¢p(w) = [w + c]_ =
max(0, —(w + ¢)) for suitable ¢ > 0 (cf. Lemmas [2.6.10).

The main difficulty in the proof will be the a priori control of the non-linear projection error ||(I —
Py)(u® - Vw?)||L1. To control this error, we split u® = ]P’N/g'u,A +(I- ]PN/Q)UA and w® = PN/QCUA +
(I — Pyj2)w® into the contributions of Fourier modes with wavenumber k| < N/2 and |k| > N/2,
respectively. Since the Fourier spectrum of the product Py /2uA -V Py /QwA is confined to Fourier modes
< N, it follows that

(I - Py)(u® - Vw?) = (I - Py) (uA V(I - PN/Q)WA) +(I - Py) ((I — Pyjo)u - VPN/QWA),
(2.3.1)

involves products, where at least one of the factors only includes high wavenumbers. To control these
terms, we shall show that with a sufficient amount of spectral viscosity, the Fourier modes in the range
N/2 < |k| < N decay (exponentially) in N (see section . In particular, this provides very strong
decay estimates on both (I — PN/Q)wA and (I — IP’N/2)uA, as N — oo, which will allow us to control the
non-linear projection error (cp. Lemma. A technical caveat is that the spectral viscosity requires a
short initial time ¢}, > 0 in order to provide this damping of the high Fourier components, and hence the
spectral decay estimates can only be established for t € [}, 00). Thus, the above spectral decay estimate
has to be complemented by short-time control over the initial time-interval [0, %], which ensures bounds
on the vorticity before the viscosity can act to control the small scale behaviour. Short-time control is
the subject of section [2.5} Since the required estimates are often somewhat involved, we will focus on
providing an overview of the main results, and provide detailed references to the original publication
[LM20], where the complete technical proofs can be found.

2.4 Spectral decay estimate

As outlined in the last section, before establishing more detailed L'-estimates for the vorticity, we note
that L? estimates for the approximate solutions, u® and w® are readily obtained.

Proposition 2.4.1. Ifw € L?, then the approzimation sequence u™ satisfies

A A _
[u ()2 < [lu™(0)l[L2 < ([l L2
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In particular, this implies that we have a uniform bound
A —
w01 < ]| 2.

Proof. Multiply (2.2.1)) by u®, integrate over the spatial variable, we find

(Parseval)
—_—

d ~
- |u|? dz = —/ Vut : V(Qn +ul)de = —(2m)2 > Qulk[?|(ud),? < 0.
T2 T2 &

Integration over time yields the first inequality. The second inequality follows from

(5 0)lIZe = 1Koy * @l = (2m)* D KE|(@),[* < (2m)* Y [(@),[* = w7
k k

The non-linear terms in ([2.2.1)) cancel out after multiplication with 4 in the above estimate. The upper
bound for ||w]||z-1 is trivial. O

The main tool employed to prove the convergence results in this chapter will be the decay estimate for
the vorticity stated below in Proposition A similar idea has in fact been used in the context of the
one-dimensional Burgers equation to prove the uniform L°°-boundedness of the numerical approximations
by the SV method [MT89]. The method employed in [MT89], which is based on a bootstrap argument
adapted from [HKR90], does not appear to allow a straightforward extension to the present case. Instead,
we shall adapt a different method from [DT95].

To state the next proposition, we first need to define the operators e®V! for a € R, and |[V|]. They
are defined as distributions D’(T?) via their Fourier coefficients, as follows:

—

(ealVl), = ekl (VD = |K]- (2.4.1)
We can now state the spectral decay estimate, based on the method employed in [DT95].

Proposition 2.4.2. Let w® be a solution of the voriticty equation ([2.2.5), with arbitrary parameters
en,my,ayn > 0. Let

2 2,2
=a” +38 ,
Py = o7+ Seymy (2.4.2)
IN = CIOg(N)v
where C is a constant such that (k € 7Z2)
S L < Clog(v).
L.
|k|<N
Then for any o > 0, we have the estimate
A . 2 ﬁNt/EN
0
Jeet¥IA ()2 < — L0k (24

1 - 2 COs oaijen 1]

for all t < t*, with

EN BN
t" = —1lo 1+ > .
B g( WA ()2,
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Sketch of proof. For all details of the proof, we refer to [LM20, Prop. 4.4]. Here, we sketch the main
ideas: To prove the spectral decay estimate, we consider the evolution equation for e*!VIw®. We find
from

Ohw™ = enAw™ 4+ eNA(Rpy xw™) — Py (u® - Vw?),

that [|e®IVIwA|2, satisfies the following differential inequality

d BN N
e VIwA 7. < ==Vl |72 + = [le*1VIw?| 1,
dt EN EN

where By:=a? + 8¢%,m3; and vy = C'log(N). Integration of this inequality can then be shown to yield

(-, 0) |72 €M/ ex
w0122

Bn

le*I Vw12, <

1- [efvt/en — 1]

O

Note that the L? norm on the left provides a very crude upper bound for the Fourier coefficients of
A .
w™ via

eQat\kllak‘Q < HeathwAHQLz. (2.4.4)

Next, we can employ Proposition together with a simple a priori estimate on ||w™(-,0)||z2 =
| Koy * Wl L2, to arrive at the following theorem (cf. [LM20, Thm. 4.8]):

Theorem 2.4.3. Let uw € L? be given initial data for the incompressible Euler equations. Then there
exist absolute constants A, B > 0 such that the approzimations, w™ = curl(u®), obtained from the
spectral viscosity method satisfy the following estimate on their Fourier coefficients:

G812 < Aa2 w2 1 BN —2at’y |k
B < Ad s (1+ gt ) e s,

fort e [ty,T)], and

EN BN
th = — 1 1 .
N = By "g( - Blog(N)a%vuuniQ)
O

We next observe that we can choose the sequences ey — 0, my,ay — oo in a suitable manner, such
that the Fourier coefficients in the range N/2 < |k| < N decay superpolynomially in N. This is the
content of the next theorem:

Theorem 2.4.4. With the notation of Theorem[2.1.3 Choose the free parameters en,an, my as follows
ay log(N)*®

1
my SN, where 0 < 0 < 3’ an ~ N?, EN ~ ~ , (s> 6). (2.4.5)
Then, for any o > 0, there exists a constant C, > 0, such that
Wk ()| < CoNT7, for N/2< |k < N, t€ [ty 00), (2.4.6)
where t3y — 0, at a convergence rate
ty < (2.4.7)

anNlog(N)2’
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It will be convenient to state the following definition:

Definition 2.4.5. We will say that a choice of parameters ex,mn,an and Fourier kernels Qn, Kqy
for the SV method ensures spectral decay, provided that the conclusions (estimates (2.4.6), (2.4.7)) of

Theorem hold true.

As a consequence of Theorem and the identity (2.3.1]), expressing the fact that only high-
frequencies contribute to the projection error, one can now readily show that the projection error vanishes
in the limit N — oo, at least for ¢ > t};. This is the content of the next lemma:

Lemma 2.4.6. If the parametrization for the SV method ensures spectral decay, then the projection
error can be bounded from above, i.e. there exists a constant C > 0 depending on the initial data @, but
independent of N, such that for all t € [th;, 00) and for any 1 < p < co:

I(I = Pr)(u?(t) - Vw? (1) r < ON"Hw? (8)]| -
Alternatively, one can find a constant C' > 0, again depending on the initial data, but independent of

N, such that
I(Z = Pv)(w®(t) - Vw2 (#))[|» < C'N 7

O

For a detailed proof, we refer to [LM20, Lemma 4.12]. We also remark that the asymptotic decay
N1 was chosen arbitrarily, and could have been replaced by any polynomial rate N=7, ¢ > 0.
The next lemma summarizes that the second discretization error can also be bounded from above.

Lemma 2.4.7. Under the present assumptions on the SV method (cp. (2.2.8)), We have
ARy *w)[pr < 2m3 | R |2l | 21 < 23 log(N)? [l | -
O

Based on Lemmas [2:4.6] and [2:4.7] we can now control the error terms on the right hand side. We
conclude this section by proving the following theorem, stating that the L'-norm is uniformly controlled
for t > t}.

Theorem 2.4.8 (L' control after short time). If the numerical parameters ensure spectral decay, then
there exists a sequence cy — 0 such that

o G0l < (L4 ent) W Cota)llee,  for all t >ty
Proof. We start from equation (2.2.6]):
Dw? +ul - Vw? — eyAw® = (I — Py)(u® - Vw?) + enAR,,, * w™.
Multiplying by sign(w?) (or smooth approximations thereof; we will forego the details here), and integ-
rating over z, we find
d
ot Ol < llexrylzr + flerns|| .
Using Lemmas and we obtain (for ¢ > t%})
d
dt
After an integration over [t},t], it follows that
o Cot)llpr < Nl Cotx) [l exp (ent)

where ¢y = C [N7!@| 2 + enm¥, log(N)?] — 0. -

|l ()l < C [N7H@l| g2 + enms log(N)?] [lw® (-, 1) -
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2.5 Short-time estimates
In the last section, we have shown that the numerical parameters can be chosen to ensure the spectral
decay of the Fourier modes N/2 < |k| < N for ¢ € [}, +00), where (cp. (2.4.7))

1

A —_—.
N < an N log(N)?

(2.5.1)

As a consequence, we have proven L!-control of the vorticity for ¢ > t% in terms of ||w®(-, %)z In
this section, we will bridge the gap [0,t%] and prove short time L' control of the vorticity for the initial
interval 0 < ¢ < t% in terms of ||w™(-,0)|/z:. We will prove the following theorem,

Theorem 2.5.1. If w”(-,0) € L', then there exists a sequence cy — 0 (depending only on the initial
data @), such that

o C)llpr < (14 en) w0t + e, for all t € [0,85].
Proof. We begin by observing that
Sw™ = —PN(uA . VwA) +enAw® + ENA(Rpy * wA). (2.5.2)
Using also the operator norm bound || Px||z1 1 < Clog(N)? (cp. Proposition in Appendix ,
the identity implies that,

d A A A A
_ 1 < || P . 1 A m 1
Gl s < 1P - Ve s + e AR, )] (2.5

< C’log;(N)QHuA . V(.L)A”Ll + C’eNmfv log(N)2||wAHL1,
for some constant C' > 0. Setting oy := CeNm?V log(IN)?2, we note that dy — 0 and dy > 0, we find

d

7 (lw? | Lre ) < Clog(N)?|Ju® - Vw?|| 1. (2.5.4)

On the right hand side, we have used the simple estimate e ~~¥* < 1. We will now show that if w?(-,0) €
L', then there exists a constant C' > 0 such that

o ()l pr < Nl 0)ll 1™ + Ol 72 [an N log(N )]tk

for all t € [0,t}]. Here 65 — 0. The claimed estimate then follows from the observation that ot} — 0
(is independent of the initial data), and from ([2.5.1]).
To this end, we start by noting that
lu(t) - Vw2 ()22 < Cllu (#)]|22 | Vo (1) 2
< ON|lu®(®)] z2llw ®)]l 2.

A

From the a priori L2-bounds for u®, w®, we can furthermore estimate the right-hand side by ||u®(-,)||z2 <

[@|| 12, and
w22 < w?(,0)l|z2 = [ Kay *Bllz2 < Cayl|Kay * @l 2 < Cayl[@]|ze.
From ([2.5.4)), we now find

d _ _
T (lo® () pre*>*) < CNay log(N)?|[a] 2.
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Integrating in time from 0 to ¢, we find, for some constant C,
o () lr < Jlw (5 0)[[ 1€ + CNane®™* log(N)? a7t
The right hand side is uniformly bounded for ¢ € [0,t%], by
o (o) lpr < w5 0)[[11€°¥ ™ + CNaye™ '™ log(N)? |[a|7 1.

Furthermore, since dnt}y — 0, we can absorb the (uniformly bounded) factor eSN'N by increasing constant
C, yielding the claimed estimate. O

2.6 Uniform L' control and equi-integrability

Combining Theorems and of the last two sections, we can now conclude that the L'-norm of
the vorticity can be uniformly controlled on compact intervals [0, T.

Theorem 2.6.1 (vorticity L' control). Let w € L*(T?%;R?) be given initial data for the incompressible
Euler equations. Let T > 0 be given. If the parameters for the spectral viscosity approximation ensure
spectral decay, then there exists a sequence cy — 0, such that

|l ()l < (L4 en) [0 (5 0)l| 1 + en
Remark 2.6.2. We point out that Theorem provides a bound on the L*-norm of w™(-,t), in terms
of the L*-norm of w®(-,0), rather than @. This is made necessary because the Fourier projections
P, : L' = L' ww P, 0, (NEN),

do not define a family of uniformly bounded operators on L' (and even less so for w € M, a measure);
indeed we only have ||Pay |11 < log(an)? by Proposition in Appendi:c. Thus, for Delort initial
data, a more careful approrimation of the initial data needs to be made to ensure uniform boundedness in
L' of the approzimation sequence w™
as the Dirichlet kernel, in this case.

, 1.e. we can not choose the initial data projection kernel Ko, = Dgy

We recall that, in order to apply Theorem to the approximate solution sequence generated by
the SV scheme, we need to establish (i) uniform H~! control, (ii) uniform L' control and (iii) equi-
integrability. The required uniform H~'-bound on the vorticity has been obtained in Proposition m
The uniform L'-bound on the vorticity has been established in Theorem provided that w?(-,0)
remains uniformly bounded in L'. As indicated in the last remark, this restriction is a non-trivial issue.
A discussion of one possible way to obtain suitable approximations of the initial data will now be given.

Remark 2.6.3. The uniform L'-boundedness of the sequence w™( -, 0) requires an initial approzimation
for which the vorticity does not only converge in H~', but also in the sense of (signed) measures with
a uniform L'-bound. One way to ensure L' boundedness is as follows: Fix a mollifier 1 € C™ with
support in a unit ball B1(0). Denote ¢,(z) == p~2(z/p). We will obtain the initial data for the
numerical approximation by convolution with a smoothing kernel W — 1, * W, and subsequently project
to the lowest Fourier modes < N, viz.

W Dy * (Y, xw) = (Dn * 1)) * @,

where Dy () = 3 1 <n exp(ik - x) is the Dirichlet kernel. Since v, is smooth, we are assured that
Dy, — 9, uniformly as N — oo (for fized p > 0). In particular, it follows that || Dy *,|| L1 — ||, L1
The idea is now to choose a sequence py, such that N > ,o]_\,1 (i.e. such that the convolution kernel is
asymptotically resolved by the numerical approzimation). If the convolution is adequately resolved, then
we would expect that Kn:=Dy x,, is a suitable kernel to ensure convergence of the initial data.
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The following proposition confirms the intuition pointed out in the last remark. As the proof does
not provide any further insight beyond Remark we refer the interested reader to [LM20, Prop. 6.4]
for details of the argument.

Proposition 2.6.4. Let U € C°(R?) be a non-negative function, [p, ¥(z)dr = 1, and assume that
W is compactly supported in (—m,m)%. Define W ,:=p~2U(x/p), a compactly supported mollifier. Let 1,
be the periodization of ¥,, such that we can consider v, as an element in C>(T?). For M € N, let
Ky:=Dys *1,,, for some sequence ppr — 0. If par ~ M= with § > 0, then Ky is a good kernel, in
the sense that Ky % ¢ — ¢ for all ¢ € C°°(T?), and there exists a constant C, such that |K | < C.
In addition, we have

H¢pM _KMHLI — 0, as M — oo.

O

The observations of Proposition will allow us to control numerical approximations for initial
data in the Delort class, and in particular, will ensure that [|w”(-,0)|/z: remains uniformly bounded.
We make the following

Definition 2.6.5. We will say that the SV method has suitably approximated initial data, if w™(-,0) =
K., xw (for any € N specified in the scheme) is obtained by convolution with a kernel Ky as described

in Proposition[2.6.7)

Our final ingredient in the convergence proof requires equi-integrability of the negative parts. The
following proposition gives us some control on the negative part [w?]_:=max(0, —w?) of w?, if the initial
approximation is chosen as in Proposition

Proposition 2.6.6. Consider initial data @ = w' + " € H™!, where W' € M is a finite non-negative
measure and W' € L'. If w?(-,0) is obtained as suitably approzimated initial data for the SV method,
then for any € > 0, there exists ¢ > 0 and Ny € N, such that

/[wA(',0)+C]_ dr <e, A=1/N,VN > Np.
T2

Remark 2.6.7. Note that [w™(-,0)+c]_ # 0, only on the set {z | w™(z,0) < —c}. The above proposition
therefore gives us some control on the size of the negative part of the approzimation w™. The proposition
will be used below to show that the negative vorticity cannot concentrate on small sets.

Proof. Note that w — [w]_:=max(0, —w) is convex, homogeneous and bounded from above by |w]|.
From these properties, it follows that

[WA(HO) + C], < ‘WA(HO) - pr *w| + W)pN * W+ c]_ .
Next, note that 1), > 0 and ¢ > 0, implies that

(@' >0) (Jensen)

W # T+ el < [ %3 + el < tpy # @ +]_.

Therefore, we obtain upon spatial integration, using also that fTQ Ypu dr = 1:

/ [wA(.70) +¢]_dx < W (-,0) = ¢, * @ L1 +/ [@" +c]_ da.
T2 T2
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Since @” € L', we can now choose ¢ > 0 large enough to ensure that the second term is smaller than
€/2. From the estimate

1B (-,0) = Yo ¥ Bl = [(Kn = ¥py) * Dt < 1 En = Yol @] aa,

and the fact that |Kny — 9,y |t = 0, by Proposition we can find Ny € N, such that [|w?(-,0) —
Yoy *W| L1 < €/2. For this choice of ¢ > 0 and Ny € N, we then have

/ [wA(-,O)+c]7 dr <e, A=1/N, forall N > Ny.
T2

O

The next goal is to show that the result of Proposition [2.6.6] remains true also at later times ¢ > 0.
To this end, we first show the following improvement on the mere L'-boundedness implied by Theorem

261

Proposition 2.6.8. Let ¢ € C* be a convex function, such that |¢'(w)| < D, for some constant D. If
there exists a constant M, such that

WA(-,0)|dz < M, A=1/N, for all N € N,
T2
then the numerical solutions w™(x,t) (computed with parameters ensuring spectral decay) satisfy, in
addition

. P(w? (-, 1)) dx < . p(W>(-,0))dx +cn, fort€[0,T], (2.6.1)

with a sequence cy converging to zero, cy — 0. Furthermore, the sequence cn depends on ¢ only via the
constant D, i.e. the bound on |¢'|.

Sketch of proof. The proof again relies on a combination of a short-time estimate on the interval [0,¢}],
combined with the spectral decay estimate for ¢t > t%;,. The short-time estimate is very similar to the
short-time estimate for the L'-norm, and the reader is referred to [LM20, Prop. 6.7] for details. The
result is that for 0 <t < ¢}, we have an estimate of the form

pwh(,t)) dr < | ¢p(w™(-,0)) dz + CDNay log(N)*ty,
T2 T2

—0 (as N—o00)

where we note that the last term on the right-hand side converges to 0, by assumption on the parameters

ensuring spectral decay (cp. (2.4.7))).

To finish the proof, we observe that for ¢t > t};, we find from the evolution equation for w
(2.2.6)):

A (equation

% - P(w?) dr < (@' (WD), (I — Py)(u® - V) + (¢ (™), en A(Rpy * w™))

< D||(I — Px)(u® - Vw?)||11 + D|[enA(Rpy % w™)||11.

The two terms on the right hand side, can be estimated using Lemma and yielding ||(I —
Pn)(u® - Vw®)|pr < CN7Y and |lenA(Rmy * w?)||pr < Cexm? log(N)2, for a constant C' > 0
depending only on the initial data. It now follows that

d
i o p(w?)dr < CD(N~! + exm?% log(N)?),

—0 (as N—o0)
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for some constant C, independent of N and ¢. Integrating in time, it follows that for ¢ € [t};, T

G de < [ (- ty)) da + ¢ < ol A(,0)) da + ) + ¢,
2 'ﬂ*2

with
cg\}).fCD(N*1 + enmi log(N)*)T — 0, (as N — o).
and
D:=CDNaylog(N)thy — 0, (as N — o),
This proves the claim with cpy: —cg\,) + 0(2). O

Applying the above Proposition with a suitable sequence of smooth approximations ¢.(w) —
[w + ], and relying on Proposition [2.6.6] it is now straightforward to show the following result:

Lemma 2.6.9. If w® is obtained from the SV method, with suitably approximated initial data and
parameters ensuring spectral decay, then for any e > 0, there exists a ¢ > 0 and Ny € N, such that

/ [wA(~,t) +c]_ de <e, foralltel0,T], and for all A=1/N, N > Ny.
T2

As a consequence of Lemma we now prove that the sequence [w?]_ satisfies the equi-integrability
property (iii) of Theorem [2.3.1]

Lemma 2.6.10. Under the assumptions of Lemma the sequence [w™]_ is uniformly equi-integrable
on [0,T], in the following sense: For all € > 0, there exists a 6 > 0, such that

Al <6 = / t)yde <e, forall A=1/N >0, andt€[0,T]. (2.6.2)

Proof. Let € > 0. We have to find § > 0, such that (2.6.2)) is satisfied. By Lemma there exists
¢>0and Ny € N, Ay = 1/Ny, such that

/ [wA(-,t) +c|_ dx <¢/2,
T2
for all A < Ag and t € [0,7]. We now observe that for any subset A C T?, we have
/ (WA (- t)dx < / (c—i— [w? (1) + c]7> dx = c|A| +/ [wA(-,t) +c]_ da.
A A A
Since the second term is smaller than €/2 by our choice of ¢, it now suffices to choose § < €/(2¢), to find

|A] <6 ﬁ/ t)dx <e, forall A<Ag, and allt € [0,T].

On the other hand, let M := supa.a, HwAHLoo([O)T]XTg) = SUPN <, ||(JJA||LOO([0,T]><’H‘2), where we recall
that by definition, A = 1/N depends on the grid size N € N, and Ag = 1/Ny for some Ny € N. Note
that for N =1,..., Ny — 1, each w® is a smooth function on [0, 7] x T2. In particular, this implies that
M < oo is finite. Choosing now ¢ < ¢/M, it follows that we also have

Al < 6 = / t)ydr <e, for A=1/N, N=1,...,Ny—1, and for t € [0,T].

This proves the claim. O
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2.7 Convergence in the Delort class

In this section, we will finally prove that any (weak) limit point of the approximate solution sequence
generated by the SV method is in fact a weak solution of the incompressible Euler equations, for initial
data in the Delort class.

Theorem 2.7.1. Let w® = curl(u®), u® be obtained by solving the approzimate Euler equations, with
parameters ensuring spectral decay, and with suitably approximated initial data obtained fromw = W' +w",
where @ € My NH™ and@" € L'NH~'. Then the sequence u®™ converges weakly (up to the extraction
of a subsequence) to a weak solution w € L? of the Euler equations. Furthermore, the limiting vorticity
w = curl(u) is an element of w € (My + LY)NH™Y, ie. w can be written as a sum w = wy —w_, where
wi (-, t) € My is a finite, non-negative measure on T2, and w_(-,t) € L*(T?).

Proof. By Proposition we have ||u®(-,t)||2 < |[@|/z2 for all N and ¢ € [0,T]. Therefore there
exists a subsequence u®, and u € L*°([0,T]; L?(T?;R?)), such that u® — u weakly in L2([0,7] x T?).
By Theorem the associated sequence of vorticities w® satisfies uniform bounds [Jw?® (-, )|z <
M, for all t € [0,7]. By Lemma we also have uniform equi-integrability. From this, it then
follows that the relevant non-linear terms in the incompressible Euler equations converge in the sense
of distributions, according to Delort’s result (Theorem . Thus, from the weak consistency of the
spectral approximation (cp. Theorem , we conclude that u® — w in L2, and that w is a weak
solution of the incompressible Euler equations.

Furthermore, since the non-negative parts [w”]; are uniformly bounded in L!([0,7] x T?), we can
extract a subsequence of [w™] dx dt, converging weakly in the sense of measures to a limiting measure
wy > 0. Since the sequence [w”] is uniformly bounded in L>([0,T]; L'(T?)), there exists a constant
M, such that for any t1 < to, t1,t2 € [0,T7:

ta
/ dwy < liminf/ / (W24 drdt < M(ty —t1).
(tl,tg)XT2 N—o0 t1 T2

In particular, it follows that wy is “absolutely continuous with respect to dt”, in the sense that we can
disintegrate w, = w, (-, ) dt, with w, (-, ) a finite, non-negative measure on T? for ¢ € [0, 7], and for any
f € C(T?), the mapping
t— f(@)wy(dz,t)
T2

is Lebesgue-measurable.

On the other hand, by the equi-integrability of the negative parts [w?]_, the Dunford-Pettis theorem
now implies that the sequence [w?]_ is weakly compact in L'([0,7] x T?). Furthermore, we again
have for any t; < to, with t1,t, € [0, T]:

to
/ / [WA]_ dxdt < M(ty —ts).
t1 T2

Passing to the limit A — 0 (employing weak compactness, [w”]_ — w_ in L', and possibly after the

extraction of a further subsequence), it follows that also

ta
/ / w_dxdtSM(t27t2).
t1 T2

Hence, we conclude that [, w_(z,t)dz < M for almost all ¢ € [0,7]. Since w_ > 0, this implies in
particular that w_ € L>([0,T]; L'(T?)).
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Using finally the uniform a priori bound
A A _
[w ¢ -1 < w12 < [l 22,

we conclude that the numerical approximation converges to a Delort-type solution with limiting vorticity
wit) =wi(t) —w_(t) € My + LY NH L O

2.8 Numerical experiments

In this section, we will present a suite of numerical experiments to illustrate the convergence results proved
in the last section. We start with a brief description of some essential details of the implementation of
the spectral viscosity method.

2.8.1 Numerical implementation

We adapt the implementation of the spectral viscosity method , based on the the SPHINX code,
presented in chapter @ We recall that in the SPHINX code, the spectral scheme is implemented in the
primitive formulation , and remark that in the numerical implementation, the domain has been
chosen to be a torus of unit periodicity, T2 = [0, 1], rather than T? = [0, 27]2. Clearly, the results of the
previous sections remain true, up to rescaling.

For our simulations, the diffusion parameter €y in is chosen to be of the form ey = ¢/Ng =
€/(2N), where € is a fixed constant and where Ng = 2N denotes the number of grid points {x; ;}: j=1,... Ng»
in each direction. This scaling for ey with Ng has been found to be sufficient to cause the required
decay of the highest Fourier modes, to ensure vorticity control.

It has been suggested in [Tad89] (in the context of the Burgers equation), that the numerical stability
of the SV method is greatly enhanced in practice, if the Fourier coefficients @k are smooth functions of
k. Therefore, for all following simulations carried out with the spectral viscosity method, we have set
@k as a smooth cutoff function of the form

Qr = 1—exp (= (|kl/ko)®),

where kg = N/3 (or kg = N/8), and o = 18. The coefficients Qy, so obtained are depicted in Flgure
as a function of |k[/N. We remark that for |k| = 0.1 N, we have Qi < 1072, whereas for k| =0.4N, we
find Qk > 1— 107, For all practical purposes, this implies that my ~ 0. 1 N, and that Qk effectively
changes from 0 to 1 over the interval |k| € [my, 4my] (rather than over the interval [m,,,2my]). As has
already been noted in Remark the choice of a factor 2 is not essential for the theoretical results
established in the previous sections.

2.8.2 Sinusoidal vortex sheet

In our first numerical experiment, we consider approximations to a vortex sheet, i.e. vorticity concen-
trated along curves in the two-dimensional periodic domain. In particular, we take initial data of the
following form,

w(x):=0(z-T) — /T2 dr.

Note that we have added a second term to ensure that [wdxz = 0. We define the curve I as the graph
I:={(x1,22) |1 € [0,1], o = dsin(27z) }, and we choose d = 0.2. We define a mollifier as the following
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Figure 2.1: Coefficients defining the SV projection (left) and mollifier used in the approximation of the
vortex sheet initial data (right).

third order B-spline

V()= [(r+1)% —4(r +1/2)3 +6r3 —4(r —1/2)3 + (r — 1)3].

I
The mollifier is depicted in Figure We define v, (x):=s"21(|x|/s). The numerical approximation
to the above initial data is obtained by setting

w? (24,5, 0):=(W0 * Ypp ) (i ),

where pn determines the thickness (smoothness) of the approximate vortex sheet, and x;;, i,j €
{1,...,Ng} denote the grid points. The convolution at a point x € T? is computed by numerical
quadrature:

=, b (2= (£,9(6)) V1 + 9" (€2 de
M
~ pMN Z Yo (T — (&,9(&))) V1+|9(&)?,
=M

with & = o' +ipn/M are equidistant quadrature points in 2!, and g(¢) = dsin(27€), ¢'(¢) = 2nd cos(&).
The additional factor \/1 4 |¢’(£)|? is the length element along the graph & — (&, g(£)). For our simula-
tions, we have used M = 400.

Smoothened (fat) vortex sheet

First we consider a smoothened vortex sheet, where py is a fixed constant, independent of N. Con-
sequently, the resulting vorticity is smooth. The initial data (on a sequence of successively finer resolu-
tions) is shown in Figure As seen from the figure, we have already resolved the vorticity at 512 grid
points (in each direction). Hence, this test case can serve as a benchmark for the performance of the
spectral viscosity method when the initial data (and solution) is smooth.
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(a) Ng = 512 (b) Ng = 1024 (¢) No = 2048

Figure 2.2: Numerical approximation of the initial data (vorticity) for the smoothened (fat) vortex sheet
with pny = 0.05, at three different spectral resolutions.

We approximate the solution of the two-dimensional Euler equations with this initial data with two
variations of the spectral viscosity method. To this end, we first consider the pure spectral method by
setting e = 0 in . This is justified as the initial data is smooth and the classical convergence theory
(see [BTT5]) holds for the spectral method, without any added viscosity. In Figure we present the
evolution of this smoothened vortex sheet over time, at the highest resolution of Ng = 2048 grid points
in each direction. As seen from this figure, the initial (fat) vortex sheet has started folding by the time
t = 0.4 and has folded into two distinct vortices at time ¢ = 0.8.

1 1 1
25 25 25
08 20 08 20 0.8 20
0.6 15 0.4 15 0.6 15
> > >
0.4 o) 0. 10 0.4 10
5 5 5
0.2 0.2 0.2
0 0 0
0 0 0
0 05 1 0 05 1 0 05 1
x x x

(a) t=0.0 (b)t=04 (c) t=0.8

Figure 2.3: Evolution in time for the smoothened vortex sheet with the pure spectral method, i.e.
(e,p) = (0,0.05), at the highest resolution of Ng = 2048.

The convergence of the pure spectral method in this case is presented in Figure 2.4 where we present
the approximated vorticities, at time ¢ = 1, on three different levels of resolution. From this figure,
we observe that the pure spectral method appears to converge and the vorticity is very well resolved,
already at a resolution of Ng = 512 grid points in each direction. This convergence can be quantified by
computing the following L?-error (of the velocity field):

ENG (t)::”uNG ('v t) - uNG,max(" t) HL27 (2'8'1>

Here, NG max = 2048 and wuy,, is the velocity field computed at resolution N¢ (grid size). In other
words, we compute error with respect to a reference solution computed on a very fine grid. This error
(as a function of resolution) in plotted in Figure (A). We observe from this figure that there is con-
vergence with respect to increasing spectral resolution and the errors are already very low at resolutions
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of approximately 5122 grid points. We further analyze the performance of the numerical method by
computing the Fourier energy spectrum of w® at the highest resolution, which we define by

E(r)= Y |l (2.8.2)

The spectrum (for three different times) is shown in Figure[2.5| (B) and shows that the bulk of the energy
(with respect to the vorticity) is concentrated in the low Fourier modes (large scales). Moreover, this
spectrum decays very fast and there is almost no contribution from the high Fourier modes. This is along
expected lines as the underlying solution is smooth.

(a) Ng = 512 (b) Ne = 1024 (c) N = 2048

Figure 2.4: Numerical approximations at three different spectral resolutions of the smoothened vortex
sheet with the pure spectral method, i.e. (¢, p) = (0,0.05), at time t = 1
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Figure 2.5: Results for the smoothened vortex sheet with the with the pure spectral method, i.e. (e, p) =
(0,0.05) at time t = 1. (A): Error of the approximate velocity field (2.8.1) in L? (B): Energy spectrum
(2.8.2) for the highest resolution of Ng = 2048 at different times.

Next, we approximate solutions of the two-dimensional Euler equations with the smoothened vortex
sheet initial data, but with a spectral viscosity method, i.e. with parameters described at the beginning
of this section, in particular with e = 0.05 and the cut-off parameter kg = N/3. The computed vorticities
(for successively refined spectral resolutions) at time ¢ = 1 are shown in Figure As seen from this
figure, the computed vorticities look almost indistinguishable from the vorticities computed with the
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pure spectral method (compare with Figure . This is further corroborated by the computed energy
spectrum (2.8.2), shown in Figure (B), which is also indistinguishable from the pure spectral case
(Figure@ B)). Moreover, we plot the L? error of the velocity in Figure (A) and observe that
the method converges with increasing resolution. Furthermore, the convergence is cleaner than the one
seen for the pure spectral method case (compare Figure 2.7 (A) with Figure 2.5 (A)). This suggests that
adding a little bit of viscosity in the higher modes (as we do with the spectral viscosity method) might
improve observed convergence, even for underlying smooth solutions.
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Figure 2.6: Numerical approximations at three different spectral resolutions of the smoothened vortex
sheet with the spectral viscosity method, i.e. (e, p) = (0.05,0.05), at time ¢t = 1
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Figure 2.7: Results for the smoothened vortex sheet with the with the spectral viscosity method, i.e.
(€,p) = (0.05,0.05) at time t = 1. (A): Error of the approximate velocity field (2.8.1]) in L? (B): Energy
spectrum (2.8.2)) for the highest resolution of Ng = 2048 at different times.

Singular (thin) vortex sheet

Next, we consider an initial data which belongs to the Delort class by setting py = p/Ng = p/(2N),
where p is a fixed constant. In particular, this implies that the vortex sheet becomes thinner with
increasing resolution, in contrast to the case of the smoothened (fat) vortex sheet (Figure. This can
also be observed from Figure [2.8] where we depict the initial data, for successively increasing resolutions
and p = 10. Moreover, this initial data is well approximated, as stipulated by the theory presented in
the last section.
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(a) Ng = 512 (b) Ne = 1024 (c) N = 2048

Figure 2.8: Numerical approximation of the initial data (vorticity) for the singular vortex sheet with
pn = 10/N, at three different spectral resolutions. Compare with the smoothened vortex sheet of Figure

22

It is clear that a pure spectral method will not suffice in this case. In fact, our numerical experiments
showed that the pure spectral method was unstable. Hence, we have to use the spectral viscosity method
to approximate the solutions in this case. At the first instance, we consider a spectral viscosity method
with the parameters, § = 0 in and € = 0.05. We remark that this particular case of the spectral
viscosity method, corresponds to a vanishing viscosity method as a Navier-Stokes type viscous damping
is applied to every (even low) Fourier modes, i.e. my = 0 in (2.2.1). Consequently, this method will
only be (formally) first-order accurate. On the other hand, it can be expected to more stable than just
applying viscous damping to the high Fourier modes. The evolution of the approximate vortex sheet in
time, at the highest resolution of Ng = 2048 is shown in Figure 2.9]
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Figure 2.9: Evolution in time for the singular (thin) vortex sheet with the vanishing viscosity method,
i.e. (e,p) = (0.05,10), at the highest resolution of Ng = 2048.

We observe from this figure that as in the case of the smoothened vortex sheet, the initial vortex
sheet rolls up and spirals around two vorticies, but with structures that are considerably thinner than in
the case of the smoothened vortex sheet (compare with Figure .

The convergence of the numerical method is investigated qualitatively in Figure where we plot
the computed vorticities at time ¢t = 1, at three successively finer resolutions and observe convergence as
the resolution is increased. However, we do notice that by time ¢ = 1, there are small wave like instabilities
that are developing along both spiral arms of the rolled up sheet. Nevertheless, these structures do not
seem to impede convergence in L? norm, which is depicted in Figure (A). We also plot the computed
spectrum in Figure (B). We see from this figure that the spectrum, even for the initial data,
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decays much more slowly with wave number, when compared to the smoothened vortex sheet (Figure
(B)). Nevertheless, there seems to be enough dissipation in the system to damp the spectrum at high

wave numbers and enable a stable computation of the vortex sheet.
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Figure 2.10: Numerical approximations at three different spectral resolutions of the singular vortex sheet
with the vanishing viscosity method with (e, p) = (0.05,10), at time ¢t = 1

oast ‘ ‘ ‘ ey SN
0.3 e 1 Wk N .
0.25 1
0.2
5 0.15 1072 F
6
bl w
o
0.1
——t=0 104 F
——t=0.4 —o
t=0.8 —t=0.4
005 L1~ O(N—0v84) t=0.8
. | | | 106 — —
200 400 600 800 1000 10 10
N K
2
(a) L*-error (b) Energy spectrum

Figure 2.11: Results for the singular (thin) vortex sheet with the with the vanishing viscosity method,
i.e. (€,p) = (0.05,10) at time ¢ = 1. (A): Error of the approximate velocity field (2.8.1) in L? (B):
Energy spectrum ([2.8.2)) for the highest resolution of Ng = 2048 at different times.

Next, we approximate the singular vortex sheet with a spectral viscosity method, as described in
section As for the smoothened vortex sheet, we consider a cut-off parameter ky = % and viscosity
parameter € = 0.05. The time evolution of the computed vorticity with this scheme is shown in Figure
2.12| In contrast to the situation for the vanishing viscosity method (Figure , there is a marked
appearance of instabilities in the form of small wave like structures along the spiral arms by time ¢ = 0.4.
By a later time of t = 0.8, these structures evolve into a large number of small vortices and the whole
sheet breaks up into small scale structures. The spontaneous emergence of these small scale numerical
instabilities clearly impedes convergence of this version of the spectral viscosity method. This lack of
convergence is seen from Figure [2.13 where plot the approximate vorticities, computed with this spectral
viscosity method at time ¢ = 1, at three successively finer mesh resolutions. From this figure, we observe
that although the computed vortex sheet is stable at a moderate resolution of 5122 Fourier modes, it



42 CHAPTER 2. CONVERGENCE OF THE SV SCHEME TO ROUGH SOL’S

starts becoming unstable at the next level of refinement, i.e. Ng = 1024, with the appearance of small
vortices along the outer spiral arms. These vortices appear to break up into even smaller structures at
the finest level of refinement, i.e. Ng = 2048 and the whole sheet disintegrates into a soup of small
incoherent vortices. The lack of convergence (at least at later times) is also observed from Figure
(A) where we plot the L? error ,with respect to the velocity field at the finest resolution. Clearly,
there is no observed convergence at the time ¢t = 0.8. The appearance of structures at small scales can
also be inferred from the spectrum , plotted in Figure (B). In comparison to the spectrum
computed with the vanishing viscosity method (Figure 2.11] (B)), we observe that the spectrum with this
spectral viscosity method shows that a non-negligible amount of energy is contained in the small scales
(high wave numbers).
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X

(c)t=0.8

Figure 2.12: Evolution in time for the singular (thin) vortex sheet with the spectral viscosity method,

i.e. (€,p,ko)=(0.05,10,N/3), at the highest resolution of Ng = 2048.

(a) Ng = 512 (b) Ne = 1024 (¢) No = 2048
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Figure 2.13: Numerical approximations at three different spectral resolutions of the singular vortex sheet
with the spectral viscosity method with (e, p, ko) = (0.05,10, N/3), at time ¢t =1

These numerical results lead to an interesting dilemma. We have proved in Theorem that, up
to a subsequence, the spectral viscosity method converges as the spectral resolution is increased. On the
other hand, we see in this experiment that this method may not converge, at least on moderately long
time scales. Is there a way to reconcile these two facts. We argue that there is no contradiction between
the theorem and the numerical observations. As it happens, the solutions of the Euler equations with
rough initial data are highly unstable [MBOI]. In particular, very small differences in the initial data
can be amplified by possibly double exponential instabilities that lead to very large separation between
the underlying solutions, after even a short period of time. Computations of the Euler equations are
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necessarily approximate and it can happen that even small round off errors are amplified in time and
yield small scale vortical structures that eventually can lead to the disintegration of the sheet. These
instabilities are damped at low to moderate resolutions but will appear at very high resolutions. Moreover,
they tend to accumulate in time and only seems to appear at later times.
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Figure 2.14: Results for the singular (thin) vortex sheet with the with the spectral viscosity method with
(€,p, ko) = (0.05,10, N/3) at time ¢t = 1. (A): Error of the approximate velocity field (2.8.1) in L? (B):
Energy spectrum ([2.8.2)) for the highest resolution of Ng = 2048 at different times.

It is interesting to contrast the lack of convergence of the spectral viscosity method (Figure [2.14] (A))
with the apparent convergence of the vanishing viscosity method (Figure (A)). Clearly the vanishing
viscosity method, at least for the parameters considered above, is significantly more dissipative than the
spectral viscosity method at the same resolution. This is seen from the computed spectrum (comparing
Figure (B) and Figure (B)) as we observe that the vanishing viscosity method damps the small
scale instabilities and prevents the transfer of energy into the smallest scales. However, the amount of
viscosity is ey = 5. Thus, increasing the resolution further with the vanishing viscosity method can
reduce the viscous damping and possibly to the instabilities building up and leading to the disintegration
of the sheet. Given that it is unfeasible to increase the resolution beyond Ng = 2048, we mimic this
possible behavior by reducing the constant to ¢ = 0.01 in the vanishing viscosity method. The resulting
approximate vorticities at time ¢ = 1, for three different resolutions is shown in Figure We observe
from this figure that the results are very similar to the spectral viscosity method (compare with Figure
and the sheet disintegrates into a soup of small vortices at the highest resolution. Consequently,
there is no convergence of the velocity in L? as seen from Figure m (A) and the spectrum shows that
more energy is transferred to the smallest scales now than it was when ¢ = 0.05 (compare with Figure
2.11| (B)).
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Figure 2.15: Numerical approximations at three different spectral resolutions of the singular vortex sheet
with the vanishing viscosity method with (e, p) = (0.01,10), at time ¢t = 1
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Figure 2.16: Results for the singular (thin) vortex sheet with the with the vanishing viscosity method i.e.
(€,p) = (0.01,10) at time ¢t = 1. (A): Error of the approximate velocity field (2.8.1)) in L? (B): Energy
spectrum ([2.8.2)) for the highest resolution of Ng = 2048 at different times.

The lack of convergence of computations of singular vortex sheets, on account of the formation
and amplification of small scale instabilities, is well known and can be traced back to the pioneering
work of Krasny [Kra86Dbl, [Kra86a| and reference therein. In those papers, the author computed singular
vortex sheets by solving the Birkhoff-Rott equations of vortex dynamics and was able to ensure stable
computation by controlling the round-off errors with an adaptive increase of the arithmetic precision
of the computation. We believe that this fix is only relevant for a few levels of increasing resolution
and ultimately at very high resolutions, the vortex sheet will disintegrate into smaller vortices. This
is already evidenced by our computations at different resolutions, at different times and with different
values of the viscosity parameter e. Paraphrasing [MBO01], the phenomenon of the exponential growth
of small instabilities ‘is a feature of the underlying equation itself as opposed to an instability of the
numerical method.’
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2.9 Discussion

In this chapter, we have considered the two-dimensional incompressible Euler equations. In contrast
to the three-dimensional case, global well-posedness results are available in two space dimensions. In
particular, existence and uniqueness of weak solutions can be proved under the assumption that the initial
vorticity is in L>°. Moreover, global (in time) existence of weak solutions is proved for significantly less
regular initial data, for instance when the initial vorticity belongs to the so-called Delort class. Such
rough initial data are encountered in practice when one considers the evolution of vortex sheets in an
ideal fluid.

Although many different numerical methods have been developed to approximate the incompressible
Euler equations, convergence results for these schemes have mostly been available in the regime where
the initial data and the underlying solutions were smooth. Notable exceptions were considered in [LT97]
and [LENLT00], where the authors prove convergence of central finite difference schemes for the vorticity
formulation of the equations under the assumption that the initial vorticity is in LP, for 1 < p < oo, and
more generally if the vorticity belongs to a rearrangement invariant space that is compactly supported
in H~!. For vortex methods [LX95] [Sch96, [LX01], convergence is known when the initial vorticity is a
bounded measure of definite sign, or if the vorticity is in L(log L) without any sign restriction. However,
no rigorous convergence results are available for the case of Delort class initial data. Thus, there has so
far remained a considerable gap between the mathematical existence results and rigorous convergence
results for numerical approximations.

In this chapter, based on the original publication [LM20], we have proposed a spectral viscosity
method to approximate the two-dimensional Euler equations. Based on the spectral viscosity framework
of Tadmor [Tad89] and references therein, our method is a spectral method that discretizes the Euler
equations in Fourier space. Viscosity (damping) is only added in the high wave-number Fourier modes.
Consequently, the method is formally spectrally (superpolynomially) accurate for smooth solutions. Until
now, convergence of this method was only proved for smooth solutions of the incompressible Euler
equations [BT15].

We prove that the spectral viscosity method converges to a weak solution as long as the initial data
belongs to the Delort class. This also closes the gap between available existence results for the underlying
PDE and convergence results for numerical approximation.

The proof relies on the following key ingredients:

e The equivalence of the spectral viscosity method for the velocity-pressure formulation (2.2.1]) and
the vorticity formulation (2.2.5). This equivalence holds for any resolution i.e. truncation of the
underlying Fourier expansion.

A spectral decay estimate for the high wave-number modes.

A patching up of long-time estimates on the vorticity (obtained by the spectral decay estimate)
and short-time estimates.

A novel approximation of rough initial data that amounts to resolving the initial singularities.

Application of the compensated compactness theorems of Delort by controlling the negative part
of the approximated vorticity. In particular, we ensure that the negative part of the vorticity, as
approximated by the spectral viscosity method, cannot concentrate on sets of small measure.

It is unclear if these ingredients, particularly the equivalence between the velocity-pressure and vorti-
city formulations, can be transferred to other numerical methods. Thus, for the time being, the spectral
viscosity method is the only method that can rigorously be proved to converge to weak solutions for the
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incompressible Euler equations with rough initial data. As the results summarized in this chapter are
based on a spectral Fourier expansion, they are inherently limited to the periodic case. It is not clear,
whether the method can be extended to other boundary conditions, and in particular to schemes provid-
ing numerical approximations of flows in the whole plane. Furthermore, due to the lack of theoretical
existence results on domains with boundary, a convergence proof on such domains appears to be out of
reach at present.

We also present representative numerical experiments to test the proposed spectral viscosity method.
We observe from the experiments that the spectral viscosity method performs as well as the pure (stand-
ard) spectral method for smooth initial data. We also computed vortex sheets with the spectral and
vanishing viscosity methods and observed convergence to complicated roll-ups of the sheet, particularly
for small times. However for very high spectral resolutions and for long times, the computed solutions
contained small scale instabilities that amplified (either with time or in resolution or both) and led to the
disintegration of the vortex sheet into a soup of small vortices. We argue that this phenomena is generic
to such rough data and cannot be alleviated at the level of numerical computations, particularly at very
high resolutions. On the other hand, many papers in recent years such as [FMT16, [LM15| [Leol8] and
references therein, have presented computations of vortex sheets and demonstrated that although each
deterministic simulation can be unstable, yet statistical quantities (ensemble averages) are computed
robustly. This implies that statistical notions of solutions such as dissipative measure-valued solutions
[DM87al, LM15, [FMT16] and the more recent statistical solutions [FLM17, [FW18| LMPP21b] might be
more appropriate as a solution framework for the incompressible Euler equations, certainly from the
perspective of numerical approximation. The concept of statistical solutions of the incompressible Euler
equations will be discussed in detail in the next chapter.



Chapter 3

Statistical solutions

3.1 Introduction

In the last chapter, we have seen that convergence results for carefully designed numerical schemes such
as the spectral viscosity scheme can be obtained for the two-dimensional incompressible Euler equations,
even for rough initial data such as signed vortex sheets (i.e. with distinguished sign). These convergence
results are a precise analogue of the available analytic existence theory, providing sufficient control on the
numerical approximate solution sequence to ensure that any limit of this sequence is a weak solution of
the incompressible Euler equations, and satisfying all known natural a priori bounds. However, even in
the two-dimensional case, the available existence theory does not include many flows of interest, such as
unsigned vortex sheets, i.e. vortex sheets with varying sign of the vorticity, or even rougher initial data
such as L2-energy admissible & which are only Hélder continuous. Available existence results for rough
solutions also do not extend to the three-dimensional case, since the vorticity equation includes a vortex-
stretching term which cannot be controlled (cf. chapter , and therefore a priori bounds on the
vorticity are no longer available. Furthermore, as seen in the numerical experiments of the last chapter,
even when rigorous convergence (or rather, compensated compactness) results are available, this does
not necessarily mean that strong convergence (in L?) of the numerically computed solutions is observed
upon mesh refinement. In fact, numerical experiments considering irregular initial data have found a
lack of convergence of numerical schemes in any conventional, deterministic sense. Similar results have
also been found for compressible, inviscid models such as the compressible Euler equations and other
hyperbolic conservation laws [FKMTT7, [FLMW20]. This lack of convergence can be generally attributed
to the appearance of additional small-scale instabilities, which are revealed only upon an increase of the
numerical resolution, and which prevent convergence in the limit. Closely related to this non-convergence
of numerical schemes is the lack of general stability and uniqueness estimates for weak solutions, strongly
indicating that the underlying issues are not only related to numerical discretization errors, but may
represent a more fundamental feature of inviscid, turbulent models such as the incompressible Euler
equations. In the present chapter, we will therefore go beyond the classical paradigm of deterministic
weak solutions, formalizing and investigating a statistical solution concept for the incompressible Euler
equations, following similar work in [FLM17] in the context of hyperbolic conservation laws and a related
formulation [FW18§]| in the context of the incompressible Euler equations. The present chapter will follow
the original publication [LMPP21bh].

47
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3.1.1 Measure-valued and statistical solutions

Given the lack of well-posedness results for weak solutions and the lack of convergent numerical ap-
proximations, there is considerable scope for the design of alternative solution frameworks for .
One such framework is that of measure-valued solutions [DM87b], where the sought for solutions are no
longer functions but space-time parameterized probability measures on state space. The global exist-
ence of measure-valued solutions, even in three space dimensions, was shown in [DM&7b] and has been
reviewed in chapter of the present thesis (cf. Theorem . A convergent numerical method (of
the spectral viscosity type) and an efficient algorithm to compute measure-valued solutions was proposed
in [LM15]. However, measure-valued solutions are generically non-unique. This holds true even for the
much simpler case of the one-dimensional Burgers equation [Sch90]. In [FLMIT], the authors implicated
the lack of information about multi-point (spatial) correlations in the non-uniqueness of measure-valued
solutions. Moreover, they also proposed a framework of statistical solutions as an attempt to recover
uniqueness.

In the formulation of [FLMIT], statistical solutions are time-parameterized probability measures on
LP for 1 < p < oo, that are consistent with the underlying PDE in a weak sense. They were shown to be
equivalent to a family of correlation measures, where the k-th member of this family is a Young measure
representing correlations (or joint probabilities) of the solution at k distinct spatial points. Thus, one can
interpret statistical solutions as measure-valued solutions, augmented with information about all possible
multi-point correlations. The consideration of multi-point statistics is one of the main differences of the
present work with earlier contributions such as [LMI5], which focused on the computation of a measure-
valued solution, i.e. single-point statistics. A priori, statistical solutions contain much more information
than measure-valued solutions. Moreover, statistical solutions encode statistical (ensemble averaged)
properties of the solutions of the underlying PDE. Thus, statistical solutions provide a suitable framework
for uncertainty quantification (UQ) [FLM17, [AMI18]. This is particularly relevant for the incompressible
Euler equations as it is well-known that the flow of fluids, at very high-Reynolds numbers, can be
turbulent and only averaged (or statistical) properties can be inferred from measurements [Fri95].

Statistical solutions for scalar conservation laws were considered in [FLMI17], wherein well-posedness
was shown under an entropy condition. In particular, information about infinitely many correlations
was necessary to ensure uniqueness. In [FLMIS, FLMW20], a Monte Carlo algorithm, based on the
ensemble averaging algorithm of [FKMT17], was proposed and analyzed for scalar conservation laws
and multi-dimensional hyperbolic systems of conservation laws, respectively. In contrast to [FLMW20]
where multi-dimensional hyperbolic systems of conservation laws were considered, we focus on the case
of incompressible Euler equations in this chapter.

Independent notions of statistical solutions of the incompressible Navier-Stokes equations have been
proposed in [FRT10] and in [VE77]. While the statistical solutions of Foias, Rosa and Temam [FRT10]
are formulated in terms of the evolution equations of integrals of functionals [}, ®(u) dy(u) on a suitable
Hilbert space H, the statistical solutions in the present work are formulated in terms of an infinite family
of PDEs for the multi-point correlation measures I/fim vz (E15 &) These correlation measures
encode the probability of the flow field wu(¢,x) attaining certain values at points x1,...,2; and time
t, i.e. one might informally write

Vtk,zl.,...,a:k (617 s 76](5) = Prob [U(.’El,t) = 517 LR u(mk,t) = €k] .

Despite the apparent differences between the current work and [FRTI10], the two approaches can be
related to each other, using the correspondence between multi-point correlation measures and infinite-
dimensional measures established in [FLMIT].
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3.1.2 Overview of this chapter

The main goal of this chapter is to review a statistical solution concept for the incompressible Euler
equations introduced in [LMPP21b], where a notion of dissipative statistical solutions was pro-
posed. Statistical solutions are formulated as a time-parametrized probability measure on L?(D;R?)
on the underlying domain D, whose k-point correlations are consistent with the incompressible Euler
equations in a suitable sense. Well-posedness of such dissipative statistical solutions can be proven in
special cases, including short-time well-posedness results and global well-posedness results for sufficiently
regular initial data in two spatial dimensions. This chapter will also review a numerical algorithm, based
on Monte-Carlo ensemble averaging and the spectral viscosity discretization, to approximate statistical
solutions, showing that the approximations converge in an appropriate topology to a statistical solution,
under reasonable and verifiable hypotheses on the numerical method. A selection of numerical experi-
ments will be used to illustrate interesting properties of the computed statistical solutions and to verify
the theory. For further numerical experiments, the interested reader is referred to the original publication
[LMPP21b].

The rest of this chapter is organized as follows: in section [3.2] we present time-parameterized prob-
ability measures on L?(D;R%) and characterize convergence in a suitable topology on this space of
measures. In section we define statistical solutions of and present partial well-posedness
results. The numerical approximation of statistical solutions and its convergence is presented in section
-4 and numerical experiments are summarized in section

3.2 Time-Parameterized Probability Measures on L?(D;R?)

As mentioned in the introduction, statistical solutions are time-parameterized probability measures on
L?, where L? energy bound is enforced by the incompressible Euler equations. In this section, we will
describe time-parameterized probability measures, characterize them and describe a suitable topology on
them. Although different in several details, similar considerations have previously appeared in different
contexts in [FLMIT7, FLMW20]. To streamline our discussion we will merely state the core results in
this section, and provide the main ideas of the proofs where appropriate. Complete and detailed proofs
of these results can be found in the publication [LMPP21b|, on which this chapter is based.

Given a (Borel) probability measure u € P(L2) on L2, we define the 2nd order structure function as
the following quantity:

1/2
So(p;r) = (/L% /D ]ir(o) |lu(z + h) — u(z)|* dhdx du(u)) . (3.2.1)

The structure function Sa(p; ) provides a measure of the average two-point correlation of the underlying
functions, a quantity that is natural to consider in the context of turbulent flows [Eri95]. The following
results shows that structure functions are also closely related compactness of probability measures in

P(L3):

Theorem 3.2.1. Let F C P(L2) be a family of probability measures on L%. Assume that there exists
M > 0, such that p(Bp(0)) = 1 for all p € F, where By (0) = {u € L2 ||ullpz < M}. Then the
following statements are equivalent:

(i) F C L% has compact closure (with respect to the weak topology),
(i) There exists a modulus of continuity ¢, such that we have a uniform bound on the structure function:

Sa(psr) < o(r), VpeF.
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The proof of this theorem can be found in [LMPP21b, Appendix A]. Rather than discussing the details
of the proof, we point out that uniform bounds on the structure function are precisely a probabilistic
version of the equicontinuity property of Kolmogorov’s compactness theorem on LP spaces, and hence
this result may not be unexpected, see also the next remark.

Remark 3.2.2. Theorem 1s closely related to Kolmogorov’s characterization of compact subset of
L2: Indeed, there is a natural isometric embedding

(L3 N lle2) = (P(L3), Wh),  w du.

Thus, a bounded set K C L2 has compact closure if, and only if, its image under this embedding {5, |u €
K} C P(L?) has compact closure. Using Theorem we conclude that a bounded set K C L2
has compact closure if, and only if, satisfies Kolmogorov’s equicontinuity property, which corresponds to

property (2) in Theorem |3.2.1

3.2.1 Time parameterized probability measures

As mentioned before, statistical solutions are time-parameterized probability measures, in the sense of
the following definition:

Definition 3.2.3. We denote by L} (P) = L'([0,T); P) the space of weak-+ measurable mappings [0,T) —
P(L2), namely mappings t — p; such t = [, F(u)du(u) is measurable for a.e t € [0,T), for all

F € Cy(L?) and with the property that

T
/ / lullzz dui(u) dt < oo.
o Jrz

Denoting by &y the Dirac measure concentrated on 0 € L2, the above condition can equivalently be
written as

T
/ Wl(éo,,ut) dt < oo.
0

This leads us to define a natural metric on L'([0,T); P) by

T
dT(,LLt, Vt> = / W1 (,U/t, Vt) dt. (322)
0

We then have the following proposition, whose proof is presented in [LMPP21b, Appendix B], closely
mimicking the proof of completeness of LP-spaces found in many textbooks on measure-theory.

Proposition 3.2.4. The metric space (L}(P),dr) is a complete metric space.

Our next objective is to find natural sufficient conditions for compactness on L} (P). To this end, it
would be natural to extend the compactness Theorem to time-parameterized probability measures
and find a suitable version of the weak topology. This necessitates formalizing some notion of time-
continuity or time-regularity of underlying functions.

Fix a (time-independent) divergence-free test function ¢ € C2°(D;R?). Formally, solutions of the
incompressible Euler equations satisfy for s,t € [0,T),

| futant) (e s) oty da = [ t | wlem) o ule.): Vela) dadr
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so that

/ (@, ) — w(z, 5)] - () dz
D

Furthermore, we have a natural energy bound |lu||zecr2 < [[@]|2, in terms of the initial data w. If L >0
is large enough such that by Sobolev embedding HX = HE(D;RY) < C(D;R?), then it follows that

< Cllullpeerz IVl Lot — s].

/D[U(fvvt)—U(x»S)]'w(fE)dx < Cllellazlt = sl,

where the constant C' > 0 depends only on the initial data. Taking the supremum over all ¢ € HE with
[l gz <1, it follows, at least formally, that

Jut) —u(s)| e <Clt—s|, Vs, t€0,T). (3.2.3)

Given these considerations, it is natural to assume that statistical solutions of the Euler equations
satisfy some version of this time continuity. A formalization is provided in the following definition,

Definition 3.2.5. A weak-+ measurable, time-parameterized probability measure t — p; € P(L2) is
called time-regular, if there exists a constant L > 0, and a mapping s,t — 754 € P(L2 x L2), such that
for almost all s,t € [0,T):

o The measure 75y is a transport plan from ps to g,

o There exists a constant C > 0, such that 75+ satisfies the following regularity condition
/ [ — vy drse(u,v) < CJt — 5.
L2xL2

A family {u2}aso of time-parameterized probability measures is uniformly time-regular, provided
that each u2 is time-regular, and the constants L,C > 0 above can be chosen independently of A > 0.

Remark 3.2.6. Note that if u: is of the form
J
1
=5 Z o

with t — u(t) weak solutions of the incompressible Euler equations satisfying (3.2.3), then we can define
suitable transfer plans

1 J
32 u;(s) ® Ou; (1)

The time-regularity property follows from the estimate (3.2.3)) for the w; (cp. also the definition of an
approrimate solution sequence, Deﬁnition in chapter .

We now show that a family x2, A > 0, of uniformly time-regular probability measures is relatively
compact, provided that they satisfy a time-averaged version of the second property of Theorem [3.2:1]
To this end, we define the time-averaged structure function of (¢t = p;) € L{(P) (weak-* measurable) as
the following quantity (where the value co is allowed):

/2

T(gir) - (/ /Lz/]i(o w(@ + h) — (@) dh dz dus (u )dt) . (3.2.4)

The main result of the present section is the following compactness result:
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Theorem 3.2.7. Let u € L} (P) be a family of uniformly time-reqular probability measures, for A > 0,
for which there exists M > 0, such that u2(Bp(0)) = 1 for all A > 0, a.e. t € [0,T). Here By(0) :=
{llullzz < M}. If there exists a modulus of continuity ¢(r) such that

S3 (uiir) < 6(r), VA >0,
then u2 is relatively compact in L}(P).

The idea behind Theorem [3.2.7]is to use the spatial regularity of the sequence to show that the weak
time-regularity assumption of Definition [3.2.5[implies a similar time-regularity with respect to a stronger
spatial norm, where H T is replaced by L?. The details of the required technical argument are provided
in [LMPP21Dbl Appendix C], and utilize ideas of the folklore Aubin-Lions lemma and the characterization
of compact subsets in Bochner spaces of [Sim86]. Rather than repeating the lengthy technical argument
in this thesis, we will illustrate the main ideas at the deterministic level in the next remark:

Remark 3.2.8 (Leveraging time-regularity). Suppose we are given a bounded family of functions u €
F C L2 ,(Dx[0,T]), which satisfies a uniform Lipschitz bound sup,c r ||u(-,t) —u(-,s)| z-r < Cls —t|
for some (large) L > 0. Assume, in addition, that there exist M,0 > 0, such that fOT (-, t)]|F, dt < M.
Note that the latter condition is a simple way to ensure uniform control sup,cr Sa(u;r) < Mr?, on the

structure functions (here, this stronger condition is assumed to simplify the argument). Then, using the
interpolation inequality between H* and H?, it follows that

lul ) = (-, s)llzz <l 1) = u(,o)lGclul- ) —ul-, sl

where 8 = 6/(L 4+ 6) € (0,1) is chosen such that —0L + (1 — 0)6 = 0. This implies that for any (small)
h > 0, we have

Int l.
(Interpol.) T—h

T—h f
[ ot =l s de < (OO [ e b - uC o)l de
0 0 @
(H(Side'r’) T—h (1—6)/2
< OO/ ( [ttt a0 dt)
0 xT

(H®-bound)
; COTH0)/2(9 1) (1=0)/2|y 6.

In particular, this shows that sup,c foTih lu(-,t+h) —u(- ’t)”zLi dt < |n|?, and hence F satisfies a
temporal equi-integrability condition in Liw, in addition to the spatial equi-integrability ensured by the
HY-bound. From this, it immediately follows that F C Lf’m is relatively compact [Sim86]. The proof of
Theorem |3.2.7 relies on the same basic ideas, but requires several additional technical ingredients, and
an extension to the statistical context. We refer the interested reader to [LMPP21b, Appendiz C] for the

details of the required argument.

Let us also remark that a limit u2 — p; of a uniformly time-regular sequence p2* is itself time-regular
(see [LMPP21b, Appendix D] for the straight-forward proof):

Proposition 3.2.9. Let u2 € L} (P) be a family of uniformly time-regular probability measures, for
A > 0. And such that there exists M > 0 with u(By(0)) = 1 for all A > 0, a.e. t € [0,T), where
B (0) :={|lullpz < M}. If puf* — pe in Li (P), then pu is time-regular in the sense of Deﬁnitionm
with the same time-regularity constants C, L > 0 as for the family us.
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3.2.2 Time-dependent correlation measures and their compactness

It has been shown in [FLM17] that there is a one-to-one correspondence between probability measures on
L2 and so-called correlation measures. Correlation measures are defined as infinite hierarchies of Young
measures, taking into account spatial correlations, or more precisely,

Definition 3.2.10. A correlation measure is a collection v = (v',1?,...) of maps V¥ : D¥ — P(U*),

where U = R? denotes the state-space, satisfying the following properties:

1. Weak-+ measurability: Each map v* : D — P(U%) is weak-x-measurable, in the sense that the
map x + (VE, f) from x € D¥ into R is Borel measurable for all f € Co(U¥) and k € N. In other
words, V* is a Young measure from DF to U*.

2. L?-boundedness: v is L?-bounded, in the sense that

/ (vl |€]?) dx < 4-o0. (3.2.5)

D

3. Symmetry: If o is a permutation of {1,...,k} and f € Co(R¥) then <l/§(w),f(0'(£))> = Wk f(&))
for a.e. x € D*. Here, we denote o(z) = o (21,22, ..., Tk) = (To,, Ty, - -, To, ). o(€) is denoted

analogously.

4. Consistency: If f € Co(U) is of the form f(&1,...,€k) = g(&1,...,€n_1) for some g € Co(U*™1),
then <V§17___7mk,f> = <V§;_1_"mk71,g> for almost every (x1,...,xx) € DF.

5. Diagonal continuity (DC): If By(z) :={y € D : |z —y| <r} then

r—0

lim/ ][ W2, & — &*) dyde =0. (3.2.6)
D JB,(z)

Each element v* is called a correlation marginal. We let £2 = £2(D,U) denote the set of all correl-
ation measures from D to U.

It has been shown in [FLMI7], that if 4 € P(L2), then we can associate to it a unique correlation
measure v, with the interpretation that for A,..., Ay C U:

,u[u(xi)eAi,i:L...,k]:yk mk(Alx"'XAk)'

T1yeny
More precisely, we have the following theorem [FLM17]:

Theorem 3.2.11. For every correlation measure v € £2(D,U) there exists a unique probability measure
wu € P(L3(D;U)) satisfying

| Tl ) < o<, (3.27)

such that

[ [ owoai@ar= [ [ o u)arin, (329

for all g € Co(D* x U*) and k € N (where u(x) denotes the vector (u(x1),...,u(zy))). Conversely, for
every probability measure p € P(L*(D;U)) with finite moment (3.2.7)), there exists a unique correlation
measure v € £2(D,U) satisfying . The relation is also valid for any measurable g : DxU —
R such that |g(z,&)| < C|&|? for a.e. x € D.
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Moreover, the moments
mt DM s USF, mf(2) = (v, &1 @& @ ... @ &), (3.2.9)

uniquely determine the correlation measure v and hence the underlying probability measure p.

Remark 3.2.12. We note that Theorem |3.2.11| effectively expresses a form of Fubini’s theorem, and
abusing notation, (3.2.8)) might have been stated as

/D (/L g(x»U(xl)w'-7U(:vk))du(U)> dr = /L </Dkg(f,u(xl),...,u(xk))dx> dp(w).

The central diﬁ?culty in deriving Theorem [3.2.11] is that point-wise evaluations are not well-defined on
L2, and hence fL2 g(x,u(zy),...,u(z)) du(u) needs to be interpreted in the appropriate way, leading to
correlation margmals based on Young measures [FLM17].

The following result is obtained as a consequence of Theorem (for a proof, see [LMPP21bl
Appendix EJ):

Theorem 3.2.13. Let {u2}a~o be a family of uniformly time-regular probability measures in L} (P),

and assume that there exists M > 0, such that p(Byr) = 1 for all A > 0 and t € [0,T). Let

vh = (1/,5A ! VtAQ,...) denote the corresponding time-parameterized correlation measures. If there ex-

ists a uniform modulus of continuity ¢(r), such that

//]im Vi |61 = &of?) dydedt < ¢(r), VA >0,

then {ufYaso is relatively compact in L} (P), i.e. there exists a subsequence A; — 0 (j € N), and a
time-parameterized probability measure p, € L}(P), such that

/ Wi(u 7Mt Ydt =0, asj— oo.

Furthermore, denoting by v, = (v}, v2,...) the correlation measure corresponding to the limit u, we
have

o L*-bound: [, (v},,|&|?)dx < M?, for a.e. t €0,T),

e the two-point correlations satisfy

T
2 — &N dydxd
/O /D f}gr(z)m@,@,ﬁsl &) dy e dt < 6(r),

e We define admissible observables, in terms of test functions g € C([0,T) x D* x U*), which satisfy
the following bounds,

k

lg(t,z, &) < CT[ (1 +1&1%),

=t (3.2.10)
1

E

S~

\g(t,x,{) - g(t,x,ﬁ')\ S

i=

I(&, &) /1 + &> + [&171€ —
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where C' > 0 is a fived constant, independent of t € [0,T), x € D* and &,&' € U*. Here 11;(€, &)
is defined as

k

W& €) = [[ (L +I&P+1g%), &¢&eut. (3.2.11)
j=1
J#i

Then, these admissible observables converge strongly in Lt -5 n the sense that

T
i [ (R o) - gl ) dode =0,

J—00 0

A particular point of interest in the statement of previous theorem is the characterization of a suitable
set of “admissible observables”, whose convergence is assured by the convergence pu2 — s in L (P).

Remark 3.2.14. We note that the uniform modulus of continuity estimate in Theorem can
equivalently be expressed as

ST(usr / //][ (@ + h) — w(@) dhdz dud (w) dt < 6(r),

for all A > 0.

3.3 Dissipative statistical solutions and their well-posedness

Given the discussion on time-parameterized probability measures in the last section, we can now define
statistical solutions of (L.1.1)) as,

Definition 3.3.1. A time-parameterized probability measure iy € Li(P) is a statistical solution of
the incompressible Euler equations with initial data [, if t — pg is time-regular, and the associated
correlation measure vy satisfies:
1. Given @1, ..., € C2([0,T) x D;R?) with div(p;) =0 for alli=1,...,k, set
pt,z) =pi1(t,x1) @ @ pi(t,xr), wherex = (x1,...,Tk).

Let us denote F (&) := € ® € and define a contraction by
(G ® - OFE)® - ©&): Vo = [[[4 (& @] (& Vu) &

Then vF = Vfﬁml,---,mk satisfies

/()T/Dk{<yk7£1®...®£k>:8t¢

+3 060 RFE)© ) Vmicp} dz dt

+/ T 6@ @& p(0,2)dr = 0.
Dk

Here v is the correlation measure corresponding to the initial data fu.
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2. For all ¢ € C(D), we have

/ (U} 41 2 &1 ® &2) 1 (VO (1) ® V(22)) day day = 0,
D2

for a.e. t €10,T).

The above PDEs specify the time-evolution of the moments (3.2.9) for all £ and by Theorem [3.2.11
determine the evolution of the probability measure p,.

Remark 3.3.2. As v! above is a standard Young measure, it is straightforward to observe that the
corresponding identity for the evolution of v' corresponds to the definition of measure-valued solution
of , in the sense of Deﬁnition in chapter under the further assumption that there is no
concentration. Hence, one can think of statistical solutions as measure-valued solutions coupled with
information about all possible multi-point correlations.

We first show that the second property of Definition [3.3.1]is equivalent to the requirement that p; be
supported on divergence-free vector fields for almost all ¢.

Lemma 3.3.3. Let u € P(L2), with associated correlation measure v. Then p is concentrated on
divergence-free vector fields if, and only if,

/ <V§1,x2,€1 ® &) : (VY (z1) ® V(x2)) dxq daxoa = 0,
D2

for all ¢ € CX(D).
Sketch of proof. Let ¢ € C°(D). Then we have the following identity

/Lg {/DU'Ver dpu(u) Z/D<V§1,z27£1 ® &) 1 (Vip(21) @ Vi(a2)) day das. (3.3.1)

Therefore the stated condition in this lemma is equivalent to the claim that for all ¥ € C°(D), we
have || pu-Vipdr = 0, p-a.s.. A simple continuity argument based on a countable family of suitable
test functions ¢ then implies that this is in fact equivalent to the statement that, for p-a.e. u, we have
Jpu-Vipdr =0 for all ¢ € CZ(D). O

Note that if p, u € P(L2) are probability measures, and if p is of the form

J
p= Z 0,
=1

where a; > 0, Z;-le a; =1, and u; € L2, then a transport plan from yu to p is necessarily of the form
[FLMI7]:
J
™= Zaj/,[,]‘ ®6uj;

j=1

where p; € P(L2), and Z;’Zl ajuj = pi. Therefore, given o = (a1,...,a ) as above, and u € P(L2), we
denote

Aerop) i= { (s o) | 1y € PAE2), o)y gy = i}

Note that the set A, 1) is non-empty, since it contains (y, ..., u).
In analogy with work [FLMI17, [FLMW20| on entropy statistical solutions for hyperbolic systems of
conservation laws, we define
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Definition 3.3.4 (Dissipative statistical solution). A statistical solution u; € L} (P) is called dissipative,
if for every choice of coefficients aj > 0 with Z}le a; = 1 and for every (fy,...,fy) € Ala, i), there
exists a function t = (p1e, ..., pst) € Mo, pe), such that t — pj 4 is weak-+ measurable, juij¢|i=0 = i,
such that each ;¢ satisfies

/OT/LE/D[u-at<p+(u®u):Vgo] dxd“jvt(“)dt:_/Li/DU'SD(O,JJ)da?dEj(u),

for all p € C°([0,T)x D), div(e) =0, and all j = 1,...,J. And, in addition, we have for almost every
tel0,T):

[ Ml st < [l digw), g1,
L3 L3

3.3.1 Existence and uniqueness of dissipative solutions

As already pointed out in the introduction, the initial-value problem for the incompressible Euler equa-
tions is ill-posed for general initial data w € L2, i.e. there exists an exceptional set of initial data & C L2
for which there either might exist no suitable solutions at all, or for which there exist infinitely many
suitable solutions. In practice, one may nevertheless hope that the “probability of encountering” such
exceptional initial data is 0, so that the subsequent evolution would then be well-defined at least for
initial data encountered in practice. In this section, we provide a formal description of a suitable set of
statistical initial data @ for which this intuition holds true, and show existence and partial uniqueness of
dissipative statistical solutions p; for initial data 7 in this class. In particular, the results in this section
imply a weak-strong uniqueness result for statistical solutions. In contrast, an analogous weak-strong
uniqueness result for measure-valued solutions only holds for atomic initial data, i.e. when the initial
data is a function, but fails for non-atomic Young measure-valued initial data (see e.g. Example 1 in
[FKMT17] for an explicit example in the context of conservation laws).

More precisely, we show based on topological arguments, that if the set of Cl-regular initial data
admitting classical solutions of , over a given time-interval [0,7) is dense in L2, then there exists
a (topologically) generic set G C L2, containing these regular initial data, with the following property:
For any initial data 7 € P(L2) which is concentrated on this generic set G C L2, i.e. satisfying 1(G) = 1,
we have existence and uniqueness in the class of dissipative statistical solutions. By a “generic” set G,
we denote a set whose complement £ = L2\ G is a countable union of nowhere dense sets (implying that
£ is a meagre set in the topological sense). We say that 7 is concentrated on G, if z(G) = 1.

The construction of such a generic G under the above mentioned assumption has first been carried out
in [Lio%6]. Let us first review the construction of G. We let C C C*(D;U) denote the set of initial data
v admitting a classical solution v(t) on [0,T), with C() := sup;c(o,7) [[Vv(¢)|| L~ finite, i.e. C(V) < oco.
For n € N, define the open set G, by

1 _
G = {u €eL?2|3TeCst. |[u—1|. < e‘C(”)T} (3.3.2)
x n

Finally, we let G = (1, cy Gn-

Remark 3.3.5. If there exists a dense set of initial data v € C, then G is generic in the topological
sense (more precisely a G set), being the countable intersection of the dense open sets G,. By the Baire
category theorem, the set G is non-empty and dense in this case. In particular, this would hold true
if there is no finite-time blow-up for sufficiently smooth classical solutions of the incompressible Euler
equations (e.g. for CY% initial data © possessing a Hélder continuous derivative), which is an established
fact in two space dimensions, but an open question in three space dimensions.
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We can now state the main theorem of the present section:

Theorem 3.3.6. Define the generic set G as above (cp. equation (3.3.2))). If 1 € P(L2) is initial data
such that (G) = 1 and there exists M > 0 such that i(Bar(0)) = 1, then there exists a unique dissipative
statistical solution py of the incompressible Euler equations with initial data [i.

The proof of Theorem has been provided in detail in [LMPP21bl Appendix F]. We can now
easily derive the following corollaries from Theorem [3.3.6

Corollary 3.3.7 (Short-time existence and uniqueness). If m > d/2 + 1, and if there exists a C > 0,
such that i € P(L2) is concentrated on

{ue H||ullpy <C},

then there exists T* > 0 (depending only on C') and a statistical solution py : [0, T*] — P(L2) with initial
data i. Furthermore, us is unique in the class of dissipative statistical solutions for t € [0,T*].

Proof. Classical short-time existence results for the Euler equations [MBOI] show that there exists T > 0,
such that for initial data @ with |||z~ < C, there exists a unique solution wu(t) such that

sup [[w(t) |y < O[] e
te[0,T*]

Since H™ — C*, this implies that 7 is concentrated on @ € C. In particular, we conclude that 7i(G) = 1,
and the result now follows from Theorem [3.3.6] O

Corollary 3.3.8 (Weak-Strong uniqueness in 2d). Let d = 2, and let « € (0,1). If It is concentrated on
CH(D;U) and if there exists M > 0, such that fi(B(0)) = 1, then there exists a dissipative statistical
solution p; with initial data . Furthermore, py is unique in the class of dissipative statistical solutions
with initial data .

Proof. Again, we observe that for any w € C1'®, there exists a unique solution u(t) € C1'*. Hence, we
have w € C for all such w. In particular, it follows that & is concentrated on G. The claim follows from
Theorem [3.3.6} [

3.4 Numerical Approximation of Statistical Solutions

3.4.1 Monte-Carlo algorithm based on the SV method

In this section, we will propose an algorithm for computing statistical solutions of the incompressible
Euler equations . As mentioned before, this algorithm is very similar to the one proposed in
[FLMW20Q] for computing statistical solutions of hyperbolic systems of conservation laws, which in turn
was inspired by the ensemble averaging algorithms of [FKMTTI7], also used in [LM15], for computing
measure-valued solutions. This algorithm requires a spatio-temporal discretization and a Monte Carlo
sampling of the underlying probability space. We propose to combine Monte-Carlo sampling with the
spectral viscosity discretization described in detail in chapter

(3.4.1)

8tuA + PN(’U/A . VUA) = _eN‘VPS(QN * U‘A)v
div(u®) =0, u®|—o = Pya.

Following [FLMW?20], the computation of statistical solutions of ((1.1.1)) can be accomplished via the
the following Monte Carlo sampling algorithm:
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Algorithm 3.4.1 (Monte Carlo). Given i € P(L2), and a grid scale A = 1/N, we determine an
approzimate statistical solution s, as follows: For m = m(N),

@ Generate i.i.d. samples wy,. .., Wy ~ [,

(2) Evolve the samples, using the numerical scheme u*(t) :== /2 (w;), where S denotes the solution
operator, defined by the scheme (1.4.4)).

@ The approximate statistical solution u2 is given by the so-called empirical measure,
1 m
A
Hp = > Gung- (3.4.2)
i=1

O

We remark that in practice, the samples w; for 1 < i < m are random realizations with respect to a
certain underlying probability space.

Remark 3.4.2. The Monte Carlo algorithm [3.4.1, when restricted only to the computation of the first
correlation marginal v', reduces to the ensemble averaging algorithm proposed in [LMI15] for computing
measure-valued solutions of the incompressible Euler equations.

3.4.2 Convergence to statistical solutions

In this section, we will investigate the convergence of the empirical measure , generated by
the Monte Carlo algorithm to a statistical solution of . To this end, we seek to apply the
convergence theorem [3.2.7] to these approximations. We start by verifying the temporal regularity of the
empirical measures in the following lemma,

Lemma 3.4.3. There exists L € N and constants C,C" > 0, such that if u® is obtained from the spectral
hyper-viscosity method (1.4.4), with A = 1/N and initial data w € L2, then

du? + div(u® @ u?) + Vp? = EA,
where ||EA||H$_L < CA(1+ ||u?|2,). Purthermore, there exists a constant C’, such that
[u?(t) = u®(5)l| o < C'(L+ [[@l72)[t — .

The detailed proof can be found in [LMPP21b, Lemma 4.1], and will not be repeated here. It is
essentially a repetition of the argument on page[I9] showing that the SV scheme produces an approximate
solution sequence in the sense of Diperna and Majda (cp. Definition [1.3.5).

From Lemma m it is now easy to see that if ;2 is generated by the Monte-Carlo algorithm m

i.€.
1 m
MtA = E ;614?@)7
1=
with 42 (t) computed by the spectral hyper-viscosity scheme (T.4.4), then the transport plan defined by
1 m
Trﬁt = E Z 6uiA(s) ® 5uiA(t)a
i=1

satisfies the properties required by the definition of time-regularity, Definition This provides the
required temporal regularity required by Theorem [3.2.13



60 CHAPTER 3. STATISTICAL SOLUTIONS

Next, we turn our attention to the spatial regularity bounds of Theorem In particular, we
need to obtain uniform estimates on the structure function (3.2.4)). We start with the following simple
observation (cp. [LMPP21bl Lemma 4.2]):

Lemma 3.4.4. For any r > 0, we have
][ e — 17 dh < Cmin(|k[>2,1) < Clk|*,
B;(0)

where C' = 4. O
The next result is an estimate on the structure function ([3.2.4)) at the grid scale A.

Lemma 3.4.5. If uf is an approzimate statistical solution obtained from the spectral hyper-viscosity
method with A = 1/N, and initial data T for which there exists M > 0 such that i(Bps(0)) = 1 where
B (0) = {||ullzz < M}, then

ST(ud;A) < CMAY @),

for some absolute constant C > 0. The same estimate is also true for r < A, i.e. we have

ST (ul;r)y <MY/ forallr < A.

The proof of Lemma, relies on the a priori bound

T
ex / S QIR an(t)? dt < [l
0
K|

oSN

of solutions of the SV scheme, which is sufficient to ensure control on the approximate solution at small
scales r < A. The details of the proof are provided in [LMPP21bl, Lemma 4.3].

As in [FLMW?20] section 4.2, we have uniform estimates on the structure function at (or below) the
grid scale. Large scale features are in any case independent of the resolution A. However, we lack any
information on the intermediate scales, in between the two. To close this information gap, we follow
[FLMW20] and make an assumption on scaling of the structure function at intermediate scales.
The resulting theorem is:

Theorem 3.4.6. Consider the incompressible Euler equations with initial data i € P(L2), such that
supp(fi) C Bas, with By the ball of radius M in L2, for some M > 0. Define the approzimate statistical
solution u2 by the Monte-Carlo algorithm|3.4.1. If the approzimate statistical solutions u2 satisfy:

o Approximate scaling: For every £ > 1, there exists a constant 0 < Ay < 1/(2s), fizred C > 0 possibly
depending on the initial data, but independent of £ and the grid size N, such that

ST (g €A) < CLMST (uf A), (T > 0).

Then the approzimate statistical solutions p2 converge (up to a subsequence still denoted by A), as
A — 0, to some puy € Lt (P).
Proof. By Lemma there exists a constant C' > 0, such that

S5 (i) < Ort/29, (3:4.3)
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for all r < A. If r > A, then by the assumed approximate scaling property, we write r = A, with £ > 1,
and obtain

ST (i) = S5 (e LA) < COST (uf; A) < CTH2AY 9 = 00t/ (29),
for some constant CC > 0. The convergence now follows from Theorem O

Remark 3.4.7. The scaling assumption can be interpreted as a weaker version of the scaling
assumptions of Kolmogorov (see hypothesis H2, equation 6.3, page 75 of [Fri95)]) that was instrumental
in the K41 theory for homogeneous, isotropic turbulence. In contrast to the exact scaling relation pos-
tulated by Kolmogorov, Theorem [3].0 only requires an upper bound on the structure functions; we do
not assume (or indeed even conjecture) that the structure functions exhibit any precise scaling. The scal-
ing assumption is fundamentally an assumption about the compactness properties (encoded in two-point
correlations) of the approzimate statistical solutions, stating that if we can control the smallest scales by
diffusion, the large scales are expected to be reasonably well-behaved. This intuition is motivated by nu-
merical experiments presented in section 5. We also note that the inequalities in can accommodate
intermittency in the form of deviations for the standard Kolmogorov determination of the exponent 1/3

for the structure function (3.2.4]).

Remark 3.4.8 (Convergence without scaling assumption). Let i be concentrated on a set of initial data
G C L2, such that for any uw € G there exists a strong (i.e. Lipschitz continuous) solution u(x,t) fort €
[0,T]. Denote by.%; : G — L2 the solution operator mapping @ + u(z,t) = .7 (@), and let S : G — L2,
u — A (@) denote the discretized solution operator. The corresponding (exact/approzimate) statistical
solution are in this case given by the push-forward pu = % 411, pud = % . From the definition
of the metric dr on Li (P), and the Kantorovich duality formula (cp. in Appendiz @, we readily

obtain the inequality

T
drund) < | /g | 74() — S @) 12 dri(@) dt. (3.4.4)

Since .7, (@) is a strong solution for all@ € G, the pointwise convergence S (@) — S (@) follows from
Corollary m chapter, Hence, the integrand on the right-hand side of is uniformly bounded
and converges to zero pointwise, as A — 0. By the dominated convergence theorem, it follows that
p2 = pg in LE(P). In particular, the approvimate statistical solution uf computed by algorithmm
converges to the unique dissipative statistical solution py in this case, without any additional assumptions
on the structure functionsﬂ In three dimensions, this implies the convergence of approximate statistical
solutions to the unique dissipative statistical solution under the assumptions of Corollary (short-
time existence and uniqueness). In the two-dimensional case, this shows the convergence to the unique
dissipative statistical solution under the assumptions of C’orollary (global existence and uniqueness
for CY* initial data).

3.4.3 Decay of energy spectrum

In this section, we will provide an alternative criterion to ensure convergence of probability measures

with respect to the metric (3.2.2)).
This criterion is motivated from well-known experimental and theoretical concepts in the study of

turbulent flows and is based on the energy spectrum FE(u; K) (K € Ny) associated to a vector field wu,

Hn fact, it can be shown that the convergence utA — ¢ in turn implies a uniform decay of the structure functions as
A — 0 (cp. [LMW21] Prop. A.2])
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defined as .
. _ ~TN(2
BuK)=5 Y [ah)

K—1<|k|<K

Note that the kinetic energy is obtained as a sum

1 [ee]
2 /D 2 de = 20)" 3 E(u; K).
K=1
Given a probability measure p € P(L2), let us similarly define:
B ) = [ B K) dutw),

so that E(§,; K) = E(u; K), for w € L2. Finally, we denote by Er(u;; K) the time-integrated energy
spectrum

T
Er(uiK) = | B(ui K) dr.
0

It is an experimentally observed fact [Fri95] that the typical energy spectrum of turbulent flows with a
sufficiently strong dissipation mechanism at small scales typically takes a shape similar to the one shown
in Figure Visible are three parts of the energy spectrum. The left-most part (small K') corresponds
to large-scale features for the flow, the middle part (intermediate K) is referred to as the inertial range,
while the right-most part (large K) may be referred to as the dissipation range. The appearance of these
three parts is heuristically explained as follows. Starting from initial data (with a sufficiently fast decay
of the energy spectrum) initially fixes the large-scale features of the flow. Due to the non-linear nature
of the evolution equation, these large-scale features decay to smaller scales, corresponding to energy
cascading from small values of K to larger values of K. While a satisfactory mathematical treatment of
the precise nature of this energy cascade remains an outstanding challenge, there is evidence by physical
reasoning and as well as from numerical and real-world experiments that typically the energy spectrum
resulting from this cascade process satisfies at least an upper bound of the form E(K) < K7, for some
fixed ~ that is associated with the non-linearity. In the presence of a dissipative mechanism acting on
small scale features of the flow, this “free” energy cascade to larger values of K due to the non-linearity
is finally interrupted by the dissipation. Thus, energy is dissipated at dissipative scales.

From this heuristic point of view, we would expect the large-scale features to depend mostly on the
initial data, while the decay of the energy spectrum at the largest values of K can be controlled in a
numerical approximation scheme by a suitable choice of the numerical dissipation. On the other hand,
there is no a priori information on the decay of the spectrum in the intermediate, inertial range. Hence,
we make the following, rather natural, assumption:

Assumption 3.4.9. There exist § > 0 and constant C' > 0 such that the computed energy spectra with
algorithm |3.4.1| scale as,
Er(u® K)<CK™2,  VA>O0. (3.4.5)

o
Under this assumption on the energy spectrum, we have the following convergence theorem:

Theorem 3.4.10. If u2 is obtained by the spectral viscosity method through algorithm and if the
energy spectra Ep(u2; K) satisfy the inertial range Assumption with B8 > 1/2, then there exists a
subsequence (not relabeled) A — 0 and a time-parameterized probability measure g, such that us —
in Li (P).
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Proof. From Parseval’s identity (A.1.3)) and Lemma we have

g / / ][ lu(z + h) — u(x)]* de dh dp(u) dt
L2 JB,(0) J1e
< / / . min . )0 )
0 L2
r2 Z K2Br(u; K Z Er(ps K

K<1/r K>1/r

Hence, based on the Assumption we now obtain the estimate,

Sy (usr)? Sr® Y KK 4 Y K%

K<1/r K>1/r
~ 2 (14 283y 2t
o pin(226=1) g ),

Therefore, the scaling assumption on the average energy spectrum leads to the uniform diagonal con-
tinuity:

Er(pA K) <K% = ST(ubr)<eP 12 if1<28<3. (3.4.6)
From Theorem [3.2.13] we obtain compactness of the sequence 2. O

100 i\w —————————————
~ const
2 =
E’ w10
v
10710} T inertial | dissip. ] small K| inertial ~  dissip.
éiaia range range 104} ' range range
10° 102 10* 10° 102 10*
K K
(a) Energy spectrum E(K) (b) Compensated E’spectrum K7 E(K)

Figure 3.1: Typical energy spectrum for turbulent flows

Remark 3.4.11. As indicated in Figure (B), a convenient way to check the scaling Assumption
in practice is to consider the compensated energy spectrum, which is defined as KYE(K), where
is the (proposed) scaling exponent in the inertial range. Proposition says that if there exists
v > 1, such that the compensated energy spectrum KYEr(u2; K) is uniformly bounded by a constant,
and independently of A, then {u® | A > 0} is compact in L*(P).

Remark 3.4.12. If d =3 and p = 2, then Kolmogorov’s theory states that for fully developed turbulence
Sy ~ 11/3. Based on our estimate, this requires § = %. So that the (expected) energy spectrum is E(K) ~
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K28 ~ K=5/3. Such an assumed scaling is consistent with many real, as well as numerical, experiments
reported in the literature, and is sufficient for compactness in the space of probability measures L}(P)

(cp. Proposition|3.4.10).

3.4.4 Lax-Wendroff type theorem

We have used a compactness argument to show that under some reasonable hypotheses on the approx-
imations, numerical solutions computed by the spectral hyper-viscosity converge to a limiting time-
parameterized probability measure. In this section, we show that such a limit necessarily is a statistical
solution of the incompressible Euler equations in the sense of Definition [3.3.1

Theorem 3.4.13 (Lax-Wendroff type theorem). Let u2 be computed by the spectral hyper-viscosity
scheme with initial data T, and assume s — py in L (P), as A — 0. Then uy is a statistical solution
of the incompressible Fuler equations with initial data [.

Proof. Fix k € N. Let cpl,...,cpk € C(D x [0,00)) be given solenoidal test functions. Set ¢ :=
p1® - ® ¢, and denote vF = Vk gt Let u® be obtained from the spectral method, with initial
data @. Let us denote (u, @) = [}, u- cpd:z: Then, as a consequence of Lemma we can write

d
%(UA, i) = (u®,0p;) + (u® @ U™, Ve;) + (B2, ¢;),

where there exists L > 0 independent of A and the initial data @, such that the error term E® satisfies
B2 g-r < CA(1+ |[u|2,). Taking the product over i =1,...,k, we find

k

k
§H w0 =3 |TTw e | {00 + (Fu®), V) + (B9}

i=1 | j#i

where F(u) := u®u. Recognizing the special structure of the empirical measure p2 (3.4.2)) as a convex

A . . -
combination, denoting by v*4 = V;j _ax.t the k-point correlation measure corresponding to utA, we

obtain from the above identity that,

/OT/DIC@KA’&@...@&):@LP

+Z<yk,A7£1 @ QF(&)® - Q&) : V,, @drdt

+/ (TP 6@ - @ &) p(2,0) do (3.4.7)

/ / 7 CPJ (E ) ‘101) d:ut dt

z =1 ]757,

The right-hand side can be bounded by

/ / HuAnizlZHH%HLZHEAHHLusoznmduf

i=1 j#i

which, by Lemma is further bounded by

T
Cloa [ (o Il du (w .
o Jr2 ¥
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Note that if 77 is supported on Bjs(0) C L2, then it follows that u2 is supported on B (0), as well. This
is a consequence of the a priori L?-bound (1.4.8). Hence the error term in equation is in this case
bounded by CA, where C' = C(p,k, M, T) is a constant independent of A.

Let us also note that the terms on the left-hand side of converge strongly in Lt{f as A — 0.
Indeed, it is not difficult to see that all terms on the left -hand side, e.g.

gt,z,8) =1 ® - QF(&)® - ®&): Va,(x,1),

are admissible observables in the sense of (3.2.10)). For such observables, the L;m—convergence of

Wil gt 2, €)) — (gt 2,€)), as A — 0,

has been established in Theorem [3.2.13] The same holds true for the other two terms on the left-hand
side.
Passing to the limit 2 — py, it thus follows that

T
/ / <Vi{€,m7£1 o2 ®Ek> . atcp
o Jp*
+Z<Vtk,z7£1 @ - QF(&)® - Q&) : Vy,edrdt

+/ & @ @&): @(x,0)dr =0.
Dk

The fact that pu; is concentrated on incompressible vector fields follows immediately from the correspond-
ing property of the approximations ,utA (cp. Lemma . Furthermore, from Proposition it also
follows that the limit p; is time-regular. This finishes the proof that p; is a statistical solution of the
incompressible Euler equations with initial data 7. O

Remark 3.4.14. [t is straightforward to show that if u2 are generated from the spectral hyper-viscosity

scheme (1.4.4), and if they satisfy the assumptions of Theorem the limit p; is in fact a dissipative
statistical solution in the sense of Definition[3.3.4)

3.5 Numerical Experiments

In this section, we will present a suite of numerical experiments to demonstrate the effectiveness of the
Monte Carlo algorithm [3.4.1] in computing statistical solutions of the incompressible Euler equations.
For our numerical experiments, we use the implementation of the spectral hyper-viscosity scheme
provided by the SPHINX code, which has been reviewed in chapter [[:4 For the numerical experiments
reported below, we use a spectral viscosity operator of order s = 1 (cp. equation ), with ey = €/N,
€ = 1/20 unless otherwise stated. The Fourier multiplier @y is chosen with Fourier coefficients

1N/ k= VA,
B 0, otherwise.

Qn

corresponding to my = Vv N. Although the theory of section is valid for both two and three space
dimensions and the SPHINX code is available for both cases, we restrict our focus to two space dimensions
in this section, on account of affordable computational costs.
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3.5.1 Flat vortex sheet

Vortex sheets occur in many models in physics and are an important test bed for numerical experiments
for the Euler equations, [LM15] and references therein. We first consider a randomly perturbed version
of the flat vortex sheet that corresponds to the following initial data also considered in [LMT5],

1.0
1.80
0.8 135
0.90
0.6 0.45
0.00
0.4 —0.45
-0.90
0.2 ~1.35
-1.80
0.0
0.0 0.2 0.4 0.6 0.8 1.0

) ui-component ) uz-component

0.900 . 0.288
0.675 X 0.256
0.450 0.224
0.225 X 0.192
0.000 0.160
—0.225 O. 0.128
—0.450 0.096
—0.675 O 0.064
~0.900 0.032

. 0.000

(¢) mean: wui-comp. (d) variance: u1-comp.

0.900
0.675
0.450
0.225
0.000
—0.225
—0.450
—0.675
—0.900

0.6 0.8 1.0

Figure 3.2: Initial data for the perturbed discontinuous flat vortex sheet (p = 0), samples for u; 2, and
mean and variance of uy

Initial data

Given a smoothing parameter p > 0, and a parameter 6 > 0 (measuring the size of the random perturb-
ation of the interface), this vortex sheet initial data is of the form

w(z) = P(UP (21,22 + 05(x1))), (3.5.1)

where P denotes the Leray projection, U?(z) = (U?(x), U5 (z)) is the following smoothened flat vortex
sheet initial data:
tanh (22214 (25, < 1/2),

Ul (x) = 0 P(x) =0
i) tanh 3/477“ , (@2 >1/2), :(0)
and os(x) is a random function, which for a given (random) choice of parameters aq,...,aq € (0,9),
B1,..., B4 €10,2m), is defined by
q
= Zak sin(2rx; — B). (3.5.2)

k=1
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We will also consider the discontinuous case of initial data that are obtained in the limit p — 0 resulting
in

U0 i {+1, (1/4 < 25 < 3/4), U0 — 0.

—1, (otherwise),

For our simulations, we fix ¢ = 10 modes for the perturbations. The coefficients «j are drawn
independently, uniformly in (0, 1), and then multiplied by ¢. The coefficients S are i.i.d., with a uniform
distribution on [0, 27). The initial data for the statistical solution ﬁg € P(L2) is defined as the law of these
random perturbations. It depends on the two parameters p > 0, § > 0. While p controls the smoothness
of the initial data, § measures the amplitude of the perturbation. We fix 6 = 0.025 in the following and
consider different values of p. Note that the choice p = 0 corresponds to an initial measure supported
on discontinuous flows with a very sharp transition (see figure (A,B) for realizations (samples) of
this initial data). In figure (C,D), we present the initial mean and variance that correspond to the
random variations of the initial interface location.

Clearly when p > 0, the corresponding initial data for every sample is smooth. Consequently, smooth
solutions of are well-posed and the spectral viscosity method converges to this solution as N — oo
[BT15]. However for p = 0, which corresponds to the case of a discontinuous vortex sheet, there are
no well-posedness results even for weak solutions, as the vorticity corresponding to the initial data (for
each sample) is a sign changing measure and does not belong to the Delort class. In [LM15], the authors
had presented multiple numerical experiments to illustrate the approximate solutions, computed with
a spectral viscosity method, may not converge (or converge too slowly to be of practical interest) for
individual samples (see figures 5 and 6 of [LM15]). Hence, it would be interesting to study if approximate
statistical solutions, generated by algorithm [3.4.1| converge in this case.

Structure functions and Compensated Energy spectra

The convergence theorem based on the compactness theorem provides us with verifiable
criteria to check convergence of algorithm [3.4.1] In particular, we need to check certain decay conditions
on the structure function for small correlation lengths. To this end, we consider the following
instantaneous version of the structure function ,

1/2
2.8 = —u(z)]? zdp® (u 9.
S ) = (//]{m ule+ 1) ~ () dhdo )) , (3.53)

Note that the above is a formal definition and it can be made rigorous in terms of the time-dependent
correlation measures. It is much simpler to compute the instantaneous quantity than the time-
averaged version .

Our objective is to check whether the structure function , or rather its instantaneous version
, decays (uniformly in resolution A) as r — 0. Such a decay would automatically imply convergence
of the approximations to a statistical solutions by theorems and

Clearly if p > 0 in , the spectral viscosity method converges to the unique classical solution as
A — 0. Moreover, a straightforward calculation shows that the structure function should scale
as,

SZP () =7, VAL, (3.5.4)
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2(u)
2(u)

(a) p=0.1 (b) p=10.0

Figure 3.3: Instantaneous structure function (3.5.3) vs correlation length r for different resolutions
(N ~ A~ for different values of smoothness parameter p, at t = 0.4

This is indeed verified from figure (A) where we plot the structure function at t = 0.4 and
p = 0.1 for different values of the mesh parameter. We see from this figure that ST,’ () ~ 09 at
fine resolutions, which is very close to the expected value of 1 for the scaling exponent of the structure
function.

On the other hand, for p = 0, corresponding to the discontinuous flat vortex sheet, the lack of
smoothness inhibits us from inferring a particular form of decay of (or ) a priori.

Remark 3.5.1. We note that for the discontinuous flat vortex sheet, we have @ = (u1(x2),0), and hence

S’g(ﬁ;r)Qz/][ (e + b) — ()2 dh dz
T2 JB,.(0)

1

mre

IN

/ / |ﬂ1 (zo + hg) — U (.%'2)|2 dhs dhy dx
T2 J1ha,|ha|<r

4 [T _ _ 9
= - |U1(l‘2 + hg) — U1(1‘2)| dhg dJEQ.

rJ)_rx |ho|<T

Furthermore, since |hs| < r, we have that

(2 + hy >0, zo > 0),
(g + hy >0, z9 < 0),
, (24 ha <0, z92 > 0),
(2 + he <0, 29 < 0).

[ (z2 + h) — i (22)| = <2 Ly <rs

oS NN O

and hence

1/2
16
Sa(T;r) < —/ / dhs dxa =8r/2,
T Jlzs|<r Jho|<r

At least initially, the calculations of the previous remark imply that Sf”OA () ~ 72, for the discontinu-

ous flat vortex sheet. Surprisingly, we find from figure (B) that at fine resolutions, Sf”tA (pg) =~ 7052
also at t = 0.4, which agrees with the decay of the structure function of the initial data. Although



3.5. NUMERICAL EXPERIMENTS 69

we do not present the results there, we observe that the structure function scales as 7%, with
6; > 0.5 for all t. This implies an uniform decay of the structure function and convergence of the
approximations to a statistical solution of the Euler equations , even for this case of discontinuous
vortex sheet data. Note that the computed structure functions in figure clearly satisfy the
approximate scaling hypothesis and thus imply convergence through Theorem

102,
\/74‘.'7«
10! = I

100} :
w w 1
[=] [=]
kY kY —N=1024
1072 N=512
N=256
100} |=——N=128
—wnl/2
10- | = =my =N . /
10° 10t 102 10t 102
k k
(a) p=0.1,v=3 (b) p=10.0,7 =2

Figure 3.4: The instantaneous compensated energy spectrum Cﬁt (1e; K) (3.5.5)) for the flat vortex sheet,

at time ¢ = 0.4. Note different values of « for the smooth and discontinuous vortex sheets

An alternative criterion for convergence of statistical solutions is provided by the energy spectrum
decay in the inertial range (3.4.5). To check whether this criterion is satisfied, we follow Theorem [3.4.10
and compute the following instantaneous compensated enerqgy spectrum,

C (s K) := K7 E (g, K). (3.5.5)

Following the arguments in the proof of Theorem [3.4.10, we can relate the decay of the instantaneous
energy spectrum to the corresponding decay of the structure function by a direct analogue of
(13.4.6]).

For p =0.1in , we plot the compensated energy spectrum C:ﬁo‘zx(ﬂt; K) for all K and at time
t = 0.4, with compensating factor v = 3 in figure (A). Note that this choice of 7 is consistent with a
decay exponent of 1 for the structure function in (3.4.6), i.e. ST (uf;r) < r. We observe from this figure
that as expected for this case, the compensated energy spectrum is clearly bounded and in fact, decays
faster than the expected rate for the entire range of wave numbers.

On the other hand, we plot the compensated energy spectrum C2A,OV4(/J¢; K) for the discon-
tinuous flat vortex sheet case, i.e. p = 0 in , in figure (B). In this case, we expect from
the structure function computations (see figure (B)) that the instantaneous structure function decays
with an exponent of =~ 0.5. From , we see that this corresponds to the choice of v = 2 as the
exponent, of compensation in . Moreover, in figure (B), we also plot the line corresponding to
wave number my ~ VN, which for the spectral viscosity method represents the wave number
after which the spectral viscosity is activated and hence, demarcates the separation between inertial and
dissipation ranges. We observe from figure (B) that the compensated energy spectrum is clearly
uniformly bounded (in terms of the resolution A) for the whole inertial range and for all resolutions A
barring the coarsest resolution, and decays fast in the dissipation range, although there is a slight kink
upwards at the very end of the dissipation range, almost at the grid scale. This might be attributed to
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numerical errors, which are dominant at this range. Translating these results to the energy spectrum, we
see that the spectrum decays as K2 in the inertial range uniformly with respect to resolution. Hence,
according to theorems [3.4.10] and [3.4.13] the sequence of approximations will converge to a statistical

solution of (1.1.1)).

Convergence in Wasserstein Metrics

Given the computational results on the structure function and the compensated energy spectra, results in
section clearly imply convergence of the approximations 4, generated by the Monte Carlo algorithm
to a statistical solution of the incompressible Euler equations. Moreover from the discussion in
section we should observe with respect to the following Cauchy rates:

T
dp(pf, pp?) = / Wi () dt. (3.5.6)
0

Unfortunately, the calculation of the Wasserstein distance between probability measures defined on high-
dimensional (or indeed co-dimensional) spaces is a highly non-trivial issue, which we cannot tackle with
present computational resources.

On the other hand, one can compute finite-dimensional marginals of (3.5.6) by utilizing the com-
plete characterization of L{(P) in terms of correlation measures as given in Theorem [3.2.11} Following
[FLMW?20, Thm. 5.7], one can prove that,

k Wi (viyE vl de < O, 1), ae. t (3.5.7)
o

Here, £ > 1 and I/f g;k is the k-th correlation marginal corresponding to the approximate statistical
solution 8. Note that we consider instantaneous versions of the Wasserstein metric ([3.5.6)) for reasons
of computational convenience.
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Figure 3.5: The Wasserstein distances between correlation marginals [, Wl(l/f :If,k, uﬁ x/ 2’k) dx for k =
1,2, 3, at time ¢ = 0.4 with respect to resolution

We remark that computing the Wasserstein distances Wl(z/,f J;k,l/tA) z/ 2’k) for small k is much more

tractable. We have computed these Wasserstein distances using the algorithm of [BvdPPHI11| (as im-
plemented in [FCI17]) and the corresponding results for k = 1,2, 3, at time ¢ = 0.4 for the discontinuous
flat vortex sheet, i.e. p =0 in are presented in figure As seen from this figure, we observe
a clear convergence of these Wasserstein distances (in the Cauchy sense as in ) for the one-point,
two-point and three-point correlation measures, albeit at a slow rate for the second and third correlation
marginals. This, together with the results on the structure function and compensated energy spectra,
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provides considerable evidence that the approximate statistical solutions, generated by algorithm |3.4.1}
converge to a statistical solution of (1.1.1)). Moreover, given Theorem results shown in figure
establish convergence with respect to any admissible observable in the sense of , corresponding
of one-point, two-point and three-point statistical quantities of interest. These include mean, variance,
structure functions, energy spectra as well as three-point correlation functions.

3.5.2 Sinusoidal vortex sheet

In this section, we will consider a random perturbation of the so-called sinusoidal vortex sheet, i.e.
the initial vorticity is concentrated on a sine curve. This test case was extensively studied in a recent
paper [LM20] in the context of the numerical approximation of weak solutions (in Delort class) of the two-
dimensional incompressible Euler equations. Whereas [LM20] considered the deterministic problem with
fixed initial data, we will here follow a statistical approach, considering an initial measure fi supported
on small random perturbations of the sinusoidal vortex sheet. As discussed in [LM20], due to inherent
Kelvin-Helmholtz instabilities the computed numerical approximations for sinusoidal vortex sheet initial
data experience vortex sheet roll-up at ever smaller length-scales at increasing resolution A — 0 (and at
low diffusivity). These small-scale Kelvin-Helmholtz instabilities slow down, and at even smaller values of
A ultimately prevent the strong convergence of the numerical approximants to a limiting solution. In this
section, we will compare the convergence properties of the deterministic problem with the corresponding
perturbed statistical approach. In contrast to the deterministic problem, the quantities of interest in
the statistical setting, such as the mean, variance (as well as higher-order correlations), appear to retain
some smoothness even after the complex vortex sheet roll-up. This makes them amenable to numerical
approximation, even though the deterministic evolution cannot be stably resolved.

Initial Data

We fix a sinusoidally perturbed vortex sheet, where the initial vorticity is a Borel measure of the form
wozé(m—l")—/ dr,
T2

such that fT2 wodx = 0, and up to a constant, wy is uniformly distributed along a curve I', which is
defined as the graph:

I = {(a,y) |y = dsin(2ra), = € [0, 1]}.

We chose d = 0.2 for our simulations.
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(a) Sample (b) Mean (¢) Variance

Figure 3.6: Initial conditions for the horizontal velocity u; for the sinusoidal vortex sheet.
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The numerical initial data is obtained from the mollification of this initial data with a parameter
p > 0. As a mollifier, we consider the third-order B-spline
80
() = [(r+1)3 —4(r+1/2)% +6r% —4(r — 1/2)3 + (r — 1)3].
Next, we define 1,(xz) = p~2¢(|z|/p). The numerical approximation of the perturbed vortex sheet is
now defined by setting

(@) == / By — y)o(y) dy

where p determines the thickness (smoothness) of the approximate vortex sheet. The convolution at
x = (x1,72) € T? is evaluated via numerical quadrature:

(w0 )(x) = & D 0ole = (& 9ENVIF g P

with & = x1 + ip/Q equidistant quadrature points in 1, and g(§) the function whose graph is I, i.e.
g(&) = dsin(27€). We choose @ = 400 quadrature points. We denote by U?(x1, z2) the velocity field
such that div(U”) = 0 and curl(U”) = wf.
Similar to the case of the flat vortex sheet, we carry out random perturbations of the sinusoidal vortex
sheet as follows:
a”(x) == P(U”(x1, 20 + 0s(21)).

Here, P : L2 — L2 denotes the Leray projection onto divergence-free vector fields, and we again fix a
random function os(x),

q
os(x1) = Zak sin(2mrz1 — B),
k=1
depending on a parameter 6 > 0 and a choice of (random) coefficients v, ..., a4 € (0,6), B1,...,84 €
[0,27). For our simulations, we fix ¢ = 10 modes for the perturbations. In practice, the coefficients
ay, are first drawn independently, uniformly in (0,1), and then multiplied by §. The coefficients Sj are
ii.d., with a uniform distribution on [0,27). The initial data for the statistical solution ﬁf, € P(L?)
is defined as the law of these random perturbations. It depends on the two parameters p > 0, 6 > 0.
While p controls the smoothness of the initial data, § measures the amplitude of the perturbation. We
fix 6 = 0.003125 in the following and vary p as a function of the grid size N. To approximate vortex
sheet initial data, we must scale p = p(N) with N, such that p — 0 as N — co. We use p = 5/N for
our simulations. The additional diffusion parameter € of the spectral viscosity scheme is set to e = 0.01.
With this choice of parameters, we will drop the sub- and superscripts and denote the initial data at a
given resolution simply by @ € P(L2).

Computation of individual samples

For any single realization of the random perturbation os(z), the resulting vorticity of the initial data
(sample) is a positive measure, concentrated on a sine curve (see figure (A) for horizontal component
of velocity uy). Hence, any single sample of the initial data in the Delort class. Therefore, by the results
of [LM20], the approximate solutions generated by the spectral viscosity method will converge, on
increasing resolution, to a weak solution of . However, as noted in [LM20], this convergence can
be very slow as the flow breaks down into smaller and smaller vortices. In fact, this phenomenon is also
seen from figure (Top row), where we plot the horizontal component of velocity u; at time ¢ = 1.2
and different resolutions. At this time, the initial vortex sheet has rolled over and broken down into a
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Figure 3.7: Results at time T = 1.2 for the horizontal velocity w; of the sinusoidal vortex sheet, at
different resolutions. Top Row: Sample; Middle Row: Mean; Bottom Row: Variance.
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Figure 3.8: Cauchy rates for the norm of the velocity field (y/u? + u3) for the sinusoidal vortex sheet.
Slope A is determined by a best fit. Left: Sample convergence rates at three different times ¢t = 0, 0.6, 1.2.
Right: Convergence of mean and variance at T = 1.2
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succession of small vortices, whose location and amplitude are different for different resolutions. This very
slow convergence is also displayed in ﬁgure (A), where we plot the Cauchy rates ||[u®(t) —u®/?(t)|| L2,
with u® denoting the approximate solution computed with the spectral viscosity method , for
three different times ¢ = 0,0.6,1.2. As seen from this figure, the rate of convergence decreases very
rapidly and at time ¢ = 1.2, it appears as if there is no convergence on mesh refinement.
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(a) Instant. structure function (3.5.3) (b) Compensated energy spectrum (3.5.5)
with v = 2.2

Figure 3.9: The structure function and compensated energy spectrum for the sinusoidal vortex sheet at
time T'=1.2

Structure functions and Compensated energy spectra

Given this apparent non-convergence of individual samples, it is pertinent to investigate if computing the
statistics will be more convergent. To this end, we consider the initial data to be the initial probability
measure fi. The mean and variance (of the horizontal component ;) are plotted in ﬁgure (B,C). From
this figure, we observe that the initial probability measure is concentrated on very small perturbations
of the underlying sinusoidal vertex sheet, as reflected in the initial variance.

In order to investigate the convergence of approximations to the statistical solution, generated by
the algorithm [3:4.1] we follow the template of the previous numerical experiment and compute the
(instantaneous) structure function and the compensated energy spectrum in figure
From this figure, we observe that the structure function at time ¢ = 1.2 scales with an exponent of
~ 0.7 at the finest resolutions. From , this implies roughly a v = 2.4 in the scaling of the energy
spectrum . A better fit to the scaling of the energy spectrum is found with v = 2.2. We plot
the compensated energy spectrum with the latter value of v in figure (B). From this figure, we see
that for the inertial range, the energy spectrum clearly decays (faster than) a rate of 2.2. Thus, the
assumptions of theorems [3.2.7] are satisfied and the approximations will converge to a statistical

solution of (1.1.1)).

Convergence of observables and Wasserstein Distances

Given the results on the computed structure functions and energy spectra, the approximations will
converge. But is this convergence at a better rate than that of single samples? To investigate this issue,
we consider two different sets of computations. First, we compute the mean and the variance of the
velocity field at different resolutions and plot them (for the horizontal velocity at time ¢ = 1.2) in figure
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3.7 (Middle and Bottom rows). Clearly, the one-point statistics appear much more convergent than the
single sample results. The mean flow consists of a coherent set of large vortices, which is in stark contrast
to the large number of vortices formed in the single sample simulations. Moreover, we also plot Cauchy
rates for the mean and the variance, corresponding to the norm /u? + u3 at time ¢ = 1.2, and different
resolutions in figure [3.8] (B).
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Figure 3.10: The metrics [}, Wl(l/f g;k, Z/ﬁ w/ 2’k)dyc for the one- and two-point correlation marginals for

the sinusoidal vortex sheet at time ¢t = 1.2

Again, we observe that these one-point statistics converge at a significantly faster rate than the single
sample. These results indicate that one can expect significantly better convergence of approximations for
statistics than for individual realizations of fluid flows, even if the initial probability measure is a small
perturbation of the underlying deterministic data and further reinforces the results of Refs. [FKMTI7,
LMT5, [FLMW20] in this direction.

Finally, we plot the Wasserstein distances for £ = 1,2, corresponding to the one- and two-
point correlation marginals, at time ¢ = 1.2, in figure The results clearly show convergence in these
metrics at a significantly faster rate than for individual samples and indicate possible convergence in the
metric on probability measures on L2.

3.5.3 Fractional Brownian motion

The study of the evolution of initial ensembles corresponding to (fractional) Brownian motion stems from
Refs. [SAF92, [Sin92], where the authors model interesting aspects of Burgers turbulence by evolving
Brownian motion initial data for the (scalar) Burgers’ equation, see [FLMI8] for a more recent numerical
study. Similarly in [FLMW20], the authors consider the compressible Euler equations with (fractional)
Brownian motion initial data. Following these articles, we will consider the two-dimensional Euler
equations ([1.1.1)) with initial data corresponding to fractional Brownian motion, i.e. the following initial
data:

ug’H(w;x) = B (w; z), wg’H(w;x) = B (w; x). forweQ, xe D (3.5.8)

where Bff and BY are two independent two-dimensional fractional Brownian motions with the Hurst
index H € (0,1). Standard Brownian motion corresponds to a Hurst index of H = 1/2. The initial
probability measure 1z is the law of the above random field.
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Figure 3.11: A single sample of initial horizontal velocity u; for the fractional Brownian motion initial
data (3.5.8) for three different Hurst indices

To generate fractional Brownian motion, we use the random midpoint displacement method originally
introduced by Lévy [Lév92] for Brownian motion, and later adapted for fractional Brownian motion, see
section 6.6.1.

Considering fractional Brownian motion initial data is a significant deviation from the vortex
sheet initial data in the following respects,

e For the vortex sheet initial data, the initial measure @ € P(L2) was concentrated on a 20-
dimensional subset of L2 (corresponding to the choice of 20 free parameters ay, Bx). On the
other hand, in the limit of infinite resolution (A — 0), the fractional Brownian motion initial data
corresponds to a measure concentrated on an infinite dimensional subset of L.

e For any 0 < H < 1, and for any sample w € ), the initial vorticity for is not a Radon
measure. Consequently, the initial data does not belong to the Delort class and there are no
existence results for the corresponding samples. Hence, fractional Brownian motion does not fall
within the ambit of any of the available well-posedness theories for two-dimensional Euler equations.

e The Hurst index H in controls the regularity (and also roughness) of the initial data (path-
wise). Roughly speaking, each sample is Holder continuous with exponent H. Hence, we can
consider a very wide range of scenarios in terms of roughness of the initial data by varying the
Hurst-index H, see figure for realizations of the horizontal velocity field for three different
Hurst indices. In particular, one can observe from this figure that lowering the value of H leads to
oscillations of both higher amplitude and frequency in the initial velocity field.

Structure functions and Compensated energy spectra

In order to verify convergence of the approximations, generated by algorithm for the fractional
Brownian motion initial data 7 we will check if the computed structure functions decay
uniformly with respect to resolution, on decreasing correlation lengths. In ﬁgure (Top Row), we plot
the structure function at time 7" = 1 for three different Hurst indices of H = 0.75,0.5,0.15 and observe
that the structure functions indeed decay to zero at a certain exponent (independent of resolution).
These exponents are approximately 0.8 for initial H = 0.75, 0.6 for the standard Brownian motion initial
data (H = 0.5) and 0.55 for the initially rough H = 0.15. These results indicate that the conditions of
the compactness theorem [3.2.7] are fulfilled and the approximations converge to a statistical solution of
(1.1.1).
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Figure 3.12: Instantaneous structure function (Top Row) and Compensated energy spectrum
(13.5.5) (Bottom Row) for Fractional Brownian motion initial data with three different Hurst indices at
time 7' = 1. The compensated energy spectrum is computed with v = 1.3 (H = 0.15), v = 2.0
(H =0.5)and v =25 (H = 0.75)

This convergence is further reinforced by the computed compensated energy spectra , at time
T =1, for the three different Hurst indices shown in figure (Bottom Row). Based on the value of
the Hurst index, we choose the compensating index v = 2.5,2,1.3 for the H = 0.75,H = 0.5,H = 0.15,
respectively. These values of v are chosen to provide the correct scaling of the energy spectra at the
initial time ¢ = 0. As seen from figure the compensated energy spectra remain bounded up to the
final time ¢ = T', independent of the spectral resolution. Hence, the energy spectrum decays at least at
the rate of K~ for increasing wave number K, in the inertial range. Consequently, we can readily apply
Proposition [3.4.10] and conclude that the approximations, generated by the algorithm converge to
a statistical solution, for all three values of the Hurst index H in .

Convergence in Wasserstein distance

Next, we seek to verify convergence of observables (statistical quantities of interest). To this ends, we
follow the previous section and compute the Wasserstein distances [, W1 (VtA, ok VtA7 m/ 2’k)clan, corresponding
to the k-point correlation marginals for the three different Hurst indices of H = 0.75,0.5,0.15. In figure
these metrics are computed at time T = 1, for k = 1, 2, corresponding to one-point and two-point
statistical quantities of interest. As observed from the figure, the approximations clearly converge in this
metric for both one- and two-point statistics, at rates which are independent of the underlying initial
Hurst index. The two-point correlation marginals appear to converge at a slower rate than the one-point
Young measures. These results validate convergence of all one- and two-point statistical quantities of
interest. Taken together with the results for the structure function, compensated energy spectra and

Theorem [3.2.7] they strongly suggest convergence in metric dr (8.2.2) on LL.(P).
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Figure 3.13: Wasserstein distances [}, Wl(l/fg;k, VtA’z/z’k)dx for k = 1 (Top Row) and k& = 2 (Bottom
Row) for Fractional Brownian motion initial data with three different Hurst indices at time ¢ = 1.

3.6 Discussion

We have considered the numerical approximation of solutions of the incompressible Euler equations
in this chapter. The existence of classical (or weak) solutions is an outstanding open question in
three space dimensions. Although weak solutions are known to exist in two space dimensions, even for
very rough initial data, they may not be unique. Similarly, numerical experiments reveal that standard
numerical methods may not converge, or converge very slowly, to weak solutions on increasing resolution.

Given these inadequacies of traditional notions of solutions, it is imperative to find solution concepts
for that are well-posed and amenable to efficient numerical approximation. In this context, we
consider the solution framework of statistical solutions. Statistical solutions are time-parameterized
probability measures on L?(D;R9). Given the characterization of probability measures on LP spaces
in [FLMI7], these measures are equivalent to so-called correlation measures, i.e. Young measures on
tensor-products of the underlying domain and phase space that represent multi-point spatial correlations.
Furthermore, we require statistical solutions to satisfy an infinite number of PDEs (see Definition
for the moments of the underlying correlation measure. Hence, a statistical solution can be interpreted
as a measure-valued solution (cp. Definition , augmented with information about the evolution of
all possible multi-point spatial correlations.

Our aim in this chapter was to study the well-posedness and efficient numerical approximation of
statistical solutions. To this end, first, we had to characterize convergence on a weak topology on
the space L} ([0, T]; P(L?(D;R%))), under an assumption of time-regularity on the underlying measures.
Convergence in this topology amounted to convergence of a very large class of observables (or statistical
quantities of interest). We then proposed a notion of dissipative statistical solutions and also proved
partial well-posedness results for them in a generic sense, namely when the initial measure is concentrated
on functions sufficiently near initial data for which smooth solutions exist. This led to short-time well-
posedness if the initial probability measure is concentrated on smooth functions. In two space dimensions,
we proved global well-posedness for statistical solutions when the initial data is concentrated on smooth
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functions. Moreover, we also proved a suitable variant of weak-strong uniqueness.

The main contribution of the work summarized in this chapter is the proposal of an algorithm [3.4.1
to approximate statistical solutions of the Euler equations. This Monte Carlo type algorithm is a variant
of the algorithms proposed recently [FKMT17, [LM15, FLMW20] and is based on an underlying spectral
hyper-viscosity spatial discretization. Under verifiable hypotheses, we prove that the approximations
converge in our proposed topology to a statistical solution. These hypotheses either rely on a suitable
scaling (or uniform decay) for the structure function, or equivalently, on finding an inertial range (of
wave numbers) on which the energy spectrum decays (uniformly in resolution). These hypotheses are
very common in the extensive literature on turbulence (see [Fri95] and references therein). A key novelty
in the work summarized in the present chapter is the rigorous proof of the fact that easily verifiable
conditions on the structure functions or energy spectrum imply a rather strong form of convergence for
(multi-point) statistical quantities of interest. For instance, we observe a surprising fact that a bound
on the compensated energy spectrum implies that k-point statistics of interest, even for large
k, converge. The convergence results also provide a conditional global existence result for statistical
solutions in both two and three space dimensions.

We present results of several numerical experiments for the two-dimensional Euler equations. From
the numerical experiments, we observe that:

e Our convergence theory is validated by all the numerical experiments. The assumptions on the
structure functions and energy spectra appear to be very clearly fulfilled in practice. Moreover,
the computed solutions converge to a statistical solution in suitable Wasserstein metrics on multi-
point correlation marginals. In particular, all admissible observables of interest such as mean,
variance, higher moments, structure functions, spectra, multi-point correlation functions, converge
on increasing resolution and sample augmentation.

e In clear contrast to the deterministic case where computed solutions may converge very slowly
even if one can prove convergence of the underlying numerical method (see [LM20] and figure |3.8)),
statistical quantities of interest seem to be better behaved and converge faster.

e For our numerical examples, we observe convergence of approximations even when the initial data
was quite rough such as when the initial vorticity may not have definite sign (as in the flat vortex
sheet) or may not even be a Radon measure (as in the fractional Brownian motion with any Hurst
index H € (0,1)). For such initial data, the samples are not in the Delort class and the convergence
(and existence) theory for two-dimensional Euler equations is no longer valid. On the other hand,
we find neat convergence to a statistical solution.

Based on the above discussion, we conclude that statistical solutions are a promising solution framework
for the incompressible Euler equations. In particular, there is some scope for proving well-posedness
results within this class, possibly with further admissibility criteria. Moreover, numerical approximation
of statistical solutions is feasible with ensemble averaging algorithms. Statistical solutions can be a
suitable framework for uncertainty quantification and Bayesian inversion for the Euler equations and to
encode and explain numerous computational and experimental results for turbulent fluid flows.

There are several limitations of the work summarized in the current chapter, which provide directions
for future work. At the theoretical level, we seek to either relax the criteria on scaling of structure
functions or prove it. This will pave the way for global existence results. Similarly, the weak-strong
uniqueness results of this paper could be improved.

In terms of numerical approximation, the main issue with the Monte Carlo type algorithm [3.4.1] is
the slow convergence (in terms of number of samples). This necessitates a very high computational
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cost, particularly in three space dimensions. Future work could consider efficient variants such as multi-
level Monte Carlo [FLMI8, MSS12, [LMS16], Quasi-Monte Carlo and deep learning algorithms [LMR20],
for computing statistical solutions of the incompressible Euler equations in three space dimensions. A
rationale for the potentially improved efficiency of approximations of statistical solutions deep learning
algorithms, leveraging neural network based surrogate models, will be discussed in chapter [7] of the
present thesis.



Chapter 4

Physically realizable solutions and
energy conservation

In the last chapter, we have established a theoretical framework for statistical solutions of the incom-
pressible Euler equations. A central quantity in the study of the convergence of numerical schemes to
a limiting statistical solution was given by the (2nd-order) structure function SI (u2;7), measuring the
average two-point correlations in the flow. Numerical experiments indicate that these (statistical) struc-
ture functions are very well-behaved in practical computations, exhibiting a uniform decay at increasing
numerical resolution for a wide range of initial data. In the present chapter we aim to further study
the role of these structure functions in relation to one of the core questions of turbulence, namely the
question of anomalous energy dissipation in the zero-viscosity limit. We will consider this question in
both a deterministic and a statistical setting, and we will restrict our discussion to the two-dimensional
case. The present chapter summarizes the results of [LMPP21a].

4.1 Introduction

Turbulence is a defining feature of fluid flows at high Reynolds numbers [Fri95]. It is characterized by
the dynamic generation of structures (eddies) at small scales and by the cascade of energy from large
scale features of the flow to ever smaller scales.

Arguably, the famous K41 theory of Kolmogorov provides the most coherent explanation for fully-
developed turbulence. As presented in [Fri95], it is based on the incompressible Navier-Stokes equations
with initial data @, given by (cp. (1.2.3) in chapter[1),

ou’ +u” - Vu’ + Vp” = vAu”,
. B (4.1.1)
div(u”) =0, u"|i=0 =1,

Here, the velocity field is denoted by u” € R? (for d = 2,3), and the pressure is denoted by p* € R. For
any given wviscosity v > 0, it is straightforward to see that the incompressible Navier-Stokes equations
formally satisfy an energy balance equation of the form

dl/ 9 / 9
—— u’|?dr = —v Vu”|? dx.
3 ) [ vw|
1

Here, the left-hand side describes the time evolution of the kinetic energy E(t) = 3[lu”(t)||3., while the
right-hand side term describes the energy dissipation at small scales by viscosity. It is clear from this

81
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equation that we should expect E(t) to be non-increasing in time, E(t) < E(0) for all ¢ > 0; in fact, we
should at least expect that suitable solutions of (4.1.1)) satisfy

E(0) - E(t) ~ V/O IVu”|72 da (4.1.2)

Given that turbulence appears at high Reynolds number (low viscosity), the behavior of the energy
dissipation (the right hand side of the energy balance ) is of great interest. In fact, one of the
fundamental postulates of Kolmogorov’s K41 physical theory of fully developed homogeneous isotropic
turbulence is that (v||Vu”||2,) — € > 0, as v — 0 [Kol91, [KLHT91]. Here, (...) refers to a suitable
ensemble average (or long time average under an ergodicity hypothesis). In other words, a cornerstone
of Kolmogorov’s theory is the assumption of anomalous, i.e. finite, non-zero energy dissipation in the
infinite Reynolds number limit.

Formally, taking the infinite Reynolds number limit (v — 0) in the Navier-Stokes equations and
assuming that u” — wu, implies that u satisfies the incompressible Fuler equations:

du+u-Vu+ Vp=0,
{ ' b (4.1.3)

div(u) =0, u|i= =1.

We recall from chapter that the issue of anomalous dissipation in turbulent flows was cast in terms
of solutions of the incompressible Euler equations by Onsager in [Ons49], who observed that Hoélder
continuous solutions of the incompressible Euler equations u € C* should conserve energy provided that
a > 1/3, but might exhibit anomalous dissipation if @ < 1/3, even in the zero viscosity limit. The
existence of energy-dissipative solutions u € C* for o < 1/3, so-called wild solutions, has been recently
shown in [[sel8, BALSV19|] for the three-dimensional case, based on pioneering work of DeLellis and
Szekelyhidi in [DLS09] where convex integration techniques were adapted to the study of fluid flows.
However, there is an essential caveat in the construction of these wild solutions: At the outset, it is
unclear if these wild solutions can be realized as vanishing viscosity limits of the Navier-Stokes equations
. If not, their link to the questions of anomalous dissipation in turbulent flows is rather tenuous.

It is widely known that vanishing viscosity limits might exhibit additional structures that could well
constrain the formation of energy dissipative solutions. This is especially true in two space dimensions, as
there is a critical role played by the vorticity w = curl(u) of the flow. In fact, in a recent paper [CFLST6],
the authors prove that if a weak solution of the incompressible Euler equations w with initial data having
vorticity w € LP, p > 1, is obtained as the limit ©¥ — u of solutions u” of the v-Navier-Stokes equations
with the same initial data, then u is energy conservative. On the other hand, @w € L?, p > 1 does
not imply that w € C* for a > 1/3.

A critical assessment of the results of the paper [CFLS16] motivate us to ask the following questions:
first, can one extend the energy conservation results of [CFLST6] to even rougher initial data? In two space
dimensions, Delort [Del91] (see also [VW93]) proved existence of weak solutions of the incompressible
Euler equations, even when the initial vorticity @ € H=! N M and @ can be written as the sum of a
bounded measure of distinguished sign and a function in L?, 1 < p < oo. Hence, we are interested
in investigating if weak solutions of the Euler equations (realized as a vanishing viscosity limit of the
Navier-Stokes equations), with measure-valued initial vorticity, are energy conservative. Such initial data
correspond to interesting physical scenarios such as vorter sheets. In two dimensions, the vorticity of
vortex sheet initial data is initially distributed along a (smooth) curve ~y. Classically, the dynamics of
such vortex sheets has been studied by considering the evolution equation for ~;, known as the Birkhoff-
Rott equation. From the results presented in [Shv(09] (pertaining to both two and higher dimensions), it
follows in particular that classical vortex sheet solutions conserve energy as long as the evolving curve 7,
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remains sufficiently smooth [Shv09, Corollary 11]. Short-time existence and regularity results for ; are
known for a suitable class of analytic initial data [SSBF81] [Caf8§], but in general, numerical evidence
[Kra86b] indicates that global existence is precluded by the occurrence of a roll-up singularity. The energy
conservation results for classical vortex sheets could thus suggest that an energy conservation result holds
also in the zero-viscosity limit, at least before the occurrence of vortex sheet roll-up. Through careful
numerical experiments, we will investigate the evolution of vortex sheets even well beyond the time of
roll-up singularity.

In addition to the question of energy conservation in the zero-viscosity limit, we are interested in
investigating if limits of other interesting approximations of the two-dimensional Euler equations, for
instance numerical approximations such as the spectral viscosity method [Tad04, BT15], are energy
conservative.

Another aspect of the results of [[sel8 BALSV19l [CFLS16] is the fact that they pertain only to
deterministic solutions. On the other hand, most descriptions of turbulence, including the K41 theory,
are probabilistic in nature, with the anomalous dissipation hypothesis being considered for ensemble
averages [Fri95]. It is natural to ask if the analogous energy conservation results hold for a probabilistic
description of turbulent flows.

Given these questions, the main goals and results summarized in the current chapter are:

e We prove that any weak solution u of the two-dimensional incompressible Euler equations ,
which can be obtained as a strong limit w” — w in L}([0,7]; L2) in the zero viscosity limit of the
incompressible Navier-Stokes equations , v — 0, must be energy conservative. This implies in
particular energy conservation for the large class of initial data for which strong L?-convergence (in
C([0,T); L2)) has been proven in [FLT00], and extends the results of [CFLSI6] to initial vorticity
beyond LP, p > 1.

e We consider the probabilistic framework of statistical solutions, proposed for the Navier-Stokes
equations in [FMRTOS8]| and references therein, and more recently for the Euler equations in [FLM17,
FWI8| [LMPP21b] and prove analogous energy conservation results for statistical solutions of Euler
equations, in particular, those that arise as limits of a spectral viscosity-Monte Carlo numerical
approximation of [LMPP21h].

e For both sets of results, we express the strong compactness of approximating sequences in terms of
uniform decay of the so-called structure function . The structure function appears repeatedly
in the turbulence literature [ETi95] and references therein, as well as in the more recent mathematical
discussions of [CG12, [CVI8, IDN19], and it can be computed in numerical approximations and
measured in experiments. Thus, characterizing energy conservation (and anomalous dissipation)
in terms of the structure function is very convenient.

e The validity of the proposed theory is illustrated in terms of different numerical experiments. In
particular, we consider initial data that don’t necessarily belong to the class considered by Delort in
[Del91] and for which no compactness/existence results are available. Numerical experiments reveal
that the approximate solutions possess the desired decay of the structure function and computed
energy is conserved in time.

The rest of this chapter is organized as follows: in section [4.2] we characterize energy conservation for
the vanishing viscosity limit. Energy conservation for numerical approximations to statistical solutions
of is considered in section and numerical experiments to illustrate and complement the theory
are presented in section |4.4
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4.2 Energy conservation of vanishing viscosity limits

Our goal in this section will be to characterize the conservation of energy in weak solutions of the two-
dimensional Euler equations (4.1.3), that arise as vanishing viscosity limits of the Navier-Stokes equations
(4.1.1). For the convenience of the reader, we here recall the definition of approximate solutions sequences

introduced in chapter [1| (cp. Definition [1.3.5]):

Definition 4.2.1. Let {uy}, k € N, be a uniformly bounded sequence in L>([0,T]); L?>(T?;R?)). The
sequence {u} is an approximate solution sequence for the incompressible Fuler equations, if the
following properties are satisfied:

1. The sequence {uy} is uniformly bounded in Lip([0,T); H=X(T?;R?)), for some (possibly large)
L>1.

2. For any test vector field p € C2°([0,T) x T% R?) with div(yp) = 0, we have:

T
lim / / pr-uk + (V) @ (ug @ ug) de dt +/ ©(2,0) - ug(x,0)dx = 0.
o Jr2

k—o0 T2

3. div(uy) = 0 in D'([0,T] x T?).

We shall often denote (spatial) LP spaces, such as LP(D;R?) in the abbreviated form L2 in the
following, provided that the domain and co-domain are clear from the context. Similar notation will be
used to denote time-dependent Bochner spaces LY L2 := LP([0,T]; L2), where it is understood that the
temporal domain is [0, 7] for some fixed T > 0.

Our interest is in particular approximating sequences that stem from the weak solutions of the Navier-
Stokes equations. Hence, following [CFLS16], we define,

Definition 4.2.2. A weak solution u € L*([0,T]; L2) of the incompressible Euler equations with initial
data w € L2 is physically realizable, if there exists a sequence u’*, such that each u** € C([0,T]; L?)

1. is a solution of with viscosity v, — 0 (k — 00),
2. u¥*(t = 0) — u strongly in L2, (k — o),
3. and u’* — w weakly in L(L2).
In this case, we will refer to the sequence u’* — u as a physical realisation of u.

As mentioned in the introduction, we seek to characterize compactness of approximating sequences
and energy conservation in terms of the structure function. We recall the definition of the structure
function. Given u € L2, the structure function Sy(u;r) for 7 > 0 is defined as follows:

1/2
)= ulx —ulxr 2 i . N
S (us ) (/D]fm (& + 1) — u(z)| dhd) (4.2.1)

Similarly, the time-integrated structure function S¥ (u;r) for uw € L?L2, is defined by setting

- 1/2
ST (u;r) := (/0 So(u(t);r)? dt) . (4.2.2)
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Remark 4.2.3. As pointed out in [DN19, eq. (21), (22)], the structure function ST (u”;r) for solutions
u” of the Navier-Stokes equations at diffusive length scales r € |0, Vl/(Q_QO‘)] satisfies an a priori algebraic
decay of order a € (0,1) (see also [LMPP2IY, Lemma 4.5] for a corresponding statement for the spectral-
viscosity scheme). Indeed, from the L*([0,T|; HY)-bound, it is immediate that S3 (u”;r) < Cr/\/v, where
C depends only on |[u”(t = 0)||2. So if r < v/ =29 then r/\/u < r® and consequently, the algebraic
decay ST (u”;r) < Cr® is satisfied in this range. In particular, to numerically verify an algebraic decay
assumption ST (u”;r) < Cr®, it suffices to consider only a finite range, e.g. r € [V'/(272%) 1],

Remark 4.2.4. A measure of reqularity very similar to the structure function has previously been
employed in [CG12,[CV18,[DN19] to study the convergence of solutions of the Navier-Stokes equations to
solutions of the Euler equations in the zero-viscosity limit, notably on bounded domains D C R?, d = 2,3,
with reqular boundary. In this context, it has been shown [DN19] for both no-slip and Navier friction or
slip boundary conditions, that the validity of a uniform algebraic upper bound,

limsup/ |u” (x + h) — u”*(z)|* dz < C|h°,
v —0 A

for all A€ D (here C = C(A) >0, ¢ = ((A) € (0,2)), is a sufficient condition to conclude that the weak
limit u”* — w is a weak solution of the Euler equations on D.

In the present work, we will relate uniform (and not necessarily algebraic) decay of the structure
functions to compactness properties and energy conservation of approximating sequences in the two-
dimensional case. To this end, we need the following technical results: The first one follows from a
simple calculation.

Lemma 4.2.5 ([LMPP21a, Lemma 2.5]). We have for any u € H}:

2
/][ |h-Vu(x)\2dhdx=r—/ V()| dz.
D JB,.(0) 4 Jp

The second technical inequality we will need is given in the following Lemma.

Lemma 4.2.6. There exists an absolute constant C > 0, such that for any w € H2 and any r > 0, we
have the following inequality

289 (u;
Jolsg < OrlTalzy + 222050, (123

where w = curl(u).
Before proving Lemma [£.2.6] we remark on its significance in the present context.

Remark 4.2.7. Note that if w is in HY for some 0 < a <1, then So(u;7) S |[ul|gar® and the estimate

[4.2.3) implies that

lullz < rllullaz + ol g
This estimate can also be obtained from the following interpolation inequality
el s < el g’ el e < rlluallzz + 70707 ] e

for r > 0, where 0 is chosen such that 1 = 2(1 — 0) + b, i.e. 8§ = 1/(2 — «); implying once again an
estimate of the form
lullaz S rllullaz + ol e
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for any v > 0. Note also that with a suitable choice of r, the original interpolation estimate for ||u| g1
in terms of ||ul|gz, ||ulme can be re-obtained from the latter estimate.

In this sense, Lemma [4.2.6] can be thought to generalize such H%-type interpolation estimates to
situations where one only has uniform bounds on the structure functions, instead of an explicit H®
estimate.

Proof of Lemma[4.2.6. By an approximation argument, it is sufficient to prove the claimed inequality
for uw € C°° N H2. In this case, it follows from Taylor expansion that for any z, h, we have the following
equality

u(z+h) —u(z) =h-Vu(z) + /01(1 —t)(h® h) : Viu(z +th)dt.

Let now D(x,h) :=u(z + h) — u(z), G(x,h) := h - Vu(z) and
Rl h) = /1(1 —O)(h® h) : Vu(z + th) dt.
0

Fix r > 0. Define a measure m on D x D by

/Dfo(JJ, h) dm(z, h) :/D]ir(o) f(x,h)dhdz.

It follows from the equality G(x, h) = D(z,h) — R(x, h) that

1G22 amy < ID@ A2, amy + 1R )12, -

We note that by Lemma [4.2.5] we have

1/2
r T
166 Ml am = 5 [ IVu@Pde) = Dlolizan,
’ D

Furthermore, we note that — by definition — [|[D(z, )12 , (am) = S2(u; 7). Finally, it is easy to see that
there exists a constant C' such that ’

IRz, M)z, (am) < Cr3||V?u| 12 (az) < C7?(|Vw| 12 (da)-

Combining these expressions (and possibly enlarging the constant C'), the claimed estimate follows. [

As mentioned in the introduction, the energy conservation results of [CFLSI6] are a starting point
for this work. In |[CFLS16|, the authors characterize energy conservation in terms of uniform a priori
estimates on the vorticity w of the approximating sequences. In order to introduce the reader to our
generalizations of the results of [CFLS16], we begin with the following theorem that recasts the energy
conservation results of [CFLS16] in terms of the structure function.

Theorem 4.2.8. Let u be a weak solution of the incompressible Euler equations which is the physical
realisation in the zero-viscosity limit of a sequence u’* — w, as vy — 0. If there exist constants C,a > 0,
such that Sa(u"*(t);r) < Cre for allt € [0,T], k € N, then u is energy-conservative.

As the proof closely follows the arguments of [CFLS16], we provide a sketch below.

Sketch of proof. Under the assumption of algebraic decay of the structure function at each ¢ € [0,T],
we have strong compactness of u”* in C([0,T]; L2). In particular, it follows from the weak convergence
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u* — wu that in fact u”* — w in C([0,T]; L2). Thus, for any t € [0,T], we have (cp. equation (1.3.15)
in chapter [1

t
o)l [l = tim (@)1 ~ [ O)F;) = tim 2 [l (6) 5 ds.
® ® —00 e z k—o0 0 z

The central point of the argument is to show that under the present assumptions

T
uk/ " (D] dt =0, (v = 0).
i :

The vorticity equation implies the following enstrophy equation

d 12 Vi
pr LON122 = —20l| VW (1)1 22 (4.2.4)

We remark that [lw”(¢)|2 < oo for £ > 0 (cp. Theorem [1.3.15)). By assumption and the last lemma,

we can now estimate
[w” (|2 < Cr||Vw| L2 + Cro—, (4.2.5)

where C,a > 0 are absolute constants and r > 0 is arbitrary. Balancing terms, we choose r =
Vwrr 721/(270‘). We obtain
L

o [lzz < Ve G 3=, (4.2.6)
implying (together with equation (4.2.4)) that there is a constant ¢ > 0 such that
d v, v 22—« 11—« v 2(2+6
gl Ol < —emllw O = —anfo @175,

where d > 0 is chosen so that 2(2 +0) =2(2 — a)/(1 — «), i.e.

a
0= . 4.2.7
I~ (4.2.7)
If we now write y,, = ||w”||2,, then we have obtained the following inequality
i < 240 4
Yo < =Y, 0 (4.2.8)

dt

This differential inequality is of the same form as the one that has been used in [CFLSI6] to prove
energy conservation provided w € LP (p > 1). Following the argument in [CEFLSI6], one shows that

(4.2.8) implies that

Cla)

o (4.2.9)

Yoo (1) = [l (1) 172 <

Note that since @ > 0, this last estimate is an improvement over the straightforward estimate from
Navier-Stokes equations (see Theorem |1.3.15]), which would instead have only provided an upper bound

C
Vi t 2 < .
o (s < 5.
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which formally corresponds to setting @ = 0 in (4.2.9). This improved estimate is crucial to prove energy
conservation, since we now find that

T T
v, —(1—« dt Cla)T .
o R A e G )

0 o

as v, — 0. This shows that the energy dissipation vanishes at a rate S v as v — 0. Evidently, based
on this estimate, the energy dissipation is expected to be larger for rough flows (corresponding to smaller
values of a > 0). Finally, in the limit o — 0, in which case we have no uniform control on the structure
functions, nothing can be said about energy conservation. O

The central point of the proof of Theorem[4.2.8] as outlined above, is that uniform control on the struc-
ture functions implies an improved estimate for [[w”*(¢)||2, over the straightforward estimate provided
by Theorem Based on this improved enstrophy estimate, it can then be shown that the energy
dissipation

T
n [ e Ol dt 0. (0 0)

converges to 0, hence implying energy conservation in the zero-viscosity limit.
More precisely, an algebraic decay of the structure functions

Sa(u*;r) < Cre,

implies a similar bound on the energy dissipation

T
uk/ | (£)||22 dt < Cup,™. (4.2.10)
0 x

Remark 4.2.9. Recently, Drivas and Eyink [DET19] have obtained a similar upper bound on the energy
dissipation of Leray solutions in the higher dimensional case, but under stronger assumptions on the
sequence u’*. In particular, it is shown in [DET9, Lemma 1], that ifu’* € L3([0,T]; B3">°(T%)), o € (0,1]
are uniformly bounded as vy, — 0, then the energy dissipation is bounded for some vi-independent constant

C by:
30—1
/ / u] de dt < O |
Td

Here, the energy dissipation measure e[u”*] satisfies e[u”] > v|Vu’|? for d > 2, and e[u”] = v|Vu”|? in
the two-dimensional case, d = 2. Above, B3’ *°(T4) denotes the corresponding Besov space.

Based on the bound (4.2.10)) in the two-dimensional case, it is now natural to ask whether a uniform
(but not necessarily algebraic) decay such as,

So(u;r) < o(r),

with ¢(r) being a modulus of continuity, i.e. the function ¢ : [0,00) — [0, 00), such that ¢(r) > 0 for all
r >0 and ¢(r) — 0, as r — 0, will imply an estimate of the form,

T
z/k/ W’ (t)||22 dt = 0, (1) = 0, (vp — 0)?
0 x

Here, we would clearly expect the decay of o0,, (1) — 0 to depend on the properties of the modulus of
continuity ¢(r), as r — 0.
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As we will prove below, the answer to this question is positive, and the energy dissipation term
can be shown to converge to zero as v, — 0, provided that the structure functions decay uniformly,
though not necessarily algebraically. However, it turns out that a more natural way to measure the
uniform decay of the sequence u”* is in terms of the time-integrated structure function SI (u"*;r) ,
instead of So(u”*; ) . In particular, uniform decay of this structure function allows us to precisely
characterize compactness of sequences in LP([0,T]; L2), for 1 < p < oo, as stated in the proposition
below.

Proposition 4.2.10. Fiz 1 < p < co. Let {u"*}en be an approzimate solution sequence of the incom-
pressible Euler equations. Then u"* is strongly relatively compact in L ([0,T); L2) if, and only if, there
exists a uniform modulus of continuity ¢(r), such that

ST(w”:r) < ¢(r), ¥r>0, VkeN.

The proof of this technical proposition is provided in [LMPP21al Appendix B|. Now, we are ready to
state the main result of this section about characterizing energy conservation of approximating sequences
to the Euler equations (4.1.3), in terms of the structure function. We have the following theorem:

Theorem 4.2.11. Letw € L2 be initial data for the incompressible Euler equations. Letw € L{°([0,T); L2)
be a physically realizable solution of the incompressible Fuler equations with initial data w. Let u’* — u
be a physical realisation of w. Then the following are equivalent:

1. u”* — u strongly in LP([0,T]; L2) for some 1 < p < o0,
2. There exists a bounded modulus of continuity ¢(r), such that (uniformly in k)

ST (u"*;r) < ¢(r), ¥Vr>0, VkeN.

3. u is a energy conservative weak solution.

Sketch of proof. For the full details of the proof, we refer to [LMPP2Ial Theorem 2.11]. Here, we will
restrict attention to the core observation of the main implication (2) = (3): We assume that there exists
a modulus of continuity ¢(r), and a physical realisation u”* — wu of u, such that we have a uniform
bound

ST (u"*;r) < ¢(r), Vr>0, VkecN.

We want to show that u is energy conservative. The main ingredient is to show that for fixed § > 0, the
energy dissipation term vanishes in the zero-viscosity limit:

T
uk/ s (t)||22 dt — 0, as vy — 0. (4.2.11)
s 2

To simplify the notation, we will drop the subscript £ in the following, and denote the sequence
v — 0 instead by v — 0. To prove (4.2.11)), we observe from the vorticity transport equation that,

t
lw” (l32 = o (6) ]2 — 20 /5 Ve ()]132 ds. (4.2.12)

From the structure function estimate (4.2.3)) it follows that we have a bound

a2 2 [ V(a2 ¢(r)?
/6 [w”(s)l|72 ds < Cr /6 [Vw”(s)|72 ds +C . (4.2.13)

r2
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for all » > 0. Choosing r to balance terms on the right-hand side, we make the particular choice

—\1/2 ~1/2
r= 6(7) 7> Where T := ¢

/47 /4>
(J3 19e(5)13, ds) (Ji 19e(5)13, ds)

Here, ¢ > 0 provides an upper bound ¢(r) < ¢. The first term of (4.2.13) is given by

1/2
o / Ve (5)]25 ds = Co(F) (/ IV (s ||L2ds) .

To estimate the second term, we note that r <7 impliesﬂ o(r) < ¢(F), and hence

1/2
o0 < oy (/ IV (s ||L2ds) .

72

Estimating the right-hand side terms of (4.2.13]) in this manner and taking the square of both sides, we

deduce that )
t t
([ 1@ as) <o [ 19013 as (42.14)

Let us denote y,(t) := Vf6 [lw” (s ||L2 ds, and z,(t f5 [Vw”(s)||32 ds. Equation ([4.2.14) can be
re-written in the form )

_ —1/2
(0 /v)? < Co (5z,,1/4) 2 8=
Consider now the function f : [0,00) — [0,00), z = f(z) := Cp(Bz~/*)z for z > 0, and f(0) := 0. Since
¢(r) is a bounded modulus of continuity, we have

(4.2.15)

sup f(2)/z= sup C¢(r) < oo. (P1)
2€(0,00) r€(0,00)
Furthermore, we note that
limsup f(z)/z = lim Cp(Bz"*) = lim Cp(r) = (P2)
2300 z—00 r—0

i.e. f(z) < z has sub-linear growth. Intuitively, we would therefore expect the inverse of f(z) to grow
super-linearly, f~1(y) > vy, as y — oco. Unfortunately, there is no guarantee that z — f(z) is invertible.
This technical point is handled by the following lemma:

Lemma 4.2.12 (see [LMPP2Ial Lemma C.1]). Let f : [0,00) — [0,00), z — f(z) be a non-negative
function with the following two properties:

(PI) SUPze(0,00) f(Z)/Z < o0, f(O) =0,

(P2) f(z) grows sub-linearly at infinity: f(z) < z, as z — oo, i.e. limsup,_,., f(z)/z=0.

Then there exists a continuous, strictly monotonically increasing function F : [0,00) — [0,00), z — F(z),
such that F(z) > f(z) for all z € [0,00). Furthermore, the inverse F~1 :[0,00) — [0,00), y — F~1(y),

can be represented in the form F~'(y) = o(\/y)y, where (i) o : [0,00) — [0,00) is a continuous,
monotonically increasing function, and (i) o(\/y) — o0 as y — co.

1By replacing ¢(r) by ®(r) := SUp, <, ¢(s), if necessary, we may wlog assume that r — ¢(r) is monotonically increasing.
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Since f(z) satisfies (P1]) and (P2)), we can construct a function F'(z) > f(z) with the properties of the
last Lemma. In particular, the inverse of F(z), F~!:[0,00) — [0,00), y = F~!(y) is a monotonically
increasing function which can be represented in the form

F () = yo (VD). (1.2.16)
By (4.2.15)), the definition of f(z) and the fact that f(z) < F(z), we have (y,/v)? < f(2,) < F(z,),
uniformly for all v. By the monotonicity of F~!(y), this implies that F~1((y,/v)?) < z, for all v and

further implies that,
1 2 Yu(t)
sl (Y40 <500,

by our representation (4.2.16) of F~!. Recalling that z,(t) := f; [Vw”(s)||32 ds, we can equivalently
write this estimate in the form

=2 [V ()13 ds = —72,(0) < (00 (y“)) | (4217)
)

14

and we note that y,(t) = yf; lw” (s)]|2, ds, by definition. Making use also of the apriori inequality
vllw”(0)||172 < |[@l|72 /0 (cp. Theorem [1.3.15)), it follows from estimate (4.2.17) and the enstrophy equa-
tion (4.2.12)) that

%yy(t) < |u|5Lz' —y(t)?o (y”(t)) : (4.2.18)

v

As a consequence of the last inequality (4.2.18]), we now claim that for any ¢ > 0, there exists a vy(€) > 0
such that y,(t) < € for all v < vg(e). Indeed, if y,(t) > €, then the differential inequality (4.2.18]) above

implies that

d [alli. , /e

Zu(t) < - (£).

dtyy( )< § 7\
We recall that by construction ¢ is a monotonically increasing function, and o(y) — oo as y — 0.
Therefore, choosing vy = vo(€, 0,6, |[a 12) sufficiently small, we can ensure that for all v < 1y we have
o (£) > |[al|3./(e?6), or equivalently

—
”u”L'Q” —éo (E) <0.
) v

This implies that dy,/dt < 0 whenever y,(t) > € and v < vy. Since ¢t — y,(¢t) > 0 is continuously
differentiable for any v > 0 and since ¥, (6) = 0, independently of v, this implies that y, (¢) cannot leave
the set {y € R|0 <y < ¢} for any t € [§,T], provided that v < vy. In particular, we conclude that for
t="1T:

T
limsupu/ |w” (£)||22 dt = limsupy, (T) < sup y,(T) < e.
v—0 5 » v—0 v<vg

As e > 0 was arbitrary, this is only possible if
T
lim y/ llw” ()||22 dt = 0. (4.2.19)
v—0 5 x

To summarize: Assuming that SI (u”;r) < ¢(r) is uniformly bounded by a modulus of continuity ¢(r),
we have shown that for any 6 > 0, the expression l/féT [[w” ()| dt converges to zero as v — 0. An
additional technical argument, provided in detail in [LMPP21al Proof of Theorem 2.11], then allows us

to conclude that [[u(t)|z2 = [|@][zz2, for a.e. t € [0,T7], i.e. u is energy conservative.
O
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Clearly Theorem is a special case of the above Theorem Moreover in [CEFLST16], the
authors have shown that physically realizable weak solutions of the two-dimensional incompressible Euler
equations are energy conservative, provided that the initial vorticity @” = curl(@”) € L are uniformly
bounded, for some p > 1. This result readily follows from the characterisation provided by Theorem
4.2.11} If w” is the solution of with viscosity v > 0, and uniformly bounded initial vorticity
l”]| Lz < C, then the vorticities w” = curl(u”) are bounded in C([0,77; L2), uniformly as v — 0. In
particular, this implies that {u”} is precompact in C([0,T]; L2) < L#([0,7]; L2). Hence any such limit
u”* — u must be energy conservative according to Theorem [£.2.11]

Next, we aim to use the characterization of energy conservation in Theorem and generalize the
results of [CFLS16]. To state the next lemma, we denote by (w”)* the decreasing rearrangement of w"
[Lio96]. We recall that the Lorentz space L(1:?) is defined by

L2 — {w € Ll(’]TQ)‘ /0T2| (/Osw*(r) dr>2 % < oo}.

It is well-known that L(12) embeds continuously into H~! [Lio96]. We now recall the following Lemma
from [Lio96, Lemma 4.1]:

Lemma 4.2.13. A family {w’} C L2 is precompact, if the following conditions hold:

1. There exists C' > 0, such that ||w”| a2 < C uniformly in v,
2. foé(fos(w”)*(r)drf% — 0 as 6 = 0, uniformly in v.

Extending the result of [CFLS16] somewhat, we note in particular the following corollary of Theorem

E2.TT

Corollary 4.2.14. Let u be a physically realizable weak solution of the incompressible Fuler equations
with initial data w € L2, obtained in the zero-viscosity limit u’* — u (v — 0), u’*(t = 0) = w”’*. If the
initial vorticities W”* = curl(w"*) satisfy the conditions of Lemma then u is energy conservative.
In particular, the limit is energy conservative, provided that the initial vorticities w”* belong to a bounded

subset of a rearrangement invariant space with compact embedding into H; .

Proof. The conditions of Lemma |4.2.13| are preserved by the solution operator of the Navier-Stokes
equations. Thus, if {w"* |k € N} satisfy the conditions of Lemma and hence are precompact
in L(1:2) then also {w"(t)|t € [0,T], k € N} belongs to a compact subset of L(}?) ¢ H_ !, again by
Lemma In particular, it follows that {u”*(t)|t € [0,T], k € N} is precompact in L2, and thus
there exists a uniform modulus of continuity ¢(r), such that Ss(u”*(t);r) < ¢(r), for all vy (uniformly
in time). By Theorem it now follows that the limit u”* — w is a strong limit u”* — w in L?L2,

and hence u is energy conservative. O

Remark 4.2.15. Ezamples of rearrangement invariant spaces to which Corollary applies have
been discussed in [FLTO0], and include the following: LP (p > 1), Orlicz spaces contained in L(log L)*
(o > 1/2), Lorentz spaces LM (1 < q < 2). The result also holds, provided that e.g. the initial data
for the Navier-Stokes approximations are chosen to be u”*(t = 0) = w for all k € N, and provided that
@ = curl(w) € L2,

In another direction, the following corollary is also immediate from Theorem [4.2.11

Corollary 4.2.16. If u is a physically realizable solution with initial data w, and if w is not energy
conservative, then any physical realisation u”* — u develops either oscillations or concentrations in the
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limit v, — 0. Furthermore, if there exists a constant C > 0, such that the corresponding sequence of vor-
ticities w’* are uniformly bounded as measures, || W (t)||m < C, then u”* only develops concentrations,
i.e. (up to a subsequence) the measure |u”*(z,t)|? dz dt has a weak-+ limit of the form

[u’s (z,t) P dedt = |u(x,t)|? dedt + \(dz) dt,

where Ay > 0 is a non-trivial time-parametrized, bounded measure, supported on a set of Lebesgue measure
zero.

4.3 Energy conservation for numerical approximations of stat-
istical solutions

Our aim in this section is to generalize Theorem [{.2.11] in two directions, i.e. first by considering
other mechanisms of generating approximating sequences of the Euler equations . In particular,
we are interested in numerical approximations of the two-dimensional Euler equations. We consider
approximating the Euler equations with the following spectral viscosity method.

4.3.1 Spectral vanishing viscosity method

We again consider the spectral vanishing viscosity (SV) scheme introduced in chapter for the incom-
pressible Euler equations: Given N € N, we set A = 1/N, and consider the following approximation of
the incompressible Euler equations

du® + Py (u® - Vu®) = enA(Qn * u®), (4.3.1)
div(u®) = 0, u® =g = Py, -

with periodic boundary conditions and Py is the truncated Leray projection. We will consider ey = ¢/N,
for some fixed constant € > 0, and my is to be chosen, so that eymy — 0, as N — oo.
Integration of the spectral vanishing viscosity method over the time-interval [0,¢] yields the equality

t
lu @172 = O)]7: ~ 2€N/0 IV Qw?(s)l[7 ds, (4.3.2)

for any ¢ € [0, T]. The corresponding vorticity equation for w® = curl(u®) (cp. [LM20, eq. (2.9)]), yields

d
St @7z = —2en[VVQNwE (5)172

Then
N N

I9V@neA ()32 = (202 S QulkPIGs2 > 2n)2 Y0 KGRI = [V ()3 — [V oy (5) 3.
k=1 k=2mpn+1

Employing the estimate ||V Pap,w? |2, < 4m3[|w? (|22, it now follows that

d
%IIMA@)H%Z < =2en [V (1)[[Z2 + Senmiy lw® (1) 122 (4.3.3)

This inequality will be used to analyse the energy conservation of limits obtained by the SV method,
and essentially serves as the analogue of , which was used in the Navier-Stokes case.

Our objective will be to characterize energy conservation for the limit of solutions generated by the
spectral viscosity (SV) method. Moreover, we will consider this question within the context of a more
generalized, probabilistic framework of solutions of that we describe below.
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4.3.2 Statistical solutions

Originally introduced by Foias and Prodi in the context of Navier-Stokes equations, see [FMRTO0S8] and
references therein, statistical solutions are time-parameterized probability measures that extend weak
solutions from a single function (in space-time) to a probability measure on functions. They might arise
in the context of uncertainty quantification of fluid flows [FLMI7, [FLMW20] or to enable a probabilistic
description of the dynamics of fluids. We follow the definition of statistical solutions in chapter [3] briefly
recalled below:

Definition 4.3.1. A time-dependent probability measure t — p; € P(L2) is a statistical solution of
the incompressible Euler equations with initial data @ € P(L2), if [0,T) = P(L2), t — u; is a weak-
* measurable mapping, p: is concentrated on solenoidal (divergence-free) vector fields for almost every
t € [0,T], and if the following averaged version of the Euler equations is satisfied for any k € N: Given
any solenoidal vector fields @1, ...,pr € C(T? x [0,T); R?), we have

WAL

k
1=

k
(w, i) + > | T i) | (- V)i, w) | dpse(w) dt

1 i=1 | j#i

k
+ [ Tl datu) <o

z 3=1

Here (-, -) denotes the following inner product between two vector fields in L2 :

(u, ) = /T w(z) - v(z) dz.

Note that setting p; = 0y for some u(t) € L2, for almost every t, yields the definition of weak
solutions of . Thus, statistical solutions can be thought of a probabilistic generalization of weak
solutions, particularly when the initial data is a probability measure.

In chapter[3] an efficient numerical algorithm has been proposed to approximate statistical solutions of
the incompressible Euler equations, using a combination of Monte-Carlo sampling of the initial measure

11 = putli=o0, yielding

1 M
LS h wericnu
=1

and then evolving the probability measure 72 via the push-forward of the numerical solution operator
pd = (SP)up?, where S 0 L2 — L2, T+ (D) is defined as the solution of spectral viscosity
scheme with initial data @ computed at resolution A = 1/N, and evaluated at time ¢ € [0,T]. Since F*
is a convex combination of Dirac measures, this push-forward can be more concretely expressed in the

form
M

1
A
Hy = M Z;(Svf(t)»

where A = 1/N and v(t) is the solution obtained from the spectral viscosity scheme (4.3.1). We recall
that it has been proven in chapter [3|that ;£ converges in a suitable topology to a statistical solution s,
if 7z is supported on a ball By = {u € L? | ||u||z: < M} for some M > 0, and provided that there exists
a uniform modulus of continuity ¢(r), such that the (time averaged) structure function S7 (u2;r), given

by
T 1/2
ST(uir) = (/ / / ][ |u<x+h>—u<w>|2dhdxdu?<u>dt> ,
o Jr2JD JB,.(0)
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remains uniformly bounded ST (u®;7) < ¢(r), as A — 0, for all » > 0. Under these conditions, there
exists a subsequence Ay — 0 and p; € P(L?), such that that

T
/ Wi (U, ) dt — 0, (Ag — 0). (4.3.4)
0

Here W is the 1-Wasserstein metric defined for probability measures P(L2) on L2. For further details,
we refer to chapter [3]
Our goal in this section is to prove the following theorem:

Theorem 4.3.2. Let i € P(L2) be initial data for the incompressible Euler equations, such that there
exists M >0, s.t. i(Bas(0)) = 1, where Bp(0) = {u € L2 | ||ul|,2 < M}. Let puf* be obtained from SV
+ MC sampling, A > 0. If there exist constants C > 0 and 0 < o < 1, such that

sup So(pl;r) < Cr®, YA >0, r >0, (4.3.5)
t€[0,T]

then, up to a subsequence, us> — ug in LY (P), (in the sense of (£.3.4)), and u; is energy-conservative,
in the sense that

e [l duetw)
L2
1s constant.

Remark 4.3.3. Note that the conventional (deterministic) SV scheme is a special case of the MC+SV
scheme, when the initial data is given by a Dirac measure 6z, concentrated on the initial data w € L2.
Therefore, implies in particular the corresponding result for the conventional SV scheme.

Remark 4.3.4. Note that in Theorem[[.5.3, we have assumed a stronger bound of the form

sup Sg(utA;r) < Cr®,
t€[0,T]

for given C,a > 0, rather than S (u2;r) < ¢(r) for a fized modulus of continuity, as was done in
the characterisation of physically realizable energy conservative solutions of the incompressible Euler
equations (cp. Theorem , This is done for two reasons: firstly it avoids certain technical difficulties
in the proof, and secondly, as explained below in section[{.]}, this stronger bound appears to correspond
to what is observed numerically for a wide range of initial data. A slight generalization of the energy
conservation statement of Theorem[{.3.4 under the assumption of a uniform decay of the time-integrated

structure function ST (u®;r) < Cr® is straightforward.

Proof of Theorem[{.3.4 We will denote by ER[...] := [}.(...)duf* the expected value of a quantity at
time ¢t with respect to the probability measure utA. Similar notation E;[. . .] is used to denote the expected
value of a quantity with respect to the limiting measure u;. To prove energy conservation, we make use
of the fact that y® is a convex combination of atomic Dirac measures 0ya () supported on solutions of
the spectral viscosity scheme at grid size A = 1/N. This allows us directly to take expected values, by
summing equation over all samples v, ..., 'vf,, to obtain

d

ZED [IloA 132 ] < —2enER [IVwr 3] + 8(ewmBER [l 2] - (4:3.6)

The expected value of the ”interpolation” inequality (4.2.3)) yields

ES (w2 l3:] < CrES [IVw? 3] + Cr =285 (uim)?,



96 CHAPTER 4. PHYS. REALIZABLE SOL’S AND ENERGY CONSERVATION

where C' > 0 is an absolute constant, independent of N. By the assumed uniform bound (4.3.5)),
ES (w2 ll3s] < CrES [IVwals ] + Cr2en,

where C' = C(C) depends on the structure function estimate (4.3.5)), but is independent of N. Choosing
r to balance the two terms on the right-hand side, we set

e [ivetiz]

This choice of r yields the estimate

(1—a)/(2-a)
B [l 13;] < CE2 1923, , (43.7)
with C = C(C). Define § = §(a), by (2+6) = (2 —a)/(1 — ), i.e.
!
§= o (4.3.8)

Then (4.3.7)) implies that for an absolute constant ¢ = ¢(C, a) > 0 (depending only on C, « in (4.3.5)):
2+45
B2 w3 < ES [IVewR3]. (4.3.9)

The differential inequality (4.3.6) combined with the estimate (4.3.9)) yields

d
ZES [lw 3] < —cenES [Jw? 2]
A short calculation, detailed in [LMPP21a], then shows that Ef[||w®(|2,] < C(ent)* L. In particular,

this implies that

249
+ 8(enm?)EA [HwAII%g} . (4.3.10)

T
T «
eN/ EA [||WA\|§2] dr < ST L0 (as N S 0). (4.3.11)
0 x «
Taking the expected value of (4.3.2)) for a given A > 0, we obtain

T T
<2ey [ B2 [IVQnw? ] de <2en [ B2 [Jb1E] .
0 ’ 0 ’

[ lul3z] — B2 [lul2:]

Employing (4.3.11]), we find

T
limsup sup ‘EA |’LL||L2] EA[||u||L2] < hmsup ZeN/ EA [||wA||%2} dt =0, (4.3.12)
A0 te[0,T) 0 N
i.e. lima_o EQ[||ul2 ] = lima_, ]EA[||u||L2] uniformly for ¢ € [0,T]. Since u§* = > converges weakly

to 1z at the initial tlme and since this sequence is uniformly bounded on Bjs(0), we also have
tim B3 3] = fim [ @l dn®(@) = [ Jal; d(a). (4313)
A—0 @ A—0 12 * L2 ®

We thus conclude that for any ¢ € [0, T]:

Jim [l i ey |l

[4.3.13)

@) = =]l dna)
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On the other hand, it has been proved in Theorem [3.2.13|in chapter [3| that [|u[?. is an “admissible

observable”, so that the convergence 2 — p; in L} (P) implies

dt = 0.

T
. A 27 2
Jim [ Bl - Bl
In particular, this allows us to extract a subsequence A’ — 0 such that

. A/
Jim B (lulfs] = EdllulZe),

for almost every ¢ € [0,T]. Hence, we finally find that for almost all ¢ € [0, 7], we have

. A/ . — — A — — —
[ty die) = gim [l e ) = i [l e @) = [l daa).

This concludes our proof that the limiting statistical solution u; is energy conservative. O

4.4 Numerical experiments

In this section, we will present numerical experiments to illustrate and validate our theory about the
precise relationship between energy conservation and uniform decay of structure functions (spectra). We
start with a short summary of the numerical method and the choice of parameters for the numerical
experiments.

4.4.1 Numerical method

The numerical experiments will be based on the SV method. The discretization and its implementation
in SPHINX have been explained in detail in chapter [[.4] Unless otherwise indicated, for the numerical
experiments reported below, we use the spectral viscosity scheme, with ey = €/N, e = 1/20. Our choice
for the Fourier multipliers Q is

S m /K%, (k] = my),
0, (otherwise),

where normally my = /N, except in the special case, where the added numerical viscosity mimics the
form of the viscous term in the Navier-Stokes equations , in which we set my =0 and Qn =1 is
the identity.

Given an initial probability measure 7 € P(L2), a resolution A = 1/N and number of samples
M = M(N), an approximate statistical solution is obtained by the following Monte-Carlo algorithm
(MC+SV):

1. Generate M i.i.d. samples wy,...,uy ~ [,

2. Evolve each sample u;(t) = .7 (u;), where ./~ is the numerical solution operator obtained from
the SV-scheme,

3. The approximate statistical solution at time ¢ € [0, 7] is defined as

1 M
AL
/,Lt = M;Ju’(t)

Clearly, for convergence of the MC+SV scheme it is necessary that M = M(N) — oo as N — oo. For
our numerical experiments we have made the choice M = N.
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4.4.2 Structure function evaluation

As indicated by the theoretical results presented in the previous sections, our main tool to determine
the energy conservation of weak solutions obtained in the limit from our numerical method, will be the

(s ( ISR u<x>|2dydxdut<u>>1/2,

defined for all yu; € P(L2) and for ae. t €
ity measure &,, € P(L2), and set Sg(u;r) =
fLi So(w;7)? dpe(u).

As shown in [LMPP2Tal Appendix D], there is an explicit formula for S (u;7)? in terms of the Fourier

coefficients @ (k) of w: Namely, we have
1/2
r) = <Z Ik(?‘)|17(k)|2> ;
kez?

where I (r) := 2 — 4J1(|k|r)/(|k|r) is expressed in terms of the Bessel function of the first kind J; (z).
As discussed in [LMPP21a, Appendix D], a computationally more efficient-to-evaluate alternative to this
exact expression for So(pu; ) is given by

structure function

[0,7]. We identify w € L2 with the Dirac probabil-
So(0y;7). Note that with this definition: So(ug;r)? =

1/2
Sy (u; ) (Z I (r > . In(r) := min(|k|r/2,V2)2. (4.4.1)

keZ?

Again, we define the corresponding statistical quantity by

1/2
Sape,r) = ( g, 52(u;r)2dm(U)> ,

and we recall that So (g3 1) is equivalent to Sa(ps;7), in the sense that there exists a constant C' > 0,
such that

1~ ~
552(%;7") < So(pe;r) < CSa(uesr), V1 >0, Ve € P(L).

For the analysis of our numerical experiments we will use this equivalent numerical structure function
instead of the exact structure function.

A second tool in our analysis will be the use of compensated energy spectra. As discussed in detail
in chapter [3.4.3] an upper bound on the structure function is provided by a uniform decay of the energy
spectrum. To this end, we define the numerical energy spectrum of a vector field u € L? as

1
E(w;K):=5 Y l|ak)?, VK €N, (4.4.2)
|k|co:K

where |k|oo = max(|k1], |kz2|) is the maximum norm of k € Z2. We extend this definition to arbitrary
pt € P(L2) by setting

E(uy; K) = . E(u; K) dus(u).
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Note again that E(u; K) = E(d,; K). It can be shown (cp. (3.4.6) on page that for any 1 < X < 3:
K'E(uf; K) < C, VK = Sy(ut;r) <C'r®, ¥r >0, VA >0, (4.4.3)

where @ = (A — 1)/2, and C,C’" > 0 are constants. Given A € (1,3), we will refer to the function
K+ K7E(u2; K) as the compensated energy spectrum with exponent v, in the following.

Owing to Theorem [£.3:2] a uniform algebraic bound on the structure function implies that the limiting
solution generated by our numerical method is energy conservative. Thus, the evolution of the numerical
structure function §2 (r) and the compensated energy spectra will be our main tools to investigate the
energy conservation of the limits of our numerical approximations. A convenient measure for the uniform

algebraic decay of the structure functions S (12 ;7) is the best-decay-constant C2, (v, t), which we define

A
Cm ax

(a;t) :=sup S (uir), (4.4.4)
r>0

i.e. the best constant C, such that gg(,ut;r) < Cr® for all » > 0. Note that for any given resolution
A > 0, the structure function Ss(u; ) decays like ~ r on the subgrid scale, i.e. for r < A. Therefore,
given 0 < a < 1, the best-decay-constant C2, («;t) is well-defined and finite, for any fixed numerical

resolution A. Furthermore, if there exists a, for which C5, . (a;t) remains uniformly bounded in time,
and with increasing resolution, then this is sufficient to ensure (strong) compactness, and hence energy

conservation in the limit A — 0, by Theorem [£.3.2]
A

max

Similarly, we define a constant D2, (\;t) as the best upper bound on the compensated energy

spectrum with exponent A:

Dipax(Ast) := sup K*E(up; K). (4.4.5)
K>0

Finally, we will also compute the evolution of energy directly, i.e.
tos [l disto),
L3

for each numerical experiment. For the latter, it is important to keep in mind that there are several
sources of errors for each numerical approximation, which may affect the results obtained from this
direct computation of the energy evolution: Firstly, each approximate statistical solution is obtained by
Monte-Carlo sampling (with N samples). As is well-known, the evaluation of the dissipated energy by
Monte-Carlo sampling is associated with a sampling error that scales like ~ 1/4/N. Secondly, in addition
to the statistical error, the initial data has also to be approximated, for instance by mollification, and
subsequent truncation of the Fourier spectrum. These procedures induce numerical error that propagates
into the solution. Finally, there are errors on account of the space-time discretization. All of these sources
of numerical errors should be taken into account, when directly evaluating the energy dissipation.

4.4.3 A Sinusoidal vortex sheet
Deterministic case

The first case we consider is the case of initial data for the incompressible Euler equations which is a Dirac
measure, concentrated on a vortex sheet, i.e. 7t = dz, where w is a sinusoidal vortex sheet initial data.
This initial data has previously been studied in [LM20, LMPP21b]. Let us first recall the construction.
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Figure 4.1: Deterministic evolution of sinusoidal vortex sheet with Navier-Stokes-like diffusion (viscosity
parameter € = 0.01). Horizontal z-component of velocity at initial time and final time, for resolutions
N =1024 and N = 4096.

We consider a vorticity distributed uniformly along the graph
= {x = (x1,m) € T? |3 =0.2 sin(27m:1)} ,

and we recall that in the numerical implementation in SPHINX, the torus 72 is identified with [0, 1]°.
The vorticity is given by

D(@) = 6z —T) — /T dr.

The second term in the definition of @ is a constant which serves to ensure that sz wdx =0, i.e. it
enforces the vanishing of the 0-th Fourier coefficient. The initial velocity field @ € L2 is chosen so that
div(w) = 0, curl(w) = @. Given a grid size N, our numerical approximation @* =~ @ is obtained by
mollification ™ = 1, * W against a mollifier ¢, () := py*¢(x/pn), With 1(z) a third-order B-spline.
The smoothing parameter py is chosen of the form py = p/N for a fixed constant p > 0. For the present
simulation, we have set p = 10. Further details on the construction of this initial data can be found in
chapter [3.5.2] on page [7]]

We point out that this initial data belongs to the so-called Delort class [Del91]. It was recently shown
n [LM20] that the numerical approximations, generated by the spectral viscosity method, converge
on increasing the resolution and up to a subsequence, to a weak solution of the incompressible Euler
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equations. Given this context, we have computed the numerical solution up to final time 7' = 1, and
for resolutions N € {128,256, ...,8192}. The numerical diffusion operator was chosen so as to mimic
the form of the diffusion term in the underlying Navier-Stokes equations by setting my = 0 and
consequently, Qn = I in . For these computations, we set ey = ¢/N, e = 0.01. A representative
illustration of the initial data and evolution of the computed approximate solutions at different resolutions
N = 1024, N = 4096 can be found in Figure From this figure, we observe that the initial vortex
sheet breaks up into smaller and smaller vortices, on increasing resolution.

Our objective is to validate our theory on the connection between the uniform decay of the structure
function and the conservation of energy. To this end, we first consider the temporal evolution of the
numerical structure function (cp. Figure . Indicated in Figure are representative plots of
the numerical structure functions evaluated at different times ¢ = 0.0, 0.4, 1.0 during the evolution of the
vortex sheet, and at the various resolutions considered. In addition, we indicate as a black dashed line
the graph of r — C5,,71/2, where C4,, = O, (o =1/2;t = 0) is determined from (4.4.4)), at resolution
A =1/8192. At the initial time ¢ = 0, the expected scaling So(r) ~ r/2 of the structure function of the
vortex sheet at resolved scales is clearly visible. For a fixed resolution A = 1/N it is straightforward
to observe that the resulting numerical approximation cannot represent non-smooth features on scales

r < A and the structure function scales as So(r) ~ r, for » < A in Figure

10°

—N=128
—N=256

(r)

n 101 N=512
—N=1024
——N=2048
N=4096
, —N=8192
10°
1072 101 10°

(a) t=0.0

Figure 4.2: Temporal evolution of structure function for deterministic sinusoidal vortex sheet initial
data, for different resolutions A = 1/N. The black dashed line indicates the best upper bound C4, r®

max

computed at ¢t = 0, with exponent o = 1/2, and at the finest resolution considered, A = 1/8192.

Figures{4.2[ (A)-(C) clearly indicate a uniform decay of the structure function over time, and uniformly
in N, with a decay exponent that is the same as the decay exponent of the structure function initially.

This uniform decay of the structure functions is further confirmed by considering the evolution of
the compensated energy spectra K + K*FE(K), where we choose the exponent A = 2. This choice is
consistent with a S(r) < Cr®, where a = (A —1)/2 = 1/2, decay of the structure function.
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Figure 4.3: Temporal evolution of compensated energy spectra K*E(K) for deterministic sinusoidal
vortex sheet initial data, with A = 2.

As can be seen from Figure (A), the initial data follow the expected scaling F(K) ~ K 2. This
scaling appears to be mostly preserved at later times, cp. Figure (B), (C), with only some small
fluctuations in the compensated spectra. These fluctuations might imply E(K) < CK ~2%¢ for a small
€ > 0, incorporating intermittent corrections to the structure function. Nevertheless, this form of the
energy spectrum clearly implies the compactness required for energy conservation.

Since the above numerical results strongly suggest a decay of the structure function as Sy(r) < Cre,
with @ = 1/2, we consider the temporal evolution of the best-decay constant C4, (o = 1/2;t ) ( p
(4.4.4])), which is displayed in Figure as well as its energy spectral counterpart D2, (A 2;t),

evaluated according to (4.4.5)).
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Figure 4.4: Temporal evolution of C4,, (eq. (4.4.4)) and D5

Cax (€. (4.4.5))) for deterministic sinusoidal
vortex sheet.

Figure strongly indicates that C2, (a = 1/2;t) remains uniformly bounded in time ¢ € [0,7], as
A — 0. Thus, from the above figures, we clearly infer that the structure functions (and spectra) converge
on increasing resolution. This saturation of structure functions, with increasing resolution, is reminiscent
of similar observations of convergence of structure functions, but with increasing Reynolds number, for
homogeneous isotropic 3D turbulent flows, reported for instance in the recent paper [I[SY20].

Finally, we consider directly the evolution of the energy. Here, we are faced with the difficulty that

the initial values of the numerical approximations converge at the same time as the viscosity parameter
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en — 0. Keeping this in mind, we consider the relative energy dissipation,

AE  Ef —Ey

which depends on A and the time ¢, as well as a reference value Eg for the initial energy in the limit
A — 0. We obtain this reference value by extrapolation of the initial energy EOA for the resolutions A €
{1/8192,1/4096,...,1/128}, considered. We have chosen the second-order (Richardson-)extrapolation
ansatz

EOA = EO + ClA + CQAQ + O(AS),

where the constants Eg, ¢; and ¢y can be estimated from the values of EOA, for the highest resolutions
A = 1/8192, 1/4096, 1/2048 considered. Other, higher-order choices for the extrapolation have been
checked to lead to very similar results.

The temporal evolution of AE/FE is shown in Figure (A), for these A = 1/N. Figure (B)
compares AE/E at time t = 0 and ¢t = T, at the final time T = 1, as a function of the resolution A. In
this figure, we plot both the numerical error in the approximation of the initial data (represented by the
blue curve), as well as the numerical energy dissipation (difference between the blue and the red curves).
As A — 0, there is a clear indication that AE/FE, evaluated at both the initial and final times, converges
to 0. Extrapolation of the red curve to A = 0 yields a very small value of AE/E =~ —0.00035, consistent
with a true limiting value of AE/E =0 at A = 0. The direct evaluation of the energy is thus consistent
with the uniform decay of the structure functions, and a uniform bound on the energy spectra observed
above.

Thus, in this particular case, the theoretical predictions of energy conservation resulting from uniform
decay of structure function (spectra) is completely validated. It is worth pointing out that the theory
of Delort in [Del91] (and its numerical analogue in [LMPP21h]) only indicate weak compactness of the
approximating sequences. On the other hand, all the numerical evidence points to a strong compactness
of the limit solution, hinting at more regularity of the limit.

Opm==cpoccopoo-fooo i Oae """ """""""- ——initial
——final
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(a) rel. energy dissipation vs ¢ (b) rel. E’diss. vs A

Figure 4.5: Deterministic sinusoidal vortex sheet with Navier-Stokes-like diffusion: Relative energy dis-
sipation as a function of ¢ (left), and as a function of A = 1/N at the final time ¢t = 1 (right).
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Statistical initial data

Next, we consider an example of the initial data 7 € P(L2), with 7 not being a Dirac measure. To this
end, we take the numerical initial data @™ (x) € L2 of the previous section (with smoothing parameter
pn = p/N, p=15), and define a random perturbation as

EA(LE; w) = ]P’(HA(xl, 2o + ouol(r1;W)),

where P denotes the Leray projection onto divergence-free vector fields, followed by a projection onto the
first N Fourier modes, and o, (z,w) is a random function which is used to randomly perturb the vortex
sheet: Fix ¢ € N and a perturbation size o > 0. Given w = (o, ..., a4, 51, ..., 8q), we define

q
Oolzr;w) 1= Z ay sin(k2rz — 6;),

k=1

where a1,...,aq4 € [0,a], and fi,...,5, € [0,27] are ii.d., uniformly distributed random variables.
The initial data 72 € P(L?) is defined as the law of the random fields @® (z;w). For our numerical
experiment, we have chosen ¢ = 10, and a = 1/320. The numerical diffusion parameter is ey = €/N,
with € = 0.01. Figure shows the xz-component of the velocity of a typical individual random sample

A

u”, as well as the mean and variance of this component at the initial time ¢ = 0.0. The mean and

variance at the final time ¢ = 1.0 are shown in Figure [4.7]

Figure 4.6: Perturbed sinusoidal vortex sheet: Mean (A) and variance (B) at the initial ¢ = 0.0, N = 1024.

Figure 4.7: Perturbed sinusoidal vortex sheet:

N =1024.
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We consider the temporal evolution of the structure functions computed from the approximate statist-
ical solution obtained at various resolutions N € {128,256, 512,1024}. Plots for the numerical structure
function at t = 0,0.5,1 are shown in Figure (A)-(C). Again, we indicate by a black dashed
line the best upper bound of the form C4, r'/2, with C4, given by fixed at time ¢ = 0, and for
the highest considered resolution of A = 1/1024.

10°
10!

n' 102

Figure 4.8: Temporal evolution of structure function for randomly perturbed sinusoidal vortex sheet
initial data, for different resolutions A = 1/N. The black dashed line indicates the best upper bound
CA.  r® computed at t = 0, with exponent a = 1/2, and at the finest resolution considered, A = 1/1024.

max

Similarly to Figure [£.2]in the last section, these plots of the structure function at different ¢ and N
indicate a uniform bound So(uf;r) < Cr/2. To complement these plots of the structure function, we
again analyse the (compensated) energy spectra , with exponent A = 2. Again, the choice of this
value for A is motivated by the relation , according to which a value of « = 1/2 is expected to
correspond to A = 2. The resulting energy spectra are shown in Figure
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Figure 4.9: Temporal evolution of compensated energy spectra K* E(K) for randomly perturbed sinus-
oidal vortex sheet initial data, with A = 2.

Again, we observe an exact scaling of the compensated energy spectra for u2 at t = 0 (cp. Figure
(A)). Also at later times, this scaling is approximately preserved, as shown in Figure (B),(C),
indicated a uniform bound on compensated energy spectra.

A more quantitative evaluation of the uniform boundedness of the structure function is obtained by
tracking the temporal evolution of the best-upper-bound constants C24, («a;t) for the structure func-

tion (4.4.4) with exponent o = 1/2, and D2, (\;t) for the compensated energy spectra (4.4.5), with
corresponding exponent A = 2. This is shown in Figure [4.10
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Figure 4.10: Temporal evolution of C2, . (eq. (4.4.4))
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sinusoidal vortex sheet.

Figure [£.10] strongly indicates that the structure function does indeed exhibit a uniform scaling
So(p2;r) < Cr'/2, implying energy conservation of the limiting statistical solution.

We finally consider the direct evaluation of the energy evolution of the approximate statistical solu-
tions. In addition to the sources of error in the energy evolution for the deterministic initial data, we also
have to consider another source of error in the Monte-Carlo approximation of the approximate statistical
solution p£. Our Monte-Carlo sampling at resolution N is based on N samples. As is well-known, the
typical Monte-Carlo error is

N
1 L AE;|  Std[AE/E]
R <
E[AE/E] N ;:1 B |~ N (4.4.6)
where Std [AE/E] is the standard deviation computed based on the N MC-samples (AE/FE)1,...,(AE/E)y.

For the statistical solutions considered, we will display this MC error by error bars and a shaded region.
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(a) rel. energy dissipation vs ¢ (b) rel. E’diss. vs A =1/N

Figure 4.11: Randomly perturbed sinusoidal vortex sheet: Relative energy dissipation E[AE/E] as a
function of ¢ (left), and as a function of A = 1/N at the final time ¢t = 1 (right).
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It turns out that for the current initial data, the MC error in the energy is very small, so that the
shaded regions are almost invisible. In this case, the numerical error in the approximation of the initial
data dominates. We plot the computed AE/FE in Figure As in the last section, the reference
value Ej is determined by a second-order Richardson-extrapolation of the computed initial energy EOA
to A =0.

Figure clearly indicates that the energy dissipation is very small for this case, for all resolutions
considered, and AE/E appears to converge to 0, as N — 0o, again indicating energy conservation in the
limit. We have also indicated the value of AE/E at the final time ¢t = T', and (second-order) extrapolated
to A = 0, based on the available values of E2 for A = 1/1024, 1/512 and 1/256. This extrapolation
suggests that AE/E =~ 0.00032, which is orders of magnitude smaller than the error of AE/E at the
initial time (whose limit A — 0 is exactly 0), which is also visible in Figure [£.11] (B). Thus, also for
the randomly perturbed sinusoidal vortex sheet, the limiting statistical solution is expected to be energy
conservative.

Finally, comparing figures [{.11] for the SV scheme and [£.5|for Navier-Stokes-like diffusion clearly shows
that the Navier-Stokes-like diffusion is much more diffusive. This highlights the better approximation
properties of the (formally) spectrally accurate SV scheme, as opposed to a similar scheme with diffusion
applied to all Fourier modes.

4.4.4 Vortex sheet without distinguished sign

The previous numerical experiment considered a vortex sheet of (essentially) distinguished sign. For this
type of initial data, the existence of solutions has been proven rigorously by compensated compactness
methods, in the celebrated work of Delort [Del91]. When the vortex sheet initial data is not necessarily
of distinguished sign, then no existence results for weak solutions are known. Based on numerical
experiments by Krasny [Kra87], which have shown that vortex sheets develop a much more complex roll-
up without a sign-restriction, it has in fact been conjectured [Maj88], [MBO0I) p.447] that approximate
solution sequences for initial data without distinguished sign might not converge to a weak solution, and
instead exhibit the phenomenon of concentrations in the limit, thus necessitating a more general concept
of measure-valued solutions. Our next numerical experiment therefore considers the case of a vortex
sheet without distinguished sign.
We start with unperturbed vorticity w € M a bounded measure, given by

B(x) = s(t)5(x — (1)) - / " s(t) dn (1),

where y(t) = (t,0.2sin(Kt)) € T? defines the curve along which the vorticity is distributed, with K = 10,
and the vortex strength s(t) along «(t) is given by s(t) = sin(Kt). The numerical approximation @ is
obtained as the convolution @ () :==wx*1,,, where py = p/N, p=>5, and 9, is the B-spline mollifier
already considered in section We let @® denote the corresponding divergence-free velocity field.

Finally, we define the perturbed initial data for given o > 0, by setting

T2 (z;w) = P(@A (21, 22 + 0o (x1;w))),
where x1 — 0, (r1,w) is the random perturbation already introduced in section m We have chosen
o = 0.025 for our numerical simulation. Again, we let 7® € P(L2) be the law of the random field @*.
Figure shows the z-component of the velocity of a typical individual random sample @™, as well
as the mean and variance of this component at the initial time ¢ = 0.0. For comparison, the mean and
variance at the final time ¢ = 2.0 are shown in Figure The viscosity parameter in the SV scheme
was chosen as ey = ¢/N, for e = 0.05.
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Figure 4.12: Perturbed vortex sheet without distinguished sign:
variance (C) at the initial ¢ = 0.0, N = 1024.
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Figure 4.13: Perturbed vortex sheet without distinguished sign: Individual sample (A), mean (B) and
variance (C) at the final time ¢t = 2.0, N = 1024.

We start by considering the temporal evolution of the structure functions computed from the approx-
imate statistical solution obtained at various resolutions N € {128, 256,512,1024}.
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Figure 4.14: Temporal evolution of structure function for randomly perturbed vortex sheet initial data
without distinguished sign, for different resolutions A = 1/N. The black dashed line indicates the best

upper bound C’ﬁaxro‘ computed at ¢ = 0, with exponent a = 1/2, and at the finest resolution considered,
A =1/1024.

Perhaps unexpectedly, the structure functions shown in Figure exhibit a uniform bound for
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t = 0,1,2, also without the sign restriction on the vorticity; similar to the bound on the structure
function observed for the distinguished vortex sheet case in section [{.4.3] Again, the bound on the
structure function indicates that Sy(uf;r) < Cr'/2, for some constant C' > 0.

We next consider the evolution of the compensated energy spectra K ~ K*E(uf; K) with exponent
A = 2 (which corresponds to the exponent o = 1/2 of the structure function), in Figure
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Figure 4.15: Temporal evolution of compensated energy spectra K*E(K) for randomly perturbed sinus-
oidal vortex sheet initial data, with A = 2.

The compensated energy spectra confirm the observed uniform bound on the structure function,
indicating that E(uf; K) < DK~2, for some constant D > 0. To analyse this qualitative observation at

a more quantitative level, we track the best-upper-bounds C2, . (4.4.4) and D2, (4.4.5) in Figure
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Figure 4.16: Temporal evolution of C2, (eq. (@.4.4)) and D2,. (eq. (#.4.5)) for randomly perturbed
vortex sheet without distinguished sign.

Figure clearly indicates that the structure function remains uniformly bounded over time and
with respect to resolution also for this signed vortex sheet case.

Finally, we consider the evolution of the numerically obtained energy dissipation, directly. Again, we
consider the temporal evolution of the quantity

AE  E2(t) — Eo
E o EO ’
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where EA(t) = [

ated by the shaded regions. The reference value E( has been determined by second-order Richardson-
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Figure 4.17: Vortex sheet without distinguished sign: Relative energy dissipation as a function of ¢ (left),
and as a function of A = 1/N at the final time ¢ = 1 (right).

Unexpectedly, also for this initial data, where the individual random realisations of the initial data
have vorticity @® € M , i.e. a bounded measure, without a distinguished sign, our numerical experiments
indicate that the energy dissipation converges to zero as A — 0 (at least over the time interval [0, T] with
T = 2 considered), implying that the limiting statistical solution is energy conservative, and confirming
our observed bounds on the structure function.

4.5 Discussion

A characteristic feature of fluids described by the incompressible Euler equations is turbulence, marked
by the appearance of energy containing eddies at ever smaller scales. Energy conservation and anomalous
dissipation are very interesting elements of physical theories of turbulence such as those of Kolmogorov
and Onsager.

In this chapter, we consider the questions of energy conservation and dissipation of solutions of the
incompressible Euler equations in two space dimensions, following the original publication [LMPP2Tal.
We prove in Theorem that weak solutions of the incompressible Euler equations, realized as strong
(in the topology of L'([0,77]; L2)) vanishing viscosity limits of the underlying Navier-Stokes equations
conserve energy (in time). This result allows us to extend the results of [CFLST6] on energy conservation
to a larger class of admissible initial data, for which strong compactness of approximate solutions is
known. The proof relies on control of the underlying vorticity and an essential role is played by uniform
decay of the so-called structure function .

Next, we also investigate the question of energy conservation for statistical solutions of the incompress-
ible Euler equations. As discussed in chapter [3] statistical solutions are time-parameterized probability
measures on L2, whose time evolution is constrained in terms of moment equations, consistent with
and derived from the incompressible Euler equations. They were proposed as a suitable probabilistic
solution framework for the Euler equations in order to describe unstable and turbulent fluid flows in



4.5. DISCUSSION 111

[LMPP21bl [FW18]. We prove in Theorem that statistical solutions of the Euler equations, gener-
ated as limits of numerical approximations with a Monte Carlo (MC)- Spectral viscosity (SV) method of
[LMPP21b], conserve energy as long as the structure function decays uniformly (in numerical resolution).
This result is of great practical utility as these statistical solutions can be computed [LMPP21b] and the
assertions of the theory validated in numerical experiments.

To this end, we presented a suite of numerical experiments with both deterministic and stochastic
initial data, focusing on vortex sheets. From the numerical experiments, we observed that the structure
functions (and the energy spectra) were indeed uniformly decaying and energy conservation of the limit
solutions was clearly demonstrated.

This chapter only considered two-dimensional flows. Future work could aim to carry out a sim-
ilar programme for examining the questions of conservation/anomalous dissipation of energy for three-
dimensional incompressible flows.
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Chapter 5

Limitations of the approach

In the previous chapters, we have presented numerical evidence which demonstrates that approxim-
ate solutions of the incompressible Euler equations computed by state-of-the-art numerical methods,
such as spectral methods, may not converge deterministically to a unique limit, if the underlying solu-
tion has low regularity. This is consistent with available theoretical results, which only guarantee the
uniqueness of solutions under more restrictive (Lipschitz) regularity assumptions (cp. the weak-strong
uniqueness theorem . In our numerical experiments a marked contrast was observed between the
non-convergence in any “traditional” deterministic sense, versus the apparent stability and convergence
of statistical quantities at increasing numerical resolution. These observations are in line with similar
results in the context of hyperbolic conservation laws [FMT16, FKMTI17, [FLMW20], which partially mo-
tivated the present work. We furthermore expect that similar conclusions will apply more generally to
PDEs exhibiting features of “turbulence”. These results clearly indicate the practical need to efficiently
approximate apparently more stable and robustly computable statistical solutions for high to very high
Reynolds number flows.

The difficulties in predicting the behaviour of turbulent or chaotic dynamical systems is particularly
well-known for numerical weather forecasting, where the high sensitivity to perturbations in the initial
data [Lor63] is sometimes referred to as the “butterfly effect”. Despite this high sensitivity, weather
forecasts have seen a steady increase of forecast skill over the last decades [BTB15]. This is in some part
due to improvements in computational resources, but to a large extent reflects the increased availability
of measurement data and the increased sophistication of methods to combine this data with the under-
lying mathematical model to increase prediction accuracy [MHI12, [LSZ15, RC15]. In the formulation
of statistical solutions of the preceding chapters, it is not clear how such measurement data should be
incorporated in the model. We thus identify our first main limitation:

e The first limitation of the statistical solutions discussed in the previous chapters of the present
thesis is that available measurement data, which is crucial in practical applications, is not explicitly
reflected by this solution concept.

Statistical solutions as described in chapter [3| are also natural to consider in the context of uncer-
tainty quantification: In practice, the initial state of the system has to be inferred from measurements.
These measurements are usually noisy and incomplete, and therefore do not allow the initial state to
be reconstructed to arbitrary accuracy. Since the equations of fluid dynamics are very sensitive to per-
turbations, small errors in the initial data are strongly amplified by the non-linear dynamics. Thus, in
large-scale applications including weather forecasting and climate science, predictions based on a single
forward solve, relying on the most likely initial state cannot be expected to be reliable. Instead, the
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uncertainty in our knowledge of the initial data and the corresponding predictions has to be explicitly
taken into account. Such uncertainty is naturally represented by a probability measure 7z on the (infinite-
dimensional) state space. The prediction of the future state, including an estimate of the uncertainties
in this prediction, thus requires the computation of the corresponding statistical solution, allowing for
principled uncertainty quantification. While the need for such systematic uncertainty quantification is
widely appreciated, a major obstacle for it’s implementation in large-scale applications is the fact that the
computation of the relevant statistical quantities via Monte-Carlo or Markov-chain Monte-Carlo methods
can require up to O(10%) forward model evaluations of the underlying PDE [Gey11]. The computational
cost of a single solve is typically very high for relevant applications, e.g. requiring millions of node
hours of computation time on HPC facilities, for a single forward solve of the Navier-Stokes equations
in realistic engineering geometries [AIf11]. Hence, systematic uncertainty quantification based on fully
resolved simulations cannot be carried out routinely, at present. This leads to the second main limitation
of statistical solutions discussed so far:

e The second limitation of the approach to statistical solutions, and in particular their computa-
tion via Monte-Carlo and Markov chain Monte-Carlo sampling, is their high computational cost,
requiring many (costly) forward solves of the underlying forward model.

It has been observed in many numerical experiments (cp. chapters , that, while individual
solutions (samples) can exhibit features on very fine scales, statistics computed by taking an average
over many such individual realizations are much smoother. Even though the precise mechanism behind
this “statistical smoothing” remains poorly understood from the theoretical perspective at present, this
empirical observation might nevertheless point to alternative representations of statistical solutions, which
might take advantage of such statistical smoothness properties.

In the remaining two chapters [6] and [7] of the present thesis, we will propose two approaches to
overcoming the limitations identified above, based on the recent works [LMW21, LMK21l [KLM21]: In
chapter [6] we consider approximate statistical solutions obtained by blending available measurement
data with numerical approximations of an underlying mathematical model, following a Bayesian point
of view. In particular, we will be interested in the stability and compactness properties of approximate
solutions computed from a numerical discretization for ill-posed problems, for which the convergence
to a unique limit cannot be guaranteed, in the limit of infinite resolution A — 0. Then, in chapter
we analyse the approximation of operators by neural networks-based surrogate models, and propose
an alternative representation of approximate statistical solutions relying on these methods. In contrast
to the (expensive) evaluation of the forward operator by traditional numerical methods, such surrogate
models are orders of magnitude faster to evaluate. While surrogate models are not necessarily expected to
achieve the (machine) accuracy of traditional methods, they are ideally suited for tasks in which the fast
evaluation of the underlying operator is of central importance, and a reasonable accuracy (e.g. less than
1% relative error) is sufficient. This makes neural network-based surrogate models ideal candidates to
complement more traditional numerical methods in many-query problems, such as (Bayesian) uncertainty
quantification.



Chapter 6

Bayesian inversion for fluid flows

6.1 Introduction

Many problems in engineering and the natural sciences seek to identify the underlying (unseen) state
of a physical system. Such a reconstruction is usually based on two ingredients: The first ingredient is
the information encoded in our knowledge of the underlying physical laws, resulting in a mathematical
model of the system. The second ingredient consists of observational data gathered from physical meas-
urements. The problem of determining the state of the underlying system by combining measurements
with a mathematical model of the system is referred to as an inverse problem. The present chapter
connects the statistical solutions introduced in chapter |3 with a Bayesian approach to inverse problems
in Banach spaces, thus providing a first step towards overcoming one of the limitations of the statistical
solutions approach pointed out in the last chapter: We will show how available measurement data can be
combined with statistical solutions in a principled manner and will study the convergence of numerical
approzimations in the presence of data, with applications to the incompressible Euler and Navier-Stokes
equations. The present chapter is based on the recent work [LMW21].

6.1.1 Inverse problems

Inverse problems arise in a variety of areas of technological, engineering and scientific interest: examples
include fields such as the atmospheric sciences, geophysics, oceanography, hydrology, materials science,
chemistry and biochemistry, image processing and signal processing [Stul0]. Inverse problems generally
seek to determine the underlying unknown state of a system, or certain parameters characterizing that
system, by combining a mathematical model with available measurement data. The measurements may
be noisy and often provide only partial information on the underlying state. In the presence of such partial
observations, the deterministic problem of finding the state from measurements is generally ill-posed.
While a common approach for solving the resulting ill-posed deterministic inverse problem proceeds
by regularization, a statistical approach based on Bayesian inference has gained increased attention in
recent years [Tar05, [KS06| [Stul0]. Following the Bayesian approach, prior (domain) knowledge of the
system state, in the absence of measurements, is encoded by a prior probability measure. The additional
information provided by the measurements is used to improve this prior estimate by Bayes’ rule; the
solution of the Bayesian inverse problem, the posterior measure, is the conditional prior probability of the
underlying state given the measurements. The Bayesian inverse problem thus can be seen as a mapping
from measurements to the posterior measure, the latter providing the sought-after (probabilistic) estimate
of the underlying system state. In contrast to the generic situation for deterministic inverse problems, it
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has been shown that the corresponding Bayesian inverse problem is often well-posed in suitable metrics
[Stul0, Lat20, [Spr20]. Furthermore, Bayesian inverse problems provide a different point of view on the
deterministic formulation of regularized ill-posed inverse problems: As shown in [Stul0], the latter can
often be viewed as the maximum a posteriori (MAP) estimator of a Bayesian inverse problem with a
suitable choice of prior.

The mapping from system state u to the corresponding measurement y is usually referred to as
the forward problem. Previous discussions of the well-posedness of Bayesian inverse problems have fo-
cused on mathematical models defining a well-posed (Lipschitz continuous) forward problem, establishing
stability results for the posterior with respect to measurements with respect to the Hellinger distance
under suitable assumptions [Stul0]. More recently, the assumptions on the forward mapping have been
considerably relaxed [Lat20} [Spr20]. In [Lat20, [Spr20], the well-posedness of abstract Bayesian inverse
problems has been investigated in a variety of metrics (total variation, Wasserstein, Kullback-Leibler).
As observed in [Lat20], under suitable assumptions on the measurement noise, the Bayesian inverse prob-
lem is well-posed (continuity with respect to measurements) even if the the forward mapping is merely
a measurable map. The general continuity properties of the posteriors with respect to perturbations in
the prior and the log-likelihood have been considered in [Spr20]. A main conclusion that can be drawn
from [Lat20}, [Spr20] is a remarkable stability of the measurement-to-posterior mapping with only minimal
regularity assumptions on the forward problem.

6.1.2 TIll-posed forward problems

For many problems of physical interest, in particular in the context of fluid dynamics, we are confron-
ted with forward problems which are not known to be well-posed in a mathematical sense (existence,
uniqueness, continuous dependence on initial data). Indeed, there are many fundamental open ques-
tions surrounding the mathematical theory of well-posedness for partial differential equations (PDEs)
of physical interest, such as the incompressible or compressible Euler equations. From the numerical
practitioner’s point of view, it is well-known that solutions to such PDEs may depend very sensitively on
small perturbations in the initial data and that, even upon mesh refinement, numerical approximations
may either not converge at all or converge only very slowly [FKMTI17, [FLMW20, [LM20, LMPP21b].
Hence, we pose that many of the equations of fluid dynamics may safely be considered as ill-posed, in
any practical sense of the word. In general, we are thus faced with the following situation: For a given
discretization with “grid spacing” A > 0, we have a well-defined discretized forward model possessing a
unique solution operator ./ mapping initial data @ to the solution u(t) = . (%) at time ¢ > 0. Fur-
thermore, this solution operator .7/ defines a continuous mapping u + %} (), albeit with a modulus
of continuity that depends on A, and may deteriorate as A — 0. It is not known whether there exists a
well-defined limiting solution operator .%, such that .% () = lima o .%/> (%) for all initial data w. For
many models, the only available a priori estimates provide control on the physical energy, or entropy, of
the solution, in the form of an a priori estimate of the form || (w)|| < C|u|| for a suitable norm || - ||
and some constant C' > 0. This is the general setting we shall consider in the present chapter.

6.1.3 Contributions and outline

We can summarize the main contributions of the work presented in this chapter as follows:
o We investigate the well-posedness of Bayesian inversion for problems for which the forward mapping

may be ill-posed; in particular our discussion applies to equations obtained in singular limits (e.g.
zero-viscosity limit).
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e As a main contribution of this work, we show that under very general conditions, the existence of
a suitable notion of limiting posterior, of e.g. numerical approximations of the Bayesian inverse
problem, can be proven a priori.

e While uniqueness of such a limiting posterior is not guaranteed in general, this existence result opens
up the possibility of finding/defining suitable selection criteria, which may identify the physically
correct posterior solution of the Bayesian inverse problem among a set of candidate solutions.

e In addition, we discuss the implications of these compactness and stability results for the data as-
similation/filtering problem associated with measurements of time-dependent (infinite dimensional)
dynamical systems.

e Applications to the incompressible Navier-Stokes and Euler equations are presented.

The rest of the chapter is organized as follows, we start with some notation and preliminaries in
Section The Bayesian inverse problem, with an ill-posed forward map is considered in Section [6.2
and the corresponding data assimilation (filtering) problem is presented in Section We apply the
abstract results of sections [6.2] and [6.3] to the fundamental equations of fluid dynamics in Section [6.4]
Some relevant background on measure theory, including basic results on the Wasserstein distance, are
briefly summarized in Appendix [B]

6.2 Bayesian inverse problem

6.2.1 Problem setting

The goal of the present section is to investigate the general stability, compactness and consistency of the
Bayesian inverse problem (BIP) for PDEs for which the forward problem is potentially ill-posed. The
setting is as follows: We are given a sequence of observables £2(u), as A — 0. We assume that for each
A > 0, the mapping

L2 X 5 R4, u— L5 (u), (6.2.1)

is well-defined and measurable. We think of £2(u) as either a discretized observable arising from a
numerical discretization of an underlying PDE model, or from a regularization — e.g. by adding a small
amount of viscosity — of such a PDE model. We consider the Bayesian inverse problem of finding the
probability distribution Prob[u|y] for the underlying data u, given a finite-dimensional measurement
y € R? of the form

y=L%w) +n,  n~ply)dy. (6.2.2)

The noise n € R? is here assumed to have a distribution p(y) which is absolutely continuous with respect
to Lebesgue measure dy on R?, fRd p(y)dy =1, and p(y) > 0 for all y € R%. As shown in [Lat20, Thm.
2.5], under these conditions on p(y), the measurability of £2(u) is sufficient to guarantee the existence
of a solution to the BIP to given an arbitrary prior p € P(X). This solution is given by the

posterior

dp®Y (u) = exp (f@A’y(u)) dp(u), (6.2.3)

1
Z2(y)
where

DAY (u) ;= —logp (y— EA(U)) (6.2.4)
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denotes the log-likelihood function, and
250) = [ exp (-85 (w) du(w) (6.2.5)
X

is the required normalization constant. We note that the condition that p(y) > 0 implies that the
log-likelihood ®4+¥ is finite, i.e., ®*¥(u) < oo for all u € X.
As is customary, we will denote the Radon-Nikodym derivative of ¥ with respect to p by du®¥ /du,
i.e.
d,uA’y

1
du T Z5()

exp (=@ (u)). (6.2.6)

The solution of the BIP ([6.2.3)) can be characterized as the unique minimizer p®¥ = argmin, cp(xy J A (v)
of the following functional JA¥ : P(X) — R (cp. e.g. [DELL, Prop. 1.4.2]):

JAV() = Dier (v 1) + /X B (u) du(u), (6.2.7)

where Dxr,(v||1) denotes the Kullback-Leibler divergence (B.0.6]). Furthermore, the minimum of JA+ is
explicitly given by [DEILI eq. (1.15)],

~log < /X e¢A’y<u>du(u)>_ inf  JAY(v). (6.2.8)

VvEP(X)

Taking into account (6.2.5)), we can write the last equation equivalently as follows:

Z2(y) = exp < yeig(fx) JA’y(u)> . (6.2.9)

While the existence of a solution to the BIP is ensured by the non-negativity of the noise distribution
p(y), the stability and compactness results of the present work will be based on following additional
assumptions on the noise:

Assumption 6.2.1. Fiz a symmetric, positive definite matriz T' € R¥? and denote by |- |r the corres-
ponding norm on R given by

e = Vv, (y,y)r = T2y, T2 = (y, Ty, (6.2.10)

with (-, -) the standard Euclidean inner product on R?. We assume that the noise n ~ p(y) dy in (6.2.2)
possesses a distribution that is absolutely continuous with respect to Lebesque measure dy on R® with
probability density p(y), satisfying the following conditions:

o [reqularity] y — p(y) is Lipschitz continuous with respect to | - |pﬂ
o [boundedness] y — p(y) is bounded from above,

o [tail-condition] there exists a constant C' > 0, such that

L2
ply) > eXp(CQlym, Vy e R (6.2.11)

1 Although all norms on the finite-dimensional space R? are equivalent, measurement noise such as Gaussian noise is
naturally associated with the norm |- |r induced by the covariance matrix I.
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Remark 6.2.2. Note that if, instead of (6.2.11), p(y) satisfies a tail-condition of the form p(y) >
exp(—Cly|2)/C, then upon simply rescaling ' := \/2/CT, we have p(y) > exp(—%|y|%)/0. Hence p(y)

satisfies assumption with a rescaled matriz T — T in this case. Therefore, the precise constant %
in the tail-condition (6.2.11) can be assumed without loss of generality. The factor of 1/2 turns out to
be particularly convenient.

Assumption is clearly fulfilled for normally distributed measurement noise 1. This is the main
application we have in mind. However, it is worth pointing out that the assumption is satisfied for a much
wider class of measurement noise: In particular, since the tail-condition requires only a lower bound, our
results apply to situations in which one encounters noise with a heavy tail.

Remark 6.2.3 (Gaussian noise). If the noise n ~ N(0,T") is normally distributed (Gaussian), then (up
to an unimportant additive constant)

1
¥2(w) = Sy — L2 W)R,

where the natural T'-norm is given by (6.2.10). In this case, we have

™y 1 1 2
o (u) = 750) exp (—2 ly — EA(U)IF> . (6.2.12)

Let us note the following immediate observations from assumption [6.2.1

Lemma 6.2.4. If the noise n ~ p(y)dy satisfies assumption then there exists a constant L > 0,
such that for all y,y’ € R, and A, A’ >0

‘equ(u) e W < Ly — oI, (6.2.13)

and

‘e_q;Avy(u) _ e_@A"y(u) < L|,CA(u) oA (u)|r- (6.2.14)

The log-likelihood ®>Y is bounded from below, uniformly in A > 0 and y € R%: there exists a constant
C > 0 depending only on sup,cga p(y) < oo, such that

essinf d2Y(u) > ~C, YA>0,ycRL (6.2.15)
u

There exists a constant C' > 0, such that

Y (u) < O + %|y — LAw)[3. (6.2.16)
In particular, we have

DAY (u) < O+ |yl + L2 (w) [} (6.2.17)

Given a sequence of observables £2(u) (A — 0) arising for example from numerical discretizations at
grid scale A, it is now natural to ask what can be said about the limiting behaviour of the corresponding
sequence of posteriors Y. For many problems arising in the context of fluid dynamics very limited
information is available on the stability and convergence of the observables £ (u) — L(u) to a well-
defined limit. Indeed, even the existence of a limiting observable £(u) is often not guaranteed, due to
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the (potential) ill-posedness of the forward model. It is thus important to study the behaviour of the
sequence p¥Y under minimal assumptions on the observables £ (u). We pose that these assumption
should either be rigorously provable for models of practical interest, or at least numerically verifiable
and routinely observed in numerical experiments. In the remainder of this section, we will follow this
programme for abstract Bayesian inverse problems. We will in particular consider

e the stability of the posteriors ¥ with respect to the measurements 3 with respect to the Wasser-
stein distance, obtaining estimates which hold uniformly as A — 0,

e the general compactness properties of the sequence ¥ in the Wasserstein distance, and

e the consistency of ;¥ with the posterior ¥ corresponding to the limiting measurement £ (u) —
L(u), provided that the latter exists.

In particular, as a consequence of our discussion, we will prove the existence of a set of candidate solutions
of the BIP in the limit A — 0, under mild boundedness assumptions on the observables £ (u). While
of some independent interest, the present section on the abstract Bayesian inverse problem can also be
viewed as preparing the stage our subsequent discussion of the data assimilation or filtering problem in
section In particular, we will prove several crucial lemmas below, on which we will build in section
In the applications presented in section we will show that the assumed bounds in the abstract
results of the present section can be established by a priori estimates for models of practical importance.

6.2.2 Stability with respect to measurements

We first discuss the stability of the posterior y®¥ with respect to the measurement y. As a natural
measure of the distance between two posteriors Y, ,uA’yl, we consider the 1-Wasserstein distance
Wi (uAY, NA’y/). Our goal is to prove an explicit upper bound on Wy (u®+¥, ,uA’y/) in terms of |y — ¢/'|r.
We note that our discussion of stability for the BIP overlaps in part with a similar discussion contained
in [Lat20} [Spr20]. In particular, [Spr20] contains a general discussion of the stability of posteriors with
respect to both the log-likelihood and priors, and with respect to a number of distance metrics between
probability measures. Since some needed estimates have not appeared in [Lat20l [Spr20], at least in the
precise form needed for our purposes, we have decided to include detailed proofs in this manuscript.

We begin our discussion of the stability properties of the BIP with the following lemma, proving that
the sequence of densities du®¥ /dy is uniformly bounded in L (), provided that supag £ ()| z2(u) <
o0; here we define the L?(u)-norm of the observables £2(u) as follows

Remark 6.2.5. The L%(u)-norm of L2 (u) is defined by

et = (f, |£A(“)|12“d/i(u)’>l/2

where T is the covariance matriz of the additive noise 1.

We now state the following

Lemma 6.2.6. Let du™¥/du be given by (6.2.6), and Z>(y) be defined as in (6.2.5). Then
Z2(y) > exp (—/ DAY (u) du(u)) , (6.2.18)
X

and

ueX

Ay
dp (u) < exp (/X O (1) dpu(u) — ess inf @A’y(u)> , YueX, (6.2.19)
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In particular, if the noise n ~ p(y)dy satisfies the standing assumption then there exists a constant
C > 0 depending only on the noise distribution p(y), such that

1
28(y) > & exp (—lylt = 11£2 ) (6.2.20)

and
dutv
dp
Proof. Since the exponential (Gaussian-like) factor in the definition of du®¥ /du, eq. (6.2.6)), is bounded

from above by exp(— essinf,cx ®2¥(u)), it suffices to prove the lower bound on Z2(y). We recall that
by (6.2.9), we can write

(u) < Cexp (\yﬁw + ||£A||%2(#)> , YueX. (6.2.21)

Z%(y) = — inf JAY
(y) exp( Lont (V)>,

where J2Y(v) = Dk (v||p) + [ @Y (u) dv(u). In particular, it follows that

inf JAY() < JAY :/@Avy du(u).
Lont (v) < (1) . (u) dp(uw)

Thus, we conclude that

280z e (- [ #890) dutw) )

This implies the first two estimates (6.2.18) and (6.2.19)) of this lemma.
Under the noise assumption [6.2.1) by (6.2.17)), there exists C’' > 0 depending only on the noise
distribution p(y), such the last term can be bounded from below, yielding

75() > exp (—c’ - [ |£A<u>%du<u>) ,

and thus the claimed inequality (6.2.20) for Z2(y) with C' = exp(C"’). Furthermore, by (6.2.15)), there
exists C”, such that

essinf @Y (u) > —C".
ueX

Thus the claimed inequality (6.2.21]) holds with C = exp(C’ + C"). O

We next discuss the stability of du®¥/du with respect to y. The following Lemma shows that the
map y + dp”Y/du is locally Lipschitz continuous with respect to the L>°-norm.

Lemma 6.2.7. Under assumption|6.2.1 Let £L*(u) € L?*(n). There exists a constant C > 0 (depending

only on the noise distribution), such that

dptv duA’y/
du B du

< Cly—y/lrexp (Iyf? + Iy +21£2 13z ) - (6.2.22)
Leo(p)

Proof. Fix u € X for the moment. Denote e(y) := e(y;u) = exp(—®>¥(u)), so that

duv AtV ely) ey
dp dp  Z2(y)  Z2(Y)
_e) —ely) | ely) (Z4) = Z3(y)

Z2(y) ZA(y) Z2(y)
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By (6.2.13), we can estimate |e(y) — e(y’)| < Cly — ¢/|p. Next, we note that this bound for e(y) also
implies that

Ay) - Z2 e(y;u) —e(y;u u -y u).
1Z5(y) - 2 <y>|s/X| () — ey's u)| dp(u) < Cly ylr/deu()

=1

Hence,
dp? dp | _ Cly—y/Ir L eW) Cly—yr
dp  dp Z%(y)  Z2(Y) Z2(y)
Finally, from Lemma we can estimate
1 ly[E+1£2172 lylE+1y' I2+21£2173
SCeyF (;1)<C’eyF Yir LQ(}A
Z%(y)

and

e(y) 1 lyl2+1y' [2+2)L2 )2
< CelYiT r L2(p)
ZAY') Z2(y)

Combining these estimates, we conclude that
dp¥y duyl

/ 2 /12 A2
T | = 20 oo (1l R 42125 )

Since u € X was arbitrary, the claimed inequality follows by taking the supremum over u € X on the
left. O

Let us also remark in passing the following Lemma, whose proof is analogous to the proof of Lemma
0.2. (1

Lemma 6.2.8. Under assumption|6.2.1. Let £L2(u), L(u) € L?(u), and y € RY. There exists a constant
C > 0 (depending only on the noise distribution), such that for any p € [1,00], we have

T

iy S C N30 = £ ex0 (22 + 1£2 12 + 1€ )

for all w for which £ (u), L(u) is defined.

Proof. The proof is an almost verbatim repetition of the proof of Lemma with the roles of y, 1/
and £ (u), £(u) interchanged. O

Using Lemma we can now state the following theorem on the stability of the measurement-to-
posteriors map:

Theorem 6.2.9. We make the assumption|6.2.1| on the noise n ~ p(y) dy. Fiz a prior p € P1(X). Given
a measurement y € R4, A > 0 with observable L™ (u) and prior p, let ™Y denote the corresponding
posterior (6.2.3)). Assume that
o A
M = Zu>];()) HE HLQ(M) < 00.

Then the family of posteriors {u™¥} is uniformly bounded in Lipy,.(R%; Py (X)) and hence locally equicon-
tinuous: There exists a constant C = C(p,T', M, ), independent of A > 0 and y,y’, such that

w, (,U,A’y,MA’y/) < C’|y _ y’|Fe\y|12"+|y/|12". (6223)
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Proof. Fix ® € Lip(X) with semi-norm || ®||rip < 1. Then

/ B(u)(dp> (u) — dp>Y () = / [B(r) — B(O)](dpY () — dp>Y (u)
X X

< / lullx
X

Ay

dMA’y d'uA,y
dp

dp(u)

(/] mulantan).

Estimating the last term using Lemma and taking the supremum over all such Lipschitz continuous
® on the left-hand side, we obtain by Kantorovich duality:

du d,u

dp

Lee(p)

’ J— 2 72
Wl(p’A’yvﬂA)y ) < C||u||L1(/L)|y - yl|Fe|y‘r+|y |F7
where C is independent of A. In fact, we can choose

— A 2 2
C = sup C€2H£ (u)HLz(M —_ 062]\/1 ,
A>0

with C the constant from Lemma [6.2.7 O

Remark 6.2.10. The previous stability result only depends on the continuity properties of the noise
distribution p, and is independent of any continuity properties of the observable L(u). In the same spirit,
if dpv /dp = 1/Z(y) exp (— 3|y — L(u)|%) is a posterior with Gaussian noise, and if ||L(u)|2(,) < o0,
then we can show that for any ¢(u) € L*(u) (i.e. ¢(u) is integrable with respect to the prior u), we have

that
707 o

is real analytic; this follows from [HSZZ2(, Lemma 4.5]. In particular, this result is independent of any
smoothness properties of L(u). In section we will show that the conclusion remains true even for
the time-dependent data assimilation (filtering) problem (cp. Remark|6.5.10).

RY 5 R, y— EY[¢p

6.2.3 Compactness properties

Having established the uniform equicontinuity of the measurement-to-posterior mapping, we next wish
to show that the posteriors u¥, for fixed y € R?, form a compact sequence as A — 0 in (P;, W;), and
that all limit points are absolutely continuous with respect to the prior u. The proof of compactness
of ™Y will be based on the variational characterization of the posteriors to the BIP, in terms of the
Kullback-Leibler divergence with respect to the prior.

We now show pointwise compactness of the posteriors u”¥ for fixed y € R%:

Theorem 6.2.11. Fiz a prior p € P1(X). Fizy € R Assume that the log-likelihood ®>Y > —C
is uniformly bounded from below, and that [, ®Y(u)du(u) < C are uniformly bounded from above
for A > 0. Then the family of posteriors {™¥}aso is pre-compact in P1(X), and any limit point
wsY = lima, o u*Y is absolutely continuous with respect to the prior .

Proof. As remarked in the introduction to this section, the posterior ¥ can be characterized as the
unique minimizer p®Y = = argmin, cp, (x JA’”( ) of the functional J2¥ (6.2.7). In particular, this vari-
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ational characterization implies that

Dia (1) = T4 (u) = [ 929w au () < T2 + ©

< J™(u)+C = / O (u) du(u) + C < 2C.
b's

It follows that
{1} as0 C {v € Pu(X) | Dxr(v||p) < 2C}.

From the coercivity property of the Kullback-Leibler divergence Dk, the sublevel set {v € P1(X) | Dxy.(v||p) < 2C}
is compact with respect to the topology of weak convergence of probability measures. Furthermore, any

weak limit point u*¥ = w — lima, 0 p™*¥ satisfies Dk, (u*¥||p) < 2C < oo, and hence is absolutely
continuous with respect to p. This shows that {u®¥}a~¢ is precompact with respect to the weak topo-

logy on P(X). We finally want to show that if y*¥ = w — lima, o p2*¥ is a weak limit of the family
{u® ¥} A0, then in fact Wy (u*™Y, u®*¥) — 0 converges with respect to the 1-Wasserstein distance. As a
consequence, we conclude that {112¥} A~ is also pre-compact in the metric space (Py, W7).

To this end, suppose we are given a weakly convergent subsequence p+¥ — ;*¥. By (B.0.5), in
order to show that Wi (u*Y, u®+¥) — 0, it suffices to prove that

[l ey < [l dn .
b'e X
Let € > 0 be arbitrary. We want to show that

nmsup\ [ Wl s~ [l v, <
X X

k—o0

By Lemma and the assumed uniform upper bound on [ ®2¥(u)du(u), there exists a constant
C > 0, such that

As [y [lullx dp(u) < oo, we can choose M > 0 sufficiently large, so that

/ lullx duu) < €/(20).
lu||x >M

Then, clearly

Ag,y

dp
[ lxanorw = [l auw < © lullx du(u) < ¢/, (6.2.24)
[lull x >M [lul| x>M H lull x >M

for all k£ € N, and by the lower semi-continuity of weak limits, a similar inequality holds for p*¥:

/| x>M lullx dp™(u) < lim inf [ullx dp*¥ (u) < €/2. (6.2.25)
Ul x =2

°° Jullx =M
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Define Fis(u) := min(||lul|x, M) € Cp(X). Then,

limsup‘/ |l x duAk’yf/ l|lul| x dp™Y
X e

k—oc0

< limsup ’/X Far(u) [dp™FY — dp™Y]

k—o0

+ lim sup / Jullx dp ¥ () + / lullx dpr* ()
[lul| x >M

k—o0 lullx =M
<0+€/24+€/2=¢

To pass to the last line, we used the upper bounds ((6.2.24]), (6.2.25)) and the fact that
[ Pt deerw) 5 [ B dut o),
X b'e
since Fyr € Cp(X) and p?s¥ — p*¥. Since € > 0 was arbitrary, we conclude that

/ lullx dpe (u) — / lullx d™¥ (),
X X

and hence W; (,uAk’y,,u*’y) — 0 (cp. (B.0.5)). In particular, this shows that any weak limit point of
{uA¥} a0 is also a limit point in P (X) with respect to the 1-Wasserstein metric Wy. Since {u®¥}a~o
is weakly pre-compact, it follows that it is also pre-compact in P;(X) with respect to the Wi-metric. [

Finally, we can combine the uniform equicontinuity result of Theorem with the point-wise
compactness established in Theorem [6.2.11] to prove the following general compactness theorem for
posteriors, now considered as mappings y — u™Y:

Theorem 6.2.12. We make assumption on the noise distribution. Fix a prior pn € P1(X). Let
{L2Y a0 be a uniformly L?(po)-bounded family of measurable mappings L2 : X — R%. Then the
corresponding family of posterior measures y — p™Y is pre-compact with respect to the topology of locally
uniform convergence on Lip,,.(R%;P1(X)): For any sequence A — 0, there exists a subsequence Ay — 0
and a y-parametrized probability measure y — p*Y € Lip,,.(R% P (X)), such that for any R > 0, there
exists C = C(R,T, u), such that

Wi (™Y, 1Y) < Cly —yIr, Y,y € Br(0),

and we have
sup Wi (MAk’y,u*’y) — 0, ask— oo.
lylr<R

Furthermore, any such limit ™Y is absolutely continuous with respect to the prior p, and can be written
in the form du*¥(u) = Z(y) = exp(—®* (u;y)) du(u).

Proof. This theorem is a direct consequence of the Arzela-Ascoli Theorem the pointwise compact-
ness Theorem [6.2.11] and the uniform equicontinuity Theorem [6.2.9] O

Remark 6.2.13. The last theorem shows that under quite general conditions, we can assign a set of
“solutions” of a BIP (or at least candidate solutions) to a family of posteriors ™Y solving the discretized
BIP at resolution A > 0. This set of candidate solutions of the BIP in the limit A — 0 is given by

S = {,u*’y

A, — 0, s.t. ™Y = lim ’LLAMJ}’

k—o0
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or equivalently, we can write
= [N d{y= 27 [A<A}),
A>0

where cl denotes the closure in Lip,,.(R%; P,(X)). We note that the set S is non-empty: This follows
from the fact that finite intersections are clearly non-empty and that each of the sets is a compact subset of
Lip,,(R%; Py (X)) (finite intersection property of compact sets). So under these very general assumptions,
there always exists at least one candidate solution.

One possible selection criterion to find the “best” solution among the candidate solutions S of Remark
6.2.13|is by minimizing the Kullback-Leibler divergence with respect to the prior p (with the idea of this
being the most conservative estimate):

w*Y = argmin Dy, (v||p).
veS

6.2.4 Consistency with the canonical posterior

In the previous section, we have shown that under very general assumptions on the observables £ (u),
we can define a set of candidate solutions S for the BIP in the limit A — 0. In this section, we show that
if /JA(u) — L(u) converges to a unique limit (even in an average sense), then u™Y — ¥ converges to
the unique solution of the BIP with measurement £(u) with respect to the Wasserstein distance Wy. In
particular, the set of candidate solutions S identified in Remark is in this case given by & = {u¥}.

Theorem 6.2.14. Under the noise assumptwn | Fiz a prior p € Po(X). Let p™Y and p¥ denote
the posteriors for the BIP with observables £* and E, respectively. Assume that there exists a constant
M > 0, such that

1£2 @] 2y » 1L L2 < M. YA > 0.

Then, we have the estimate
Wy (Y, 1) < ClILA (w) = L(w)]| 22 (),

where C = C(T', pu,y, M) depends on the prior u, the measurement y € R% and the upper bound M, but
is independent of A.

Proof. For any ® € Lip, such that ||®||rip < 1, we find

[ 2 [ w) — dur )] = [ (@) - 2(0) [dn* (@) - du?()]
X X

P e T
g dp e
By Lemma [6.2.8] we have
H dp> duy < O J£2 () — £()|ja U HIE Mz 1L
12(s)
< OJLA ) = L0 o, M2
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for a constant C' = C(T"). Using this estimate, we can now bound
[ 00 [0 = )] < T2 w) = £0)] 1,

where C = Celvl*+2M* ([ llullk du(u))l/g. Taking the supremum over all Lipschitz continuous ®(u),
with Lipschitz semi-norm ||®||r;, < 1 on the left, we obtain the claimed estimate. O

6.3 Data assimilation

6.3.1 Problem setting

In the context of time-evolution equations, one is often not only interested in obtaining an estimate for
the (initial) state given individual measurements y, but to track the temporal evolution of a system,

given measurements y1, Y2, ... acquired over time. The data assimilation problem seeks to provide a best
estimate for the state u of the system at time ¢, expressed in terms of a posterior probability measure
v{(u), given the available measurements y1,y2,.... There are at least two types of data assimilation

problems: Following standard terminology, we call filtering, the problem of determining the posterior
vy (u) at time ¢ € [0, 7] from the measurements available up to time ¢, i.e. from measurements in the time-
interval [0,¢). The filtering problem thus provides the best prediction given a set of past measurements.
On the other hand, if the posterior v (u) at t € [0,7] is obtained “after the fact”, i.e. given a set of
measurements acquired during the whole time-interval [0, T], then we speak of the smoothing problem.

The generic data assimilation problem is schematically illustrated in Figure [6.1]

u

Figure 6.1: Schematic illustration of the data assimilation problem: Measurements (red circles) are used
at times t = to, t1, ..., to periodically update the posterior measure v¢ (indicated by its confidence interval
in blue), combining all available information from the deterministic evolution and noisy measurements.

In the following, we will focus on the filtering problem, for which we provide a precise formulation
below; however, most of the results should apply mutatis mutandis also to the smoothing problem. Due
to the weak temporal and spatial regularity properties of the fluid dynamics applications of interest in the
present work, simple pointwise measurements of the form £(u) = u(x,t;) are not well-defined. Thus,
we will first discuss an appropriate notion of observables. We make the following definition

Definition 6.3.1 (Eulerian Observables). A mapping G : L'(0,T;L2) — RY, u(z,t) — G(u) =
(G (u),...,G%wu)), with G*(u) of the form

T
0 = [ [ 6% (a9 ula ) do . (6.3.1)
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for u(z,t) € L'(0,T; L?), is called an Eulerian observable (or simply observable), provided that, for
allk=1,...,d, we have ¢ (x,t) € L>°(D x [0,T]) and g'¥)(u) is Lipschitz continuous with

1g®) (u) — g™ ()] < Clu— /. (6.3.2)

To simplify notation in the following, instead of (6.3.1) we shall simply write

T
g(u):/o /Dqﬁ(aﬁ,t)g(u(x,t))dxdt, (6.3.3)

where ¢(x,t) = (¢ (x,1),..., 0D (x,1)), glu) = (gV(u),...,9'P(u)), and it is understood that the
multiplication in (6.3.3) is carried out componentwise.

It is then straightforward to prove the following result.

Proposition 6.3.2. An Eulerian observable G(u) is Lipschitz continuous on Li([0,T]; L2), i.e., there
ezists a constant C' > 0, such that

T
IG(u) — G(u)] < C’/ |u— U/HLg dt, Vu,u € Ll([O,T];Li).
0

Proof. This follows immediately from the definition (6.3.3]) of G(u) and the assumed bound (6.3.2). O

Assumption 6.3.3 (standing assumption). In the present section, we will make the standing assumption
that the approzimate solution operators #~ : L2 — L2 (as well as a possible limit % : L2 — L2, if it
exists) satisfy uniform bounds of the following form:

2

x’

o Energy admissibility: For any u € L%, we have

|72 W)z < Cllullrz, VYueLZ,
o Weak time-regqularity: There exist constants L,C > 0, such that
.72 (u) = S W)l e < Clt =), Vue L2, t,t' €[0,T],
i.e. t s A (u) is Lipschitz continuous with values in some negative index Sobolev space.

Given a sequence of measurement times 0 = ¢y < t; < to < --- <ty =T for N € N, we denote
0t; =t; —tj—1. Given observables of the form

ot;
Gy LX([0.5t;): L2) - R, Gy(u) = / /D b5, 1)g; (u(x, 1)) da di (6.3.4)

the filtering problem at grid scale A > 0 is described as follows: The temporal evolution of the system
state u(x,t) is modeled by the approximate solution operator .72, i.e. u(x,t) = .7 (%), where T =
u(z,0). We fix a prior ppior € P(L2) at the initial time ¢ = ¢, representing our best estimate of the
state of the system in the absence of measurements. For a sequence of measurements yi,...,yy, wWe
denote Y; = (y1,...,y;) the vector of partial measurements up to time ¢;. We wish to find a sequence of

probability measures Vﬁ‘ ’Yl,ué Yo VtAN’YN, where th Y provides a best (probabilistic) estimate of the
state of the system at times ¢;, given the measurements Y; = (yi,...,y;) available up to that time. The

measurements are modeled as

yj =L3@) +n5,  nj~pi(y)dy, (6.3.5)
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where for each j, the noise distribution p; is required to satisfy the assumption with a matrix
I'; € R™% and observable L3 () = G;(S5 | 14(@)), i-e.,

ot;
Am) = i(x (u(x,ti_q T dt, 3.
cp@ = [ [ oatia (uatyr +0) dode (63.6)

where u(z,t) = .7 (7) is the approximate solution corresponding to ./, with initial data @ = u(x, 0).

Remark 6.3.4. More generally, given all measurements Y; = (y1,...,y;) obtained in the time interval

[0,¢;], we might be interested in Z/tA’Yj , the best probabilistic Bayesian estimate of the state u at arbitrary
time ¢ € [0,T], i.e. we can formally consider the conditional probabilities

utA’Yj(du) = Prob[u(-,t) € du|Y;] = Problu(-,t) € du|y1,-..,y,],

fort € [0, T]. The filtering problem thus considers the case for which all available information at time t =

t; is incorporated in uﬁ’yj, providing the best prediction of the state u at time t;, given all measurements
J

made during the time-interval [0,t;].

We note that, under assumption [6.3.3] Proposition implies in particular that
A
125 (D 22 (uprion) < C (14 0l 22 agri00)) »

L) — L8 <C v FA() — 7D dt (6:3.7)
1£5 (w) = L5 ()| 2 (uprior) < t |77 (w) — = (Wl L2 (pprion) At

where C = C(G;,T) > 0.
We will denote the log-likelihood function corresponding to the observable G;(w) on the j-th time
interval [t;_1,%;] by

A, j
P, Y (u) = —log p;(y; — G (LA (u)), Vue L2 (6.3.8)
We formalize the filtering problem as follows:

Definition 6.3.5 (Filtering). At the initial time t = 0, we fix a prior measure [iprior, and define

v ™" = S tprior (6.3.9)

We note that fOA ~ Id is an approximation to the identity. Given times 0 =ty < t1 < -+ - <ty =T
and measurements yi,...,yn, the filtering problem involves the following two recursive steps.

1

. . AY;_ ) . L .
1. Correction step: Given vi,")'" as a prior at time tj_1, solve the Bayesian inverse problem with

new measurement y; = G;(ZA(u)) +nj, for t € [0,8t;], to obtain a corrected Bayesian estimate

1
Z8(y;)

dv,”? (u) = exp (~@2 (w)) a7 (w). (6.3.10)

J

2. Prediction step: Based on this corrected estimate, predict the probability distribution at time t;,

as the push-forward:
AY;

_ A A,Y;
th - fy&tj,?-,qiytj71 )

(6.3.11)

where we recall that 0t; =t; —t;_1.
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A Ya 1 AY; LAY 0

. V — V. ] _— ...
tj ti+1
J/ / ll//Jrl/
AYJH
J 1 tJ

Figure 6.2: Schematic for the filtering problem: (orange) the correction step incorporates the measure-
ment y; = CjA (@) +n; to update the current best estimate, (blue) the updated estimate is used to predict
the next state.

Remark 6.3.6. Informally, we can write the correction step (6.3.10) of the filtering problem as follows:
Prob [u(t;—1) € du|Yj] = Prob [y; = G; (2 (u(t;—1))) | u(tj-1)]
x Prob [u(tj,l) € du ‘ }/jfl] s
The prediction step (6.3.11) can be expressed intuitively as

Prob [u(t;) € du|Y;] = Prob [5’5? (u(tj—1)) € du] Yj}
—y(;t #Prob[( )Edu‘Y]

The filtering problem is thus defined by recursion, and provides a sequence of best-estimates ut? Y
given the time sequence 0 = ty,¢1,...,ty and measurements y1,...,yn, and based on a fixed prior fiprior
at the initial time ¢ = 0.

Although the filtering problem is most naturally expressed in terms of the above recursive pre-
diction/correction scheme, it turns out to be beneficial for the analysis of this problem to discuss an

equivalent alternative formulation. To this end, we consider y®Ys € P(L2) for j = 0,..., N, informally
given by

12Yi (du) = Prob [u(-,0) € du|Y;], (6.3.12)

i.e. the probability of the initial state u(-,0) € du, given the measurements Y; = (y1,...,y,). More
precisely, we define Y (du) as the solution of the BIP with prior Lprior and given the measurement

= (ElA(u)vz’ZA(u)’ s 7£]A(u)) + (7717772a s ﬂ?j)?

and (11,72, ..,n;) the measurement noise. For simplicity, we will assume that the random variables
M1,...,n; at different time-steps are independent. In this case, the law of (11, ...,7;) is a simple product,

(M5 smg) ~ p1(y1) dyr @ -+ @ p;(yy) dyy,

and the solution of the above BIP with prior piprior is given by

dp®Yi (u) = ZA( exp ( Z(I)A,yk O%ﬁ (u )) dptprior (W), (6.3.13)

where we note that, by (6.3.8) and the definition of £ (u) = G;(.#2 ,,(u)), we have that

w0550 b =)

(6.3.14)
=—logpi (yx — L (v)), VYue L2,
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i.€e. @A’yk ) %A , is the log-likelihood function corresponding to the measurement yr = Li(u) + 1k,
and starting from the initial data v € L2 at time ¢t = 0. In , ZA (Y;) is a suitable normalization
constant, defined by

A,
Z‘]A()/J) / eXp < Z(b Yk ocgﬂtf 1( )) duprior(u)7
for Y; = (y1,-..,y;). We note that £ (u) = G;(.Z2  ,+(u)) (cp. equation (6.3.6)) can be written as

tr
= / /D ozt — ti1)gr (L2 (w)) dudt,
th—1

i.e. Ly provides a measurement of the solution . (u) with initial data u (at ¢ = 0) over the time
interval [ty_1,t;]. Consistent with the above identity for u®+¥s (which is valid for j > 1), we define

’uA,YO

corresponding to the empty sum in ((6.3.13]).
We can now state the following proposition, providing an alternative formulation of the filtering

problem. We refer to [LMW21], Proposition 4.7] for the detailed proof.

= Upriors (6.3.15)

Proposition 6.3.7. Let Z/A’ 7 denote the recursively computed sequence of probability measures in the

filtering problem (cp. Deﬁmtwnu Let ™Y be given by m Then, we have the identity
AY; .
v, = S8 ™, (6.3.16)

ALY;

ie. VtAj’Yj is given by the push-forward of p to time t = t;.

Remark 6.3.8. The content of Proposition is intuitively clear: The measure u™Yi(u) provides
the best Bayesian estimate for the initial state u(-,t) at t =0 given the measurements Y; = (y1,...,y;)
acquired over the interval [0,1;]. Pmposz’tion expresses the fact that the best Bayesian estimate for
the state u(w,t;) at time t; should simply be given by evolving the best initial estimate u>Yi (given Y;),
forward in time to t = t;, via the solution operator ZA.

Remark 6.3.9. Proposition also indicates a consistent definition of Vt ¥ for any t € [0,T].
Indeed, the best Bayesian estzmate for u(-,t) given the measurements Y; is simply given by

l/tA’Yj = ﬁé#uA’}G, (6.3.17)

Remark 6.3.10. We recall that by Remark|6.2.10, for any ¢ € L (fiprior), the mapping

Yy [ (u)dp™Yi(u),
L3

is analytic in Y;, for Gaussian measurement noise. As a consequence of Pmposition@ it follows that
also

Vi | od” 0w = | 6(75 W) dut Y (w),

L2

is analytic in Y;, independently of the smoothness of the solution operator IR,
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6.3.2 Stability with respect to measurements

In this section, we investigate the stability properties of the solution of the filtering problem with re-
spect to the measurements yi,...,yny. Our analysis will be based on the representation of
the previous section and the stability results for the BIP in section [6.2] Due to the 1ow a priori
time-regularity of the time-dependent mapping ¢t — v, ’Y'", we will formulate the stability in the space
L} (P) = LY([0,T); P(L?)), defined as the set of all weak-* measurable mappings [0, 7] — P(L2), t — vy,
such that

T
/ [ull Lz dvi(u) dt < oo,
0

with metric

T
dr(vi,v}) ::/ Wi (v, vy) dt, Y, v, € LN[0,T); P(L2)).
0

This space has been introduced in chapter Deﬁnition it is not difficult to prove that (L} (P),dr)
is a complete metric space (cp. Proposition [3.2.4)).

We can now state the following lemma:
Lemma 6.3.11. Let T > 0. Let piprior € P1(L2) be a prior such that |[ullp1(,,,..) < oo. Let utA’YJ
be given by fort € [0,T], so that, formally, z/tA’Yj(du) = Prob [u(-,t) € du|Yj]. Then for any
R >0, there exists C = C(R) > 0, such that for any t,5t > 0, we have

t+0t

j
Wi (I/TA’ V dT < Cét (Z |y — yk|rk> (6.3.18)

k=1

for allY; = (y1,...,y5), Y] = (Y1, ..., y}) such that ?;:1 |yk|1%k <R, \/T

Proof. To simplify the notation in the following, we set

i 1/2
Yl = <Z kal%k> ~

k=1

t

By (6.3.17] m, we have 1/ Yi = YA AY5 where pu®Yi solves a BIP and is given by (6.3.13)). Since p”Ys
is the solution of a standard BIP Wlth noise n = (11, ...,n;) satisfying assumption u then by Lemma

[6:2.7 we obtain

d/JLAvi/J d,LLA’Y;

d/J‘prior d//’/prior

<ClY; - Y!lr. (6.3.19)

L% (pprior)
Let ®(u) € Lip(L2) be a function with Lipschitz constant < 1. Then there exists g(u) such that

P(u) = 2(0) = g(w)llullrz,  lg(w)] <1
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Now note that
/ D(u) |dv — ;] = / [®(u) — D(O)] vy — vy |
L2 L2

= [ atlaz 72 [ — ]

dudYi  autYi
dpiprior - dptprior
dpAYi dﬂA’YJ‘/
dptprior a dptprior

_ / A IL@ISE W1z [

r

‘| d:uprior (u)

< [ B @) 172wl Qg ().
L2

s

Using the fact that |g(u)| < 1, and that || (u)||2 < C|lullz2, by assumption [6.3.3] we can further
estimate the last expression

d/iA7Yj dNA’YjI
d//’/prior d//’/prior

dudYi  duAYi
< [ fulas |2 - 2
L2 d,U/prior duprior
<C </ ”u”Lf d,“prior('“))
L

duA*Yf duA’YJ'/
d,u/prior d,u/prior

Taking the supremum over all ®(u) such that ||®||r;p, < 1 on the left, and noting the upper bound (6.3.19)

on the last term, we find

dptprior (1)

| s @178 Wl

x

dftprior ()

L2 (pprior)

wi (v, ) < Y = Y,
where the constant C' > 0 is independent of Y}, Yj’ . Integrating in time, we obtain the claimed inequality

46t ,
W (uf”’f,yf"’j ) dt < C5t|Y; — Y]|r.

O

We will finally state a general stability theorem for the solution of the filtering problem. To this end,
we introduce the following notation

Definition 6.3.12. Given times 0 =ty < t; < --- < ty =T, and measurements y,...,yn, we denote
by vA&Y, with y = (y1,...,yn) the solution of the associated filtering problem, i.e.,

A e 0,t),
vEY e [t ),
VtA’y =1 (6.3.20)
yEN e v, ty),
v >ty
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Theorem 6.3.13. Let utA’y denote the solution of the filtering problem with prior pprior € P1 (L2), and
measurements y = (y1,...,yn). Then for any R > 0, there exists C = C(R,T), such that

T
/ W (l/tA’y, P ) dt <Cly —y'Ir, (6.3.21)
0

for all y,y’ such that |y|r, |y'|r < R. Here, we use the norm

N 1/2
lylr = (Zlyk%k) :
k=1

Proof. The claimed stability estimate follows readily from Lemma|6.3.11} Indeed, I/tA ¥ is defined piece-
wise in time, for t € [0,T) = [to,tn), as

N

Ay _ § AY L
Vy = l[tk—htk)( )Vt
k=1

Thus, by the estimate of Lemma [6.3.11} we find for some C = C(R):

’ N 123 /
/ Wl( oY tAy) dt = Z/ wh (Vf’y’“‘l,l/tA’Y’“”) dt
0 ¢

k=1"1tk—1

N
<O ot|Yeor = Vi Ir
k=1

<CTly—y'lr.

6.3.3 Compactness properties

Our second main result for the filtering problem is a conditional compactness result, motivated by the
study of statistical solutions of the compressible and incompressible Euler equations in chapters [3] and
(see also [FLMW20]). In chapter |3 we have studied the forward problem for statistical initial data
71 a probability measure on L2. We proved that under Assumption m the sequence of discretized
approximate solutions p = ()41 (push-forward by the discretized solution operator) is compact in
P1(L2), provided that the following measure of average two-point correlations

1/2
ST (u;r) - (/ /L2 So (u; )% dps (u )dt) , (6.3.22)

are uniformly bounded as A — 0, where

(/][ z+h)—u(z )|2dhd:1;> 1/2, (6.3.23)

measures the average of two-point correlations of u: More precisely, if u2 is of the form pf = Y 4o,
po € Po(L2), with .#2 : L2 — L2 satisfying assumption and if we have ST (u2;7) < ¢(r), for some
modulus of continuity ¢(r) uniformly in A, then £ is compact in L} (P). The quantity r + ST (us;r)
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is referred to as the (time-integrated) structure function of u£*. For simplicity, we will state the following
results in the periodic setting with domain D = T¢. Numerical evidence for the uniform boundedness
of these structure functions for the statistical forward problem has been presented for a variety of initial
probability measures p supported on rough initial data of the two-dimensional incompressible Euler
equations in [LMPP21bl LMPP21al, and in the context of hyperbolic conservation laws in [FLMW20].

We formulate this observation motivated by the numerical experiments in [FLMW20, LMPP21D,
LMPP21a] abstractly as the following assumption:

Assumption 6.3.14. The prior fiprior has finite second moments,

[ Tl drpro) < .

x

and there exists a modulus of continuity ¢(r), such that
ST (S Py btprior;T) < B(r), Vr>0, t€[0,7], (6.3.24)

uniformly for all A > 0. Here Z’A#uprior denotes the push-forward measure of the prior piprior by the
discretized solution operator S.

Remark 6.3.15. Let I = fiprior € P(Li) be a probability measure with finite second moments. We note
that under our standing Assumptionm on the uniform boundedness of the S, and if S/ converges
to % in LY ([0,T]; L' (1)), then Assumptz'on is automatically satisfied. Indeed, for any ® € Lip(L2)
with || ®||Lip < 1, we have

| 2@ [(#m) —a i) = [ (2 ) - o) dita)

L2

x x

< / |72 ) — Fi(w) | 2 di().

L2

x

Taking the supremum over all such ® and integrating over [0,T], we obtain
T T
| Wi A ars [ 1920 = Al dtdita)
0 2 Jo
Thus, the assumption that .#(u) — 7 (u) in L*([0,T]; L' (7)) implies that
T
/ Wi (ST, Sy dt — 0, (A —0),
0

i.e., that Z,A#ﬁ — F4p in Li(P) = LY ([0, T); P(L2)). In particular, Zé#ﬁ is compact in L} (P), from
which it follows (cp. [LMWZ2I, Prop. A.2]) that there exists a modulus of continuity ¢(r), such that
S§(S L) < o(r).

We also note that if there exists a set A C L2, such that i(A) = 1, and .7 (u) — % (u) point-wise

for all u € A, and almost all t € [0,T), then A (u) — Z(u) in LY([0,T]; L*(7z)). Indeed, this follows
from the point-wise bound

172 (w) = L@z < 12 @)z + 17 (w2 < 2]ullzz,

the fact that [ |lul|L2 dfi(u) < oo, and the dominated convergence theorem.
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Conditional on Assumption [6.3.14] we can prove a compactness result for the filtering problem:

Lemma 6.3.16. Let I/tA’y be the solution of the filtering problem with prior pprior € P2(L2), such that
lull 22 (pnier) < 00, and measurements y = (y1,...,yn). If assumption |6.8.14) holds, then VA s a
compact sequence in L}(P), as A — 0.

The proof of this lemma is based on proving a uniform upper bound on the structure function
ST(Yr) < CSQT(Zé#pprior; r) < ¢(r). For the details of the argument, we refer to [LMW21, Lemma
4.6). Combining the uniform stability result, Theorem with the point-wise compactness result,
Lemma [6.3.16] we can formulate the following theorem:

Theorem 6.3.17. Fiz a prior fiprior € P1(L2), such that lull22(ppnior) < 00- Let 0 =1tg < t; <--- <
tn =T be a strictly increasing sequence of times for fived N € N. Let y = (y1,%2,...,yn) € RN be
a sequence of measurements. Let I/tA’y, 7 =0,...,N, be the solution of the associated filtering problem.
If assumptz'on holds, then the sequence VtA’y is pre-compact in Cloc(R>*N: LY(P)), as A — 0. In
fact, there exists a subsequence Ay — 0, and pyY with

y — v;"Y € Lip,,. (RV*4 LEH(P))
such that
T
dr <1/,§A’“’y,1/:’y> :/ Wy (Vf’“’y,yt*’y) dt — 0,
0
converges locally uniformly in y.
Proof. By Theorem [6.3.13] the mapping
RPN 54 MY € LY(P),

is uniformly bounded on any compact subset K C R and uniformly equicontinuous on K. By Lemma

6.3.16] the sets
{uf’y ‘ A > 0} c LY(P),

are pre-compact for any fixed y € RN (pointwise compactness). By the Arzeld-Ascoli Theorem
the claimed compactness result follows. O

Remark 6.3.18. In practice, a very popular choice of priors are Gaussian priors fiprior ~ N (m,T') on
function spaces, i.e. priors piprior such that each finite-dimensional projection is Gaussian. We point out
in passing that Theorems[6.2.9, [6.2.13, [6.3.13 and[6.3.17 on the stability and compactness properties of
approximate posteriors apply in particular, when the prior is Gaussian.

6.3.4 Consistency with the canonical solution

We finally discuss the consistency of the above convergence result for the approximate filtering problems
based on the discretized solution operator .#/*, and the limiting filtering problem with solution operator
% More precisely, we show that if ./ (u) — .%(u) converges in a suitable sense, then v~¥ — v¢ in
L;(P), where v denotes the solution of the limiting filtering problem.

Theorem 6.3.19. Assume that piprioy € P1(L2) is such that |Jul|12(,,,.,) < 0. Then there exists a
constant C > 0, independent of A, such that

T T
|ow (v <o | 17200 = Sw)nsgun

In particular, if S2(w) — S (u) in LY[0, T); L2 (fiprior) ), then vi¥ — v¥ in LE(P).
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Proof. Fix t € [0,T] and j € {0...., N — 1}, such that ¢ € [t;,t;11]. Then, by the definition of VY we
have
A, AY; ,
v =, = Z,A#HA’Y],

where the last equality follows form (6.3.17). Given ® € Lip, with ||®||L;, < 1 and ®(0) = 0, we find

/Lfi (u) [dutA’y(u) - du}’(u)} = /Lg () [, (u) — S pdpn¥ ()]

[ 00 [ (1) = Sy ]

+ [ 00) [F5dn"s (1) = g (0]
(D) + (II)

We can estimate the two last terms individually as follows: For the first term, we obtain

()= [ | 90) [725u ) = 2" ()]

x

- [, o) [ ]

2 d,uprior a d,ufprior
dluA?Y?' d‘uY7
<c [ Jule
L3
< Cllul| g2

- dpipr r(u)
d,u/prior d/lprior pro

dﬂprior dlu/prior

Nprior)

L2 (Hprior)

The last term can be estimated using Lemma recalling that u®Y7 is defined as the posterior with
Prior fiprier and given the measurements (£, ... ,EjA) of the form (6.3.6)). Lemma therefore yields

) 1/2
J

<C (Z 1£5 (u) — Ez(u)II%wprior)) 7

=1

for some constant C' > 0 depending only on the prior fiprior; here, we have used the fact that Y; is fixed,
and that [|£2(w)]] 12 (upuen)s 1£6(W) || 22 (upuior) < C(L+ [[ull L2(uper)) < 00 are bounded independently of
A > 0, which allows us to bound the additional exponential factor in Lemma uniformly in A.
Continuing, we note that the observables are Lipschitz continuous by assumption; Indeed, by (6.3.7)), we
have

d,ufprior d,UJprior

L2 (pprior)

te
I1£7 (1) = Le(u)[| 22 (puier) < C ) 172 () = ()| 22 (o) -
—1
It follows that
1/2

2
ty
/ |72 () — T 2 o dt]

te—1

m=c Z[

=1
Denoting F(t,0) := 1y, , ¢ ()72 (w) — F2(u) | L2y i0r)» WE Can estimate the last term as follows, using
Minkowski’s integral inequality:

1/2 1/2

/TF(t,é)dt] g/T <zj:|F(t,£)|2> dt.
0 0 \¢=1

J

D

=1
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Finally, recalling that all F(t,£), £ =1,...,j, have disjoint supports in ¢, we conclude that

j 1/2
I)gc/OT <Z|F(t,€)|2> dt = OZ/ F(t,0)|dt
=1 te—1

T
<c / 172 () — A 2y .

To estimate the second term, we note that

/Lz () [ S (u) = S pdy™ (w)] = / [2(2 (W) = B(F(u))] dpx (u)

L2

@

< [ 178 = Al d(w)

<C [ 192w = A3 durion(w)

< C||A (W) - Fi(u)

HLQ(/LmiO,.) '
Thus, employing the above estimates for (I) and (II), we conclude that for any ® € Lip, ||®||nip < 1,
and for any t € [0,T], we have

/L2 D (u) [thA’y(u) — dl/;y(u):| < ||<ZA( — Z(u ||L2(Mpnm)

+C/ -7 (w) W] 2 ey -

Taking the supremum over all such ® on the left, and integrating over ¢ € [0, 7], it follows that

T A T A
/owl(yt . avp) dtSC/O |72 (@) = W] 12,y At

where C' > 0 is independent of A. O

6.4 Applications

In the present section, we discuss several concrete applications of the abstract results obtained in the
previous sections.

6.4.1 Incompressible Euler

The incompressible Euler equations model the motion of an ideal inviscid fluid, and are given by the
following system of PDEs for the fluid velocity field w = u(z,t):
{Btu —|—' div(u®@u) + Vp = 2, (6.4.1)
div(u) =0, u(-,0) =w.
Here, p = p(x,t) is the scalar pressure, which can be determined from w(z,t) via solution of the elliptic
equation, —Ap = div (div (u ® u)).

In the following, we will focus on the periodic case with domain D = T¢, and dimension d € {2, 3}.
Physically meaningful solutions of are required to satisfy an energy admissibility constraint of
the form [|u(t)||r2 < [[@],2 for all ¢ € [0,T7], so that u(t) € L2(T%; R?) is uniformly bounded in time. In
particular, we consider solutions in the space w € L ([0, T]; L2).
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Spectral viscosity scheme

Popular numerical discretizations of the forward problem for the incompressible Euler equations on
periodic domains are spectral methods [DGO84] [Cho68, [KK00, [(Gho96]. We briefly recall the spectral
(hyper-)viscosity method, originally proposed by Tadmor [Tad89] in the context of scalar conservation
laws, and further detailed in chapter|1.4] in the context of the incompressible Euler equations.

Writing u® (z,t) = Dk <N up (t)e'** where A = 1/N, we consider the following discretization:

o, A+P AvA:_ v2s * A7
{tu N (w u™) = —en|V[Z(Qn * u”) (6.4.2)

div(uA) =0, ’U,Alt:() =Pyu.

Here Py is the truncated Leray projection operator onto divergence-free vector fields , introduced
in chapter [1.4] s > 1 is the hyperviscosity parameter, and @y is a Fourier multiplier. The choice of
parameters my — 00, ey — 0, and Fourier multiplier, and the intuition behind this scheme, are further
described in chapter [1.4

A priori estimates and consistency for the SV scheme

Multiplying the evolution equation (6.4.2) by u” and integrating by parts, we recall the following energy
balance from chapter

t
[ (@®))172 + 2en(2m)? /0Qk\klz"lﬁ?(T)FdTﬁHﬁ\lig
|k|oo <N

In particular, for any admissible choice of the parameters of the SV scheme, we obtain the a priori energy
bound

la®(@)llcz < Il vt e 0.7, (6.4.3)

We also recall [LM15, Lemma 3.2] that the SV scheme is consistent with the incompressible Euler
equations, in the sense that for any initial data w € L2, the sequence u® converges (up to a subsequence)
in the sense of Young measures to an energy admissible measure-valued solution [LM15], as A — 0. In
fact, we have the following simple Lemma:

Lemma 6.4.1. The approzimate solution operator ,S”tA : L2 — L2 obtained from the SV scheme (6.4.2)
at grid scale A = 1/N satisfies assumption .

Proof. Energy admissibility has already been derived preceding (6.4.3)). The simple argument to show
temporal Lipschitz continuity with values in a sufficiently negative Sobolev space H_ % has e.g. been
provided in [LMI5, Remark 3.3]. O

It is known (cp. the weak-strong uniqueness Theorem [1.3.11]) that if there exists a strong solution
u € C([0,T]; L?) for given initial data u, such that

T
/ V()| e dt < o0, (6.4.4)
0

then this strong solution w is unique in the class of energy admissible measure-valued solutions. As a
consequence of this weak-strong uniqueness result and the convergence to measure-valued solutions of
the SV scheme[6.4.2] we conclude that u® — w converges e.g. in L?([0,T]; L2) (in fact, L¥([0, T]; L2) for
all p < 00), if u is a strong (Lipschitz) solution. We collect this observation in the following proposition.
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Proposition 6.4.2. Let w € L2 be given initial data for the incompressible Euler equations. If there
exists a unique strong solution u = #(w) of (6.4.1)) with initial data w and such that (6.4.4)) holds, then
the approzimate solution u®™ = .7 (@) computed by the SV scheme converges to .7;(w). More precisely,
we have

T
/ |72 @) — Z (@))% dt — 0, as A — 0.
0 xT

In the two-dimensional case, d = 2, the vorticity is known to be advected by the flow, implying that,
at least formally, LP-norms of w = curl(w) can be controlled. The SV scheme ensures LP-control on the
vorticity w® = curl(u®) for p = 2: In the two-dimensional case, we have the following enstrophy bound
(see e.g. [LM20, Proposition 4.2])

lo? @z < @2z, Ve [0,T], (6.4.5)

where @ = curl(@) is the vorticity of the initial data. If the initial vorticity w € LS° is bounded, it has
been shown by Yudovich [Yud63|, that there exists a solution u = .#;(u) of the incompressible Euler
equations with uniformly bounded vorticity [[curl(u)||Ls < |[@]|z=. Furthermore, this solution .#;(u) is
unique in the class of solution with bounded vorticity [Yud63]. Later, it has been pointed out by Liu and
Xin [LX95], that the proof of uniqueness in [Yud63l [Yud95] actually extends to provide a weak-strong
uniqueness result in a wider class: If v is another weak solution of the incompressible Euler equations
with vorticity bound |[curl(v(t))||» < C, for any p > 4/3, then v = w is the unique Yudovich solutionﬂ
As a consequence of this weak-strong uniqueness result and the enstrophy bound , we obtain

Proposition 6.4.3. If w is initial data for the two-dimensional incompressible Fuler equations with
bounded vorticity, ||| < oo, then the approzimate solutions u® = #(w) converge strongly in
L3([0,T]; L2) to the unique Yudovich solution .7 (), i.e.

T
| 178 @ - Az de 0. as Ao
0

A second consequence of the enstrophy bound ([6.4.5) is a uniform estimate on the structure function:

Proposition 6.4.4. If w € L2 is initial data for the two-dimensional incompressible Euler equations
with bounded enstrophy, ||w]|L2 < co with @ = curl(w), then there exists a constant C > 0, such that for
any A > 0, the structure function obeys the bound

So(SL@);r) < Orl@l|pz, V€[0T, 7 20.

Proof. By definition, we have for any u € H}:
Sewn? =f [ Jule ) - u@Pdedh= £ fu( 4 ) - u()[E; dh
B.(0)JD B,-(0) *

The estimate [|u(- +h) —u(-)|[z2 < C|[Vul[r2|h] is classical. Furthermore, it follows from the incom-
pressibility of u that |[Vu|r2 = |lcurl(u)| z2. Hence,

So(u;r)? = ][ lw(- +h) —u(- )”%i dh < ][ C||curl(u)||2L§|h|2dh < Cchrl(u)HQLirz.
Br(0) )

T

2In fact, the Yudovich-class weak-strong uniqueness result of [LX95] can be slightly extended to prove that Yudovich
solutions are unique in the class of weak solutions with a L% vorticity bound for any p > 1. Since this extension is not
necessary in the present case, we do not provide a detailed proof here.
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Setting u = . (@), we thus find
Sa(E (@) r) < Orflewl(S (w)) |2 < Crlw]|re,

where the last inequality follows from ([6.4.5)). O

The well-posed case

Combining the general results for the Bayesian inverse and filtering problems in sections[6.2]and [6.3] and
the above convergence results for the spectral viscosity scheme, we can now prove:

Theorem 6.4.5. If jprior € P(L2) is a prior, and if there exists M > 0, s > d/2 + 2, such that
tprior(Bjy) = 1, where

By ={ueLinH;||[ul|g: <M} CLZ,

then there exists a time interval [0,T] with T = T(M,s) > 0, such that the BIP and filtering problems
for the incompressible Euler equations are well-posed on [0, T] Given measurements in the time-interval
[0,T], there exists a unique solution Y for the BIP and v} for the filtering problem. The posteriors u¥
and v¥ are Wi-stable with respect to measurements in the sense of m ) and m, respectively.
Furthermore, the approzimations ™Y and v, &Y obtained by the numerical discretization with the SV
scheme converge to this solution as A — 0, in the 1-Wasserstein norm Wi.

Proof. We first observe that there exists a T' > 0, such that the initial value problem for the incompressible
Euler equations is well-posed on [0, T, for all initial data @ € B3,. In fact, by Sobolev embedding, there
exists T' > 0 such that the quantity is finite. In particular, by Proposition 2 A @) — S (a)
converges to the unique solution for all initial data w € Bj, and t € [0,7]. From this point-wise
convergence and the following uniform bound on the measurements

1£2@)|r = 6(72 @)Ir < Cl72 @172 < Cllul?, < OM?,
for all w € B3, it now follows from dominated convergence that
1£2 (@) = L@ 22 (upuir) = 0, (A = 0).

In particular, by the consistency Theorem [6.2.14] for the BIP, it follows that the approximate posterior
of the BIP p®¥ — u¥ converges wrt. to the 1-Wasserstein metric to the unique solution in the limit
A — 0. Furthermore, by Theorem the posteriors u®¥ are uniformly stable with respect to the

measurements y (cp. equation (6.2.23)).

We next discuss the filtering problem. By Lemma the SV scheme satisfies Assumption [6.3.3
Theorem [6.3.13| implies that the posteriors v/ are uniformly stable with respect to the measurements y.
Due to the pointwise convergence .%/> () — .%; (@) for all @ € B3, and the uniform bound

|74 @) — F (@) 2 < 2M,

Lebesgue’s dominated convergence theorem implies that

T
. A — —
ilglo o ||<Z (U) — ‘%(u)||L2(Hprior) dt = 0.

The consistency Theorem [6.3.19| therefore shows that z/tA Y5 vY in LY(P). O
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In the two-dimensional case, the above result can be improved:

Theorem 6.4.6. If tprior € P(L2) is a prior for the two-dimensional incompressible Euler equations,
such that

/ k()2 x dipicn () < o0,

then the BIP and filtering problems for the incompressible Euler equations are well-posed and the numer-
ical solutions converge as in the conclusion of Theoremm on [0,T], for any T > 0.

Proof. The condition
[ leusl@)[: dipron(@) < .

implies that fiprior is concentrated on Yudovich initial data. The strong convergence .7/~ (w) — .%; (@) to
the unique Yudovich solution for such initial data @ has been shown in Proposition [6.4.3] The remainder
of the proof follows verbatim as in the proof of Theorem [6.4.5] O

The ill-posed case

Beyond the short-time existence, uniqueness and stability results for the incompressible Euler equations
with smooth initial data there are currently no general a priori well-posedness results for the forward
problem in the three-dimensional case. In the two-dimensional case, existence results are known for
initial data with vorticity @ € LP, p > 1, as well as for less regular initial data with a essential sign
restriction, of the form w = Wy + Wi, such that Wy € My, Wy > 0 a bounded Radon measure and
w; € L' [Del91, VW93]. Uniqueness remains unknown for such rough flows beyond the class considered
by Yudovich, even if w € LP, for p < co.

Thus, the forward problem may be ill-posed for general initial data u € L2 for the incompressible Euler
equations, in both two and three dimensions. Despite this possible lack of stability and compactness for
the forward problem, the general results of Section [6.2] imply that the Bayesian inverse problem is stable
with respect to measurements and compact in the 1-Wasserstein norm for approximations obtained from
the SV scheme.

Theorem 6.4.7. If jiprior € P1 (Li) s any prior for the incompressible Fuler equations in either two or
three dimensions, then the posteriors u™Y of the BIP for the incompressible Euler equations are
uniformly stable in y, in the sense of , for any A > 0. Furthermore, the posteriors u™Y form a
compact sequence in Py, as A — 0.

For the filtering problem, we have the following result:

Theorem 6.4.8. If fiprior € P1 (L2) is a prior for the incompressible Euler equations for d =2 or d = 3,
then the approzimate solutions v;Y of the filtering problem computed by the SV scheme are uniformly
stable with respect to the measurements y, in the sense of (6.3.21)), for any A > 0. In addition, if either

(a) there exists a modulus of continuity such that
SzT(%,A#uprim;r) <¢(r), VA>0,r>0,
or

(b) d=2 and pprior satisfies
[ leul@2: dipi (@) < .
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then the posteriors z/tA’y form a compact sequence in L} (P).

Remark 6.4.9. Numerical evidence that assumption (a) of Theorem is verified for a large range
of priors supported on rough initial data, at least in the two-dimensional case, has been presented in
[LMPP21b, [LMPP21d)].

Remark 6.4.10. We emphasize that the proof of the uniform local Lipschitz-stability
dr (v, vPY) < Cly ~ oI,

has been rigorously established from a priori estimates, and is not conditional on any assumptions on
the structure functions. We believe this stability result to be of particular importance to practitioners in
data assimilation.

6.4.2 Incompressible Navier-Stokes

We consider the incompressible Navier-Stokes equations (cp. in chapter [1}), with viscosity v > 0.
For simplicity we shall again focus on the case of periodic boundary conditions. It is well-known that
in the two-dimensional case, the Navier-Stokes are well-posed on L2, for any fixed value of the viscosity
v > 0 (cp. Theorem [I.3.13). In the three-dimensional case, it has been shown in the celebrated work
of Leray [Ler34] that energy admissible solutions exist, but their uniqueness remains an open challenge.
Again, we consider the numerical approximation by spectral methods, analogous to , leading now
to the discretized system

dhu® + Py (u? - Vu?) = vAu®,
{ ' w( ) (6.4.6)

div(u®) = 0, u®|i—o = Py.

Multiplying the first equation of (6.4.6) by u® and integrating over space and the time interval [0, ¢], we
find the a priori energy estimate

1 t 1 1
5||uA(t)H%g +V/0 HVUAIIQLg dt = QIIUA(O)H%g < 5HUH%;- (6.4.7)

Furthermore, from ((6.4.6)), we have
du® = —Pydiv (uA ® uA) + vAu”.

Due to the uniform L?-bound ||uA||Lg < |[| 2, it is not hard to see that the terms on the right hand
side are uniformly bounded in H_ % for sufficiently large L > 0, with an upper bound depending only
on |[@||z2 (cp. the corresponding derivation for the SV scheme on page . Thus, it follows that
u?(t) = A (w) € Lip([0, T]; H; L) for some L > 0. In particular, we conclude that assumption is
satisfied for the spectral numerical approximants of the Navier-Stokes equations. Owing to the energy
estimate (6.4.7), and in particular, the a priori estimate fOT [Vul|2.dt < v 'u3., one can also show
(cp. [LMW21l, Lemma 5.12)): :

Lemma 6.4.11. Let fiprior € P(L2) be a prior for the incompressible Navier-Stokes equations (7.3.5),
such that [}, |72 dpprior(@) < oo. Let SA 1 L2 — L2 denote the approvimate solution operator
obtained from the spectral scheme (6.4.6)). Then we have the following structure function estimate:

1/2
r _ _
S (S pprorst) < ( / I3 duprior(U)> .

In particular, Sg(%é#uprior; r) < Cr is uniformly bounded by a modulus of continuity as A — 0.
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As a result of these a priori estimates for the incompressible Navier-Stokes equations and the general
compactness results for Bayesian inverse problems derived in the present work, we can now state:

Theorem 6.4.12. If jiprior € P1(L2) is any prior for the incompressible Navier-Stokes equations with
viscosity v > 0, then the posteriors p™Y of the BIP are uniformly stable in y, in the sense of
, for any A > 0. Furthermore, the posteriors ™Y form a compact sequence in Py and any limit
point p*Y is absolutely continuous with respect to the prior tprior-

For the filtering problem, we obtain the following result:

Theorem 6.4.13. If jiprior € P1(L2) is a prior for the incompressible Navier-Stokes equations ([7.3.5))
with fized viscosity v > 0 (for d =2 or d =3), and if piprior has finite second moment

[ 1l ditin () < o,

then the approximate solutions I/tA’y of the filtering problem for the Navier-Stokes equations computed

by the spectral scheme (6.4.6) are uniformly stable with respect to the measurements y, in the sense of
(6.321) and the posteriors vi¥ form a compact sequence in L}(Py).

6.5 Discussion

Inverse problems are usually considered for models with a well-posed forward problem, for which exist-
ence, uniqueness and stability can be shown. However, ill-posed forward PDEs arise in a wide variety
of contexts of central importance to physics and engineering, including turbulent dynamics encountered
in fluid dynamics, oceanography and meteorology. For many of the PDEs encountered in this context,
proofs of existence and uniqueness, or indeed stability, of the forward problem are still unresolved issues.
Intimately related to these many outstanding problems in analysis are open questions in the numerical
approximation of solutions for such PDEs. Indeed, from the numerical point of view, many models in
fluid dynamics are known to exhibit a very strong sensitivity to perturbations in the initial data, and thus
cannot be stably approximated, at least in a deterministic sense. As shown in a number of numerical ex-
periments [FKMT17, FLMW20, (GGL™ 01, LM15, Leol8, [LMPP21h], as well as in chaptersandof the
present thesis, the high sensitivity and the formation of ever smaller scales due to turbulence precludes
the convergence of state-of-the-art numerical schemes to a limiting solution upon mesh refinement. The
observed lack of convergence of numerical approximants could be termed as a practical ill-posedness, i.e.
the convergence of numerical approximations is not observed (at presently attainable mesh sizes).

Due to the importance of inverse problems in engineering and physics, and confronted with the
practical ill-posedness of the forward problem for many models, it is then natural to ask, whether the
numerical approximation of the inverse or data assimilation problem suffers from a similar ill-posedness.
Of particular relevance in this context are the general stability properties with respect to perturbations in
the measurements and the compactness and convergence properties of numerical approximations. In the
present work, we have investigated these questions from the point of view of Bayesian inverse problems.
While several general results for abstract Bayesian inverse problems were discussed in Section [6.2] a
particular focus and the main motivation for the present work stem from the data assimilation (filtering)
problem in the context of fluid mechanics, presented in Section

For the numerical approximation of the abstract Bayesian inverse problem in the limit of infinite
mesh refinement A — 0, the main results of this work concern the approximate posteriors pu®¥ at grid
size A > 0 with finite-dimensional measurement y. We prove:
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e (stability) uniform in A > 0 stability of u®¥ with respect to the measurements y in the 1-
Wasserstein norm,

e (compactness) compactness of the approximate solution sequence {z*¥}aq in the space of prob-
ability measures P;(X) with respect to the Wasserstein norm,

e (cousistency) convergence in P;(X) to the canonical posterior u*¥, provided that the observables
converge in an average L?-sense.

All of these results are obtained under only mild boundedness assumptions on the approximate ob-
servables and on the measurement noise (e.g. satisfied by Gaussian noise). The general compactness
properties allow us to define a set of candidate solutions to the BIP, generated by the numerical scheme.
As this set can be shown to be non-empty a priori, this potentially opens up the possibility of identifying
the correct solution among these candidates by a suitable selection criterion (cf. Remark .

Building upon these general considerations for the abstract BIP, a derivation of similar stability,
compactness and consistency properties for the filtering problem has been given in Section In this
case, the approximate posterior measures t — /,LtA Y are time-dependent, and are updated at discrete
times to incorporate information obtained from measurements. In contrast to the abstract BIP, the
filtering problem as formulated in Section [6.3| involves a recursive process, alternating between evolving
the current posterior to the next discrete time step, where it serves as a prior for the new measurements,
and using the new measurements to obtain the next posterior. In a suitable space of time-parametrized
probability measures, we show that a similar uniform stability result with respect to the measurements as
for the abstract BIP also holds for this formulation of the filtering problem. Perhaps astonishingly, even
though perturbations to the measurement y perturb pfi 'Y at each time-step and the filtering problem
involves a successive application of a push-forward Zé# uﬁ ¥ by the discretized solution operator .7,
our stability result holds under a mere boundedness assumption on ./, and does not require any uniform
continuity of the mapping p — Z’A#u. In practice, the boundedness assumption usually corresponds
to a discrete energy or entropy inequality, which is satisfied by suitably designed numerical schemes.
In addition to this general stability result, we prove compactness of the approximate solution sequence
,utA"y for the filtering problem, under the assumption of a uniform bound on the second-order structure
function. The structure function measures two point-correlations in the flow, and is a very natural
quantity in the study of turbulence. If the solution of the forward problem possesses unique solutions
almost surely with respect to the prior, then we prove that the numerically obtained solutions of the
filtering problem (obtained by a consistent numerical scheme) converge to expected canonical solution
of the filtering problem.

The applicability of the abstract results of sections and to the numerical approximation of
Bayesian inverse problems encountered in practice is discussed in Section [6.4 We consider two model
problems: the incompressible Euler equations (in 2d and 3d) and the incompressible Navier-Stokes
equations (in 3d). For the incompressible Euler equations, we consider the numerical approximation by
spectral schemes and verify the sufficient conditions for stability, compactness and consistency by a priori
analysis for a class of priors in 2d. In 3d, the general stability and consistency properties continue to hold
by the same a priori considerations; the compactness property holds under the additional assumption of
a physically motivated bound on the structure functions. For the incompressible Navier-Stokes equations
(in 3d), we prove the conditions for stability and compactness by a priori analysis, for numerical solutions
obtained by spectral schemes. We point out that numerical evidence that the required bound on the
structure function holds, has been demonstrated by numerical experiments for a number initial priors in
[FLMW20, LMPP21bl, LMPP21al, and is further motivated by physical considerations.

The (partial) well-posedness results in the context of Bayesian inversion presented in this work, even
for models for which the forward problem may be ill-posed, have been derived under mild assumptions
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and are applicable to a wide range of models encountered in practice. The stability results should be of
particular significance to practitioners, as they demonstrate that under mild conditions on the numerical
scheme, the approximate solutions of the BIP and data assimilation problems are stable with respect to
perturbations of the measurements, independently of the numerical resolution. The general compactness
results presented in this work could be of importance in determining suitable selection criteria to single
out a “canonical” posterior amongst the set of candidate solutions.



Chapter 7

Surrogate models and operator
learning for fluid flows

In the previous chapter, we have discussed a Bayesian approach to state estimation, and have shown
that this approach exhibits remarkable robustness and stability properties, even under very minimal
assumptions on the underlying forward model. In the time-dependent setting, this approach combines
measurement data with prior (domain) knowledge specified via the prior pprior € P(L2), to provide
an estimate of the current state of the physical system at time ¢ in the form of a probability measure
vy € P(L2) (the filtering distribution). In practice, computing relevant statistical quantities from this
probability measure v is a difficult task, requiring many (costly) forward solves of the underlying model
when employing Markov chain Monte-Carlo methods. In large-scale fluid dynamics applications such as
weather prediction and climate science, the high computational cost often rules out a principled Bayesian
approach to state estimation, at present. To overcome these present limitations, a new approach to
many query problems, employing neural network based surrogate models has recently been proposed by
a number of authors [LJKT9, BHKS2T], ILKA ™20, LKAT21]. In this approach, suitable neural network ar-
chitectures have been proposed to approximate operators, such as the solution operator of a PDE. In this
context, the task of approximating an operator is referred to as “operator learning”. Numerical experi-
ments have shown empirically that the resulting “neural operator networks” can be successfully trained
to approximate operators arising in a variety of contexts, including Darcy flow [BHKS21], the Navier-
Stokes equations [LKA™21], high-speed boundary layers [DLLM™21], electro-convection [CWL™21] and
hypersonics applications [MLM™20]. Neural operator networks are thus promising candidates to com-
plement more traditional numerical methods in the form of surrogate models in many-query problems
such as Bayesian data assimilation. The problem is here split into an (expensive) offline phase, where a
conventional numerical solver is used to generate data and the neural operator is trained, and a (cheap)
online phase, where the trained neural operator is used for the sampling of the posterior. First numerical
results based on such a surrogate model approach have been reported in [LKAT21], considering the 2D
Navier-Stokes equations as a model problem. The results based on the surrogate were shown to have
comparable accuracy to results obtained with a spectral solver. However, the online phase of the com-
putation via the surrogate model was orders of magnitude (x500) faster than the spectral solver. In fact,
even including the offline training phase, the surrogate approach was found to significantly speed up the
computation. In the present chapter, we will discuss first results on the theoretical foundations of the
surrogate model approach proposed in [LKAT21]. This chapter is based on the recent work [KLM21].

147
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7.1 Introduction

Deep neural networks have been extremely successful in diverse fields of science and engineering including
image classification, speech recognition, natural language understanding, autonomous systems, game in-
telligence and protein folding, [LBHI5] and references therein. Moreover, deep neural networks are being
increasingly used successfully in scientific computing, particular in simulating physical and engineering
systems modeled by partial differential equations (PDEs). Examples include the use of physics informed
neural networks [RK18| [RPK19, MM20al, MM20b] for solving forward and inverse problems for PDEs
and supervised learning algorithms for high-dimensional parabolic PDEs [EH.J17] and parametric elliptic
[KPS19, [SZ19] and hyperbolic [LMR20, LMCR20] PDEs, among others.

The success of deep neural networks at a wide variety of learning tasks can be attributed to a
confluence of several factors such as the availability of massive labeled data sets, the design of novel
architectures and training algorithms as well as the abundance of high-end computing platforms such
as GPUs [GBCI6]. Still, it is fair to surmise that this edifice of success partly rests on the foundation
of universal approzimation [Bar93l [Cyb89, [HSWR&9], i.e., the ability of neural networks to approximate
any continuous (even measurable) function, mapping a finite-dimensional input space into another finite-
dimensional output space, to arbitrary accuracy.

However, many interesting learning tasks entail learning operators i.e., mappings between an infinite-
dimensional input Banach space and (possibly) an infinite-dimensional output space. A prototypical
example in scientific computing is provided by nonlinear operators that map the initial datum into the
(time series of) solution of a nonlinear time-dependent PDE such as the Navier-Stokes equations of
fluid dynamics. A priori, it is unclear if neural networks can be successfully employed for learning such
operators from data, given that their universality only pertains to finite-dimensional functions.

The first successful use of neural networks in the context of such operator learning was provided
in [CCY5], where the authors proposed a novel neural network based learning architecture, which they
termed as operator networks and proved that these operator networks possess a surprising universal
approximation property for infinite-dimensional nonlinear operators. Operator networks are based on
two different neural networks, a branch net and a trunk net, which are trained concurrently to learn
from data. More recently, the authors of [LJK19] have proposed using deep, instead of shallow, neural
networks in both the trunk and branch net and have christened the resulting architecture as a DeepOnet.
In a recent article [LMK21], the universal approximation property of DeepOnets was extended, making
it completely analogous to universal approximation results for finite-dimensional functions by neural
networks. The authors of [LMK2I] were also able to show that DeepOnets can break the curse of
dimensionality for a large variety of PDE learning tasks. Hence, in spite of the underlying infinite-
dimensional setting, DeepOnets are capable to approximating a large variety of nonlinear operators
efficiently. This is further validated by the success of DeepOnets in many interesting examples in scientific
computing [MLM™20, [CWL"21), [LLL"21] and references therein.

An alternative operator learning framework is provided by the concept of neural operators, first
proposed in [AABT20]. Just as canonical artificial neural networks are a concatenated composition of
multiple hidden layers, with each hidden layer composing an affine function with a scalar nonlinear activ-
ation function, neural operators also compose multiple hidden layers, with each hidden layer composing
an affine operator with a local, scalar nonlinear activation operator. The infinite-dimensional setup is re-
flected in the fact that the affine operator can be significantly more general than in the finite-dimensional
case, where it is represented by a weight matrix and bias vector. On the other hand, for neural operators,
one can even use non-local linear operators, such as those defined in terms of an integral kernel. The
evaluation of such integral kernels can be performed either with graph kernel networks [AAB™20] or with
multipole expansions [LKA™T20).
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More recently, the authors of [LKA™21] have proposed using convolution-based integral kernels within
neural operators. Such kernels can be efficiently evaluated in the Fourier space, leading to the resulting
neural operators being termed as Fourier Neural Operators (FNOs). In [LKAT21], the authors discuss
the advantages, in terms of computational efficiency, of FNOs over the other neural operators mentioned
above. Moreover, they present several convincing numerical experiments to demonstrate that FNOs can
very efficiently approximate a variety of operators that arise in simulating PDEs.

However, the theoretical basis for neural operators has not yet been properly investigated. In par-
ticular, it is unclear if neural operators such as FNOs are universal i.e., if they can approximate a large
class of nonlinear infinite-dimensional operators. Moreover in this infinite-dimensional setting, universal-
ity does not suffice to indicate computational viability or efficiency as the size of the underlying neural
networks might grow exponentially with respect to increasing accuracy, see discussion in [LMK21] on this
issue. Hence in addition to universality, it is natural to ask if neural operators can efficiently approximate
a large class of operators, such as those arising in the simulation of parametric PDEs.

The investigation of these questions is the main rationale for the work summarized in the current
chapter. We focus our attention here on FNOs as they appear to be the most promising of the neural
operator based operator learning frameworks. The main result of this work is to show that FNOs are
universal in possessing the ability to approximate a very large class of continuous nonlinear operators.
This result highlights the potential of FNOs in operator learning.

As argued before, a universality result is only a first step and by itself, does not constitute evidence
for efficient approximation by FNOs. In fact, we show that in the worst case, the network size might grow
exponentially with respect to accuracy, when approximating general operators. Hence, there is a need
to derive explicit bounds on the network size in terms of the desired error tolerance. In this context, we
consider a concrete computational realization of FNOs, that we term as pseudospectral FNO or W-FNO
(for short). In addition to proving universality for ¥-FNOs, we will suggest a mechanism through which
W-FNOs can approximate operators arising from PDEs, efficiently. We also derive explicit error bounds
for this architecture in approximating PDEs: the incompressible Navier-Stokes and Euler equations
of fluid dynamics. In particular, we prove that the size of W-FNOs in approximating the underlying
operators for both these PDEs, under suitable regularity hypotheses, only scales polynomially (log-
linearly) in the error. A similar analysis for another PDE, the stationary Darcy flow equations can be
found in [KLM21]. Thus, FNOs can approximate these operators efficiently and these results validate
some of the computational findings of [LKAT21]. Together, these results constitute the first theoretical
justification for the use of FNOs.

The rest of this chapter is organized as follows: in section we introduce FNOs and state the
universality result. We also introduce W-FNOs in this section. In section [7.3] we show that U-FNOs can
efficiently approximate operators, stemming from the incompressible Navier-Stokes and Euler equations.
In section we will provide a rationale for the use of (¥-)FNOs in the approximation of statistical
solutions. Since the contents of the present chapter concern neural networks and hence are somewhat
distinct from the remainder of this thesis, we refer the reader to Appendix[A] where the notation employed
in the current chapter is reviewed in detail, and the list of mathematical symbols on page[I75] for a handy
reference.

7.2 Approximation by Fourier Neural Operators

In this section, we present Fourier Neural Operators (FNOs) and discuss their approximation of a class
of nonlinear operators specified below:
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7.2.1 Setting for Operator Learning

Setting 7.2.1. We fiz a spatial dimension d € N, and denote by D C R? a domain in R?. We
consider the approzimation of operators G : A(D;R%) — U(D;R%), a v u := G(a), where the input
a € A(D;R%%), d, €N, is a function a : D — R% with d, components, and the output u € U(D;R%),
d, € N, is a function u : D — R% with d, components. Here A(D;R%) and U(D;R%) are Banach
spaces (or suitable subsets of Banach spaces). Typical examples of A andU include the space of continuous
functions C(D;R%), or Sobolev spaces H*(D;R%) of order s > 0 (see Appendiatfor definitions. ).

Concrete examples for operators G, involving solution operators of PDEs, are given in section

7.2.2 Neural Operators

With the above setting and as defined in [AAB¥20], a neural operator N : A(D;R%) — U(D;R%),
a + N(a) is a mapping of the form

N(@)=QoLpoLy j0---0Ly0R(a),

for a given depth L € N, where R : A(D;R%) — U(D;R%), d, > d,, is a lifting operator (acting
locally), of the form

R(a)(z) = Ra(z), ReR"*, (7.2.1)
and Q : U(D;R%) — U(D;R%) is a local projection operator, of the form
Qv)(z) = Qu(x), Q€ RM*, (7.2.2)

Remark 7.2.2. In practice, it has been found that improved results can be obtained if the simple linear
lifting and projection operators R and Q are replaced instead by non-linear mappings of
the form R ~ R R

R(a)(z) = R(a(z),z), Qv)(z) = Q(v(x),z),

where R : Ria x D — R% qnd Cj :R% x D — R% are neural networks with activation function o. Our
error estimates will rely on the (more restrictive) linear choice of lifting and projection operators, given
by , . The linear choice has the theoretical benefit of ensuring compositionality, i.e. that
a composition of neural operators can again be represented by a neural operator (cf. [KLM21, Lemma
D.4] ). Despite this technical distinction, we emphasize that all of our error and complexity estimates
continue to hold also for neural operators with non-linear lifting and projections, since linear operators
can always be approzimated by non-linear ones (cp. [KLMZ21, Lemma C.1]). In fact, in the non-linear
case, our results imply that @, R can be chosen to be shallow networks.

In analogy with canonical finite-dimensional neural networks, the layers £;,..., L are non-linear
operator layers, £y : U(D;R%) — U(D;R%), v — L,(v), which we assume to be of the form

Le(v)(z) = a(ng(x) + be(z) + (K(a; 0¢)v) (x)), Yz eD.

Here, the weight matrix W, € R% >4 and bias by(z) € U(D;R%) define an affine pointwise mapping
Wiv(x) +be(x). The richness of linear operators in the infinite-dimensional setting can partly be realized
by defining the following non-local linear operator,

K:Ax© — L(UD;R™),U(D;R™)),
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that maps the input field @ and a parameter § € O in the parameter-set © to a bounded linear operator
K(a,8) : U(D;R%») — U(D;R?¥), and the non-linear activation function o : R — R is applied component-
wise. As proposed in [AABT20], the linear operators K(a, ) are integral operators of the form

(K(a;0)v)(z) = /D/Qg(x,y;a(m),a(y))v(y) dy, VzeD. (7.2.3)

Here, the integral kernel kg : R2(d+de) 5 RévXdv s 5 neural network parametrized by 6 € ©. Specific
examples of the integral kernel (7.2.3]) include those evaluated with a graph kernel network as in [AABT20)
or with a multipole expansion [LKA™20].

7.2.3 Fourier Neural Operators

As defined in |[LKAT21], Fourier Neural operators (FNOs) are special cases of general neural operators
(7.2.3]), in which the kernel kg(z,y;a(z),a(y)) is of the form kg = kg(z — y). In this case, (7.2.3]) can be

written as a convolution
(K(O)v) (z) = / ko(x —y)v(y)dy, Yz e D. (7.2.4)
D

For concreteness, we consider the periodic domain D = T? (which we identify with the standard torus
T? = [0,27]¢), although non-periodic, rectangular domains D can also be handled in a straightforward
manner.

Given this periodic framework, the convolution operator in can be computed using the Fourier
transform F and the inverse Fourier transform F~1 (see Appendix and for notation
and definitions), resulting in the following equivalent representation of the kernel ,

(K(O)v)(z) = F~! (Pg(k) -]—'(v)(k)) (z), VaeTd (7.2.5)

Here, Py(k) € C% > is a full matrix indexed by k € Z¢, and is related to the integral kernel kg(z) in
via the Fourier transform, Py(k) = F(kg)(k). Note that we must impose that Py(—k) = Pp(k)*
coincides with the Hermitian transpose for all k € Z?, to ensure that the image function (K(0)v)(z) is a
real-valued function for real-valued v(z). Consequently, the form of Fourier neural operators (FNOs) for
the periodic domain T? is that of a mapping A : A(D;R%) — U(D;R%), of the form

N(a):=QoLroLy 10--0Ly0R(a), (7.2.6)
where the lifting and projection operators R and Q are given by (7.2.1) and (7.2.2)), respectively, and
where the non-linear layers £, are of the form

Li(v)(z) =0 (Ww(m) +be(z) + F1 (Pg(k‘) . f(v)(k)) (a:)) (7.2.7)

Here, W, € R%*9 and by(z) define a pointwise affine mapping (corresponding to weights and biases),
and Py : Z¢ — C%>dv defines the coefficients of a non-local, linear mapping via the Fourier transform.

Remark 7.2.3. The simplest example for a FNO, as defined by , is as follows; let N
R — R% be a canonical finite-dimensional neural network with activation function o. We can associate
to N the mapping N : L2(T%;R%) — L2(T?;R), given by a(x) — N(a(z)). We easily observe that N
is a FNO as we can write it in the form,

N=QoLyo---0Li0oR,
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where ﬁ(y) = Ry with R € R%*% and each layer Lo is of the form Zg(y) = o(Wey + by) for some
W, € Réexdv b, € R with Q being an affine output layer of the form Q(y) = Qy+q with Q € R4wxdv,
q € R%. Replacing the input y by a function v(z), these layers clearly are a special case of the FNO

lifting layer (7.2.1)), the non-linear layers (7.2.7) (with P, = 0 and constant bias be(x) = by), and the
projection layer (7.2.2). Thus, any finite-dimensional neural network can be identified with a FNO as
defined above.

For the remainder of this work, we make the following

Assumption 7.2.4 (Activation function). Unless explicitly stated otherwise, the activation function
o:R— R in [7.2.7) is assumed to be non-polynomial, (globally) Lipschitz continuous and o € C3.

7.2.4 Universal Approximation by FNOs

Next, we will show that FNOs (7.2.6) are universal i.e., given a large class of operators, as defined in
setting one can find an FNO that approximates it to desired accuracy. To be more precise, we
have the following theorem,

Theorem 7.2.5 (Universal approximation). Let s,s' > 0. Let G : H*(T%R%) — H (T4 R%) be a
continuous operator. Let K C H*(T% R%) be a compact subset. Then for any € > 0, there exists a FNO
N : H3(T4 Rda) — H* (T4 R%), of the form (7.2.6)), continuous as an operator H® — H*®' | such that

sup [|G(a) = N(a)l| g <e.
acK

Sketch of proof. The detailed proof of this universal approximation theorem is provided in [KLM2T]
Thm. 2.5]. We only provide an outline here. For notational simplicity, we set d, = d,, = 1, and first
observe the following lemma, proved in [KLM21l, Appendix D.1]:

Lemma 7.2.6. Assume that the universal approzimation Theorem[7.2.5 holds for s' = 0. Then it holds
for arbitrary s’ > 0.

The main objective is thus to prove Theorem for the special case s’ = 0; i.e. given a continuous
operator G : H*(T4) — L*(T?), K C H*(T%) compact, and ¢ > 0, we wish to construct a FNO
N o H*(T?) — L?(T?), such that sup,c |G(a) — N(a)||r2 < e

To this end, we start by defining the following operator,

Gy : H¥(TY) — L*(T%), Gn(a) := PyG(Pya), (7.2.8)

with Py being the orthogonal Fourier projection operator onto Fourier modes |k|o < N. Thus, Gy can
be thought of loosely as the Fourier projection of the continuous operator G.
Next, we can show that for any given € > 0, there exists N € N, such that

1G(a) = Gn(a)llrz <€, Vac€K. (7.2.9)

Thus, the proof boils down to finding a FNO ([7.2.6|) that can approximate the operator Gy to any desired
accuracy.
To this end, we introduce a set of Fourier wavenumbers k € Ky, by

Ky ={keZ||klo < N}, (7.2.10)
and define a Fourier conjugate or Fourier dual operator of the form §N 1 CR~ — CFv

Gn (@) == Fn (Gn (Re (Fy'(@n))), (7.2.11)
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such that the identity
On(a) = Fy' oGy o Fy(Pya), (7.2.12)

holds for all real-valued a € L*(T¢). Here, Fy is the discrete Fourier transform and .7-'](,1 is the discrete
inverse Fourier transform.

The next steps in the proof are to leverage the natural decomposition of the projection Gy in
in terms of the discrete Fourier transform Fy o Py, the discrete inverse Fourier transform F &1 and the
Fourier conjugate operator é ~ and approximate each of these operators by Fourier neural operators.

We start by denoting,

RN = (R?)™ (~ CF), (7.2.13)

as the set consisting of coefficients {(v1 x, V2,k) tkeky, Where vg ) € R are indexed by a tuple (4, k), £ €
{1,2}, k € Ky, and interpreting the operator FyoPy as amapping FyoPy : a — {(Re(ax), Im(ax))} ki<,
with input @ € L*(T%) and the output {Re(ax), Im(ax)} <y € R¥ is viewed as a constant function
in L2(T¢;R?*~). The approximation of this operator is a straightforward consequence of the following
Lemma, proved in [KLM21l Appendix D.2],

Lemma 7.2.7. Let B > 0 and N € N be given. For all € > 0, there exists a FNO N : L*(T¢) —
L*(THR¥N) v s {N(v)er}, with constant output functions (constant as a function of x € T?), and
such that

[Re(y) = Nhallex <€l e e <,
Mm(0k) = N V)25l < €

for all ||v||r2 < B, and where vy, € C denotes the k-th Fourier coefficient of v.

In the next step, we approximate the (discrete) inverse Fourier transform }“X,l by an FNO. We recall
that FNOs act on functions rather than on constants. Therefore, to connect ]-'J;l and FNOs, we are
going to interpret the mapping

Fy' i [-R, Ry c RPY 5 L3(TY),

as a mapping
Fo1 L*(T% =R, RJ**V) — L*(TY),
N {Re(@r), Im(T) Yy < v = v(@),

where the input {Re(y), Im(0y) } < € [~ R, R)**¥ is identified with a constant function in L2(T%; [- R, R]**~).
The existence of a FNO of the form ([7.2.6]) that can approximate the inverse discrete Fourier transform
to desired accuracy is a consequence of the following lemma, proved in [KLM2I, Appendix D.3],

Lemma 7.2.8. Let B >0 and N € N be given. For all e > 0, there exists a FNO N : L*(T%; R ~) —
L%(T4), such that for any v € L3, (T?) with ||v||z: < B, we have

o =N ()2 <

where w(z) := {(Re(0),Im(0)) } e, » 1. w € L2(THR?N) is a constant function collecting the real
and 1maginary parts of the Fourier coefficients Uy of v.
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Finally, by setting K = Fn(PyK) C CF~ as the (compact) image of K under the continuous
mapping FyoPy : L#(T¢) — C*~ and identifying C*~ ~ R~ where ¥y 5, := Re(0) and 9 ; := Im(y)

for k € Ky, we can view Gy as a continuous mapping
I 7 2K 2K
gn: K C R — RAY,

on a compact subset. Hence, by the universal approximation theorem for finite-dimensional neural
networks [Bar93, [HSW89], one can readily show that there exists an FNO, with only local weights
(see remark , which will approximate this continuous mapping G ~ on compact subsets to desired
accuracy.

Hence, each of the component operators of the decomposition can be approximated to desired
accuracy by FNOs and the universal approximation theorem follows by composing these FNOs and
estimating the resulting error, with details provided in [KLM21l Appendix D.4]. O

In the following theorem, we will show that the universal approximation Theorem [7.2.5] can be
extended to include operators defined on function spaces with Lipschitz domains. In fact, the Lipschitz
condition can be relaxed to include all locally uniform domains using ideas from [Rog06]; we will, however,
not pursue this for simplicity of the exposition. We show that one can construct a period extension of the
input function and a FNO so that the restriction of the FNO’s periodic output to the domain of interest
gives a suitable approximation to any continuous operator. Similar ideas have been pursued in the design
of numerical algorithms for solving PDEs and usually go by the name of Fourier continuations [BL10,
LBI0]. A major challenge for these methods is designing a suitable periodic function whose restriction
gives the solution if interest. We show that FNOs can learn the output representation automatically.

Theorem 7.2.9. Let 5,5 > 0 and Q C [0,27]? be a domain with Lipschitz boundary. Let G :
HS(Q;R%) — H (Q;R%) be a continuous operator. Let K C H®(Q;R%) be a compact subset. Then
there exists a continuous, linear operator £ : H*(Q;R9) — H*(T% R%) such that £(a)|q = a for all
a € H*(Q;R%). PFurthermore, for any e > 0, there exists a FNO N : H*(T%R%) — H (T4 R%) of
the form , such that

sup [[G(a) =N o E(a)lall e < e

acK

Proof. Since € is open we have that dist(£2,9[0,27]¢) > 0 hence the conclusion of [KLM21, Lemma
B.3] follows with the hypercube B = [0, 27]¢, in particular, there exists a continuous, linear operator
£ H(QR%) — H*([0,27]¢;R%) such that £(a)lq = a and &£(a) is periodic on [0,27]¢ for all a €
H*(;R%), i.e. under the identification [0,27]% ~ T?, we have a continuous mapping & : H*(£2;R%) —
H*(T% R%). Similarly, we can construct an extension operator £ : H® (Q; R%) — H*' (T4; R%).

We can then associate to G : H*(Q; Ré+) — H*'(Q; R%) another continuous operator G : H*(T¢%; Rd=) —
H*' (T4 R%), by defining G(a) := £ o G o R(a). Here R(a) := a|o denotes the restriction to  which
is clearly linear and continuous. By the continuity of £, we have that K’ := &£(K) is compact in
H*(T?% R%). By the universal approximation Theorem for any ¢ > 0, there exists a FNO
N : H*(T% R%) — H* (T4 R%), such that

sup [|G(a) = N(d)| o <e.

a’eK’

But then, using the fact that Ro& = Id, Ro&’ = Id, the mapping N : H*(; R%) — HSI(Q; R%+), given
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by N := R oN o0&, satisfies

sup [|G(a) — N(a)ll = sup [[Ro & 0GoRoE(a) =R oN o&(a)ll g
acK aeK

— sup [R oG o &(a) - R o N 0 E(a)]| o

aceK

< sup [|G o E(a) — N o &(a)]| g
aceK

= sup [|G(a') = N(a')| g
a’'eK’

<e.

O

Remark 7.2.10. The form of the universal approzimation Theorem [7.2.5 stated above, shows that any
continuous operator G : H® — L? can be approzimated to arbitrary accuracy by a FNO, on a given
compact subset K C H?®. The restriction to compact subsets may not always be very natural. For
example, to train FNOs in practice, it might be more convenient to draw training samples from a measure
 such as the law of a Gaussian random field, which does not have compact support. Furthermore, the
operator G may not always be continuous. To address these issues, one can follow the recent paper
J[LMKZ21], where the authors prove a more general version for the universal approxzimation of operators
for DeepOnets; for any input measure p, and a Borel measurable operator G, such that [ ||G(a)||3. du(a) <
00, it is shown that for any € > 0, there exists a DeepOnet N (a) =~ G(a) such that

/ 1G(a) — N(a)||32 du(a) < e.

In particular, there are no restrictions on the topological support of p. The result of [LMKZ21] was for
the alternative operator learning framework of DeepOnets, but the ideas and the proof can be analogously
extended to FNOs.

7.2.5 VU-Fourier neural operators

In practice, one needs to compute the FNO, of form , both during training as well as for the
evaluation of the neural operator. Thus, given any input function a, one should be able to readily
calculate the FNO A (a), requiring the efficient computation of the Fourier transform F and the
inverse Fourier transform F~! . In general, this is not possible as evaluating the Fourier transform
(A.1.1)) entails computing an integral exactly. Therefore, approximations are necessary to realize the
action of FNOs on functions. Following [LKA™21], one can efficiently approximate the Fourier transform
and its inverse by the discrete Fourier transform and the discrete inverse Fourier transform
, respectively. This amounts to performing a pseudo(¥)-spectral Fourier projection between
successive layers of the FNO and leading to the following precise definition,

Definition 7.2.11 (U-FNO). A ¥-FNO (or V-spectral FNO) is a mapping
N AT RY) = U(TYG R, a - Na),
of the form

N(a)=QoIyoLroIyo---0L;oIyoR(a), (7.2.14)
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where Iy denotes the pseudo-spectral Fourier projection onto trigonometric polynomials of degree N € N
(A 1.11)), the lifting operator R : A(T4;R%) — U(T; R%»), the projection Q : U(T4; R¥*) — U(T?; Rw)
are defined as in (7.2.1), (7.2.2)), and the non-linear layers Ly, for £ =1,..., N, are of the form

Lo(v)(z) = U(W[U(l‘) + be(z) + F1 (Pg(k) f(v)(k))(m))

Here, W, € R%>Xdo gnd by(x) € U(T%RY) define a pointwise affine mapping v + Wyv(z) + be(x),
and the coefficients Py(k) € R%>dv (k € Ky) define a (non-local) convolution operator via the Fourier
transform.

Note that a W-FNO N is uniquely defined, as an operator, by its restriction to the finite-dimensional
subspace L3, (T4 R%) C A(T4R%) (see Appendi:z:for the definition of L% ). Furthermore, we have
that the image Im(N') C L3 (T4 R%). To indicate that a V-FNO is of the form for some N € N,
we shall thus more simply say that “N : L% (T% R%) — L% (T4 R%) is a V-FNO”.

At the level of numerical implementation, a W-FNO can be naturally identified with a finite-
dimensional mapping
N :REXIN L RAEXIN - g5 N(a),
with input @ = {a;};e7y € R%*IN corresponding to the point-values a; = a(z;) on the grid {z;}jc7y,
and Jy := {0,...,2N}4. Here, \ is of the form

-AA/(‘I):@OZLOZLAO“-OEAloﬁ(a),

where the lifting operator R : RdexIn RI&*IN @ ﬁ(a), the projection Q : R& >IN R&uXxIN
v — Q(v), are given by

R(a) = {Ra;}jeqy, (R€RWXde),
O(v) = {Quj}tjeqy, (Q€Rbxd),

and the non-linear layers Eg, for £ =1,..., N, are of the form

~

Lo(v); = a(ngj +bej+ Fn' (Pg(l{:) . IN(U)(k))j> (7.2.15)

for j € Jn. Here, Wy € R4v*dv b, . = by(z;) € RT*IN defines a pointwise affine mapping Wyv; + by,
the coefficients Py(k) € R%*% (k € Ky) define a (non-local) convolution operator via the discrete
Fourier transform, and the non-linear activation function o : R — R is extended componentwise to a
function R%*In — R4 *IN  Comparing N with the corresponding discretization N , it is easy to see
that R

Nfale))}sea)s = Na)(ay), Vi€ T

In particular, this implies that A(a)(x) can in practice be computed for any x € T? via the Fourier
interpolation of the grid values N'({a(z;)});jesy. In contrast to general FNOs, W-FNOs therefore allow
for efficient numerical implementation. Furthermore, the discrete (inverse) Fourier transforms in each
hidden layer in can be very efficiently computed using the fast Fourier transform (FFT).

The above discussion also leads to a very natural definition of the size of a W-FNO below:

Definition 7.2.12 (Depth, width, lift and size). The depth and width of a V-FNO N (cp. Definition
7.2.11), are defined by

depth(N) := L, width(N) := do|In| = do|Kn| = (2N + 1)4d,.
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We refer to the dimension d,, as the lift of N, i.e. we set
lift(N) == d,.

The size of a V-FNO N is defined as the total number of degrees of freedom in a W-FNO. A simple

calculation shows that

size(N) = dydy +L (d + do|In| + d2|TN|) + dad,, -

size(Q) size(Ly) size(R)

The precise size of a U-FNO will not be of any particular relevance for our asymptotic complexity
estimates. Instead, we will usually content ourselves with the simple estimate

size(N') < depth(N) width(N) Lift (N),

where we assume that max(d,,d,) < d,; under this condition, the above estimate follows from the fact
that size(N) ~ Ld2|Tn|-

Given our discussion, it is natural to ask whether any FNO N = QoLpoLy 10---0L10R can be
approximated to arbitrary accuracy by an associated W-FNO N : L3 — L%,

N=QoInyoLpoIyo---0Lio0InyoR,

for sufficiently large N € N7 An affirmative answer can be given for a natural class of FNOs of finite
width, defined as follows.

Definition 7.2.13. A FNO N A(T4 Re) — Y(T4 R:) is said to be of finite width, if N is a
composition N = Qo L o---0 Ly o R, with layers Ly of the form (7.2.7), and for which there exists a
“width” W € N, such that the Fourier multiplier Py(k) = 0, for |k|s > W.

We can now state the following theorem, which shows that ¥-FNOs A provide an arbitrarily close
approximation of a given FNO N:

"_Eheorem 7.2.14. Assume that the activation function o € C is globally Lipschitz continuous. Let
N : H3(T% Rd) — L2(T4 R%) be a FNO of finite width, with s > d/2. Then for any ¢, B > 0, there
ezists N € N and a W-FNO N : L3 (T4 R%) — L2 (T R), such that

sup  [|N(a) = N(a)| 2 < e.

lallms <B

For the proof, we refer to [KLM21l Appendix D.5]. In particular, the last theorem implies an exten-
sion of the universal approximation Theorem to W-FNOs, provided that the input functions have
sufficient regularity for the pseudo-spectral projection Zy to be well-defined:

Theorem 7.2.15 (Universal approximation for W-FNOs). Let s > d/2, and let s > 0. Let G :
H*(T%R%) — HY (T4 R%™) be a continuous operator. And let K C H*(T%R%) be a compact sub-
set. Then for any e > 0, there exists N € N and a W-FNO N : L%(T4R%) — L3 (T%R%), such
that

sup 1) = (@) o < .

acK
Proof. Similar to the proof of the universal approximation theorem for FNOs, we again note that the
general case s’ > 0 can be deduced from the statement of Theorem for the special case s’ = 0.
This is the content of the following lemma, whose proof is provided in [KLM21], Appendix D.6]:
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Lemma 7.2.16. Assume that Theorem holds for s’ = 0. Then it holds for arbitrary s’ > 0.

The special case s’ = 0 follows immediately from Theorem [7.2.14] and the observation that the FNO
approximation constructed in the proof of the universal approximation theorem for FNOs, Theorem

has finite width. O

Structure and properties of V-FNOs

We conclude this section by pointing out some aspects of the structure of ¥-FNOs that will be
relevant in the following. To start with, we can simplify W-FNOs by viewing them in terms of two types
of layers. which we will refer to as o- and F-layers, respectively. A o-layer £L = L, of a U-FNO is a
local, non-linear layer of the form £, (v)(z) = Zyo (AZyv(z) + b), or, in the numerical implementation
(cp. (7.2.15))

Lo(v); =0 (Avj +b;), VijeIn,

with A € R%>*dv and b; € R/¥*4 defining an affine mapping. A F-layer £ = Lz of a U-FNO
is a non-local, linear layer of the form Lx(v)(z) = F~Y(P(k) - F(Znv)(k))(z), which in a practical
implementation corresponds to

Lr(); = F'(POR) - Fn(@)(K)) . Vj€ Iw,

J

where P : Ky — C%*% is a collection of complex weights, with P(—k) = P(k) the Hermitian transpose
of P(k), and Fy (Fx') denotes the discrete (inverse) Fourier transform.

The main point of these definitions is that each W-FNO can be decomposed into a finite number of
o-layers and F-layers, and that the converse is also true; i.e. any composition of o-layers and F-layers
can be represented by a W-FNO. These statements are made precise in a series of technical Lemmas,
which are stated and proved in [KLM21l Appendix D.7].

7.3 Approximation of PDEs by V-FNOs

We have shown in the previous section that FNOs ([7.2.6)) as well as their computational realizations
(U-FNOs ([7.2.14])) are universal i.e., they approximate any continuous operator, defined in the setting
to desired accuracy. However, as repeatedly discussed in the introduction, universality alone does
not suffice to claim that FNOs can approximate operators efficiently. In particular, it could happen that
the size of the FNO is unfeasibly large to ensure a given accuracy of the approximation. That this is
indeed the case is made precise in the following remark.

Remark 7.3.1. We observe from the proof of Theorem [7.2-5 that the desired FNO, approzimating the
operator G, is constructed as NipT oNo Nrt, with Ner, NipT approzimating the Fourier and Inverse
Fourier transforms, respectively, whereas N Ry 5 R2EN s g canonical finite-dimensional neural
network approximation of the “Fourier conjugate operator” : §N : Ry RPN We note
that N herein has to be chosen sufficiently large in order to yield the desired error tolerance of €. By
Theorem this depends on the smoothness of the input space, i.e., if the input « € K C H?, for
some s > 0, then we need to choose N such that N™° ~ e. Further assuming that the mapping G is
Lipschitz continuous, implies that the Fourier conjugate operator G is also Lipschitz continuous as a
mapping from R2*N to R2XN . Hence, neural network approzimation results, such as those of [YariT7]
for ReLU activations or [DLMZ21)] for tanh activations, yield that the width of the approzimating neural
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network N scales as width(ﬁ') > ¢ P, where D is the dimension of the domain of Q\N. In the present
case, we have D = |[Ky| ~ N ~ =45 yielding that

~ —d/s

width(N) = €€ (7.3.1)

This scaling represents a super-exponential growth in the size of the FNO N, with respect to the error
€, incurred in approximating the underlying operator G.

Given the above remark, we infer that in the worst case, a FNO approximating a generic Lipschitz
continuous operator G, can require extremely large sizes to achieve the desired accuracy, making it
unfeasible in practice. The same holds for W-FNOs of the form . This super-exponential growth
appears as a form of curse of dimensionality i.e., exponential growth of complexity (measured here in
the size of the FNO), with respect to the error.

Hence, it is reasonable to ask how these extremely pessimistic complexity bounds on FNOs (-
FNOs), can be reconciled to their robust numerical performance for approximating PDEs, as reported
in [LKA™21]. The rest of the section investigates this fundamental question.

The starting point of our explanation for the robustness of FNOs in approximating PDEs is the
observation that operators which arise in the context of PDEs have a special structure and are not
merely generic continuous operators mapping one infinite-dimensional function space to another. To
see this, we point out that many time-dependent PDEs arising in physics can be written in the general
abstract form,

Ou+V - F(u, Vu) =0, (7.3.2)

where for any (t,x) € [0,7] x D C R%, u(t,r) € R% is a vector of physical quantities, describing e.g.
density, velocity or temperature of a fluid or other material at a given point x € D in the domain D
and at time ¢ € [0,T]. Equation describes the general form of a conservation law for the physical
quantities u with a flux function F'(u, Vu), which is typically non-linear, and can e.g. represent advection
or diffusion terms. The flux function F'(u, Vu) may also depend on w in a non-local manner. For example,
for the incompressible Navier-Stokes equations in R?, we have u = u : T — R?, where

w(z,t) = (ui(z,t),...,uq(z,t)) € RY,
represent the fluid velocity at (z,t), and the flux is defined by
F(u,Vu)=-u®u —p+rvVu,
where p = p(u) depends on w in a non-local manner:
p=R:(uu), R:=(-A)"(VaV),

where R is a (non-local) Riesz transform.
A popular numerical method for time-dependent PDEs, of the form ([7.3.2)), particularly on periodic
domains D = T?, is the pseudo-spectral method [CHQZ07], wherein (7.3.2)) is discretized as,

atuN+V~INF(uN,VuN) =0, (7.3.3)

where uy € L% is a trigonometric polynomial of degree < N.
The resulting system of ODEs ([7.3.3)) can be further discretized in time using a time-marching scheme.
For simplicity, the forward Euler discretization with time step 7 leads to,

ut™t = uly — TV - INF(ul, Vuly). (7.3.4)
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One might prove that the system (7.3.4]) provides a convergent approximation for the underlying time-
dependent PDE (7.3.2)) for many different choices of the flux F. In order to connect the approximation

(7.3.4) with FNOs, we decompose the right hand side of (|7.3.4]) as,

n n
n R UpN F UpN
bl {u” Vu®
N N
o - uy
= . B (. T
R (uy, Vuly)

N v s uly — TV - g (u, V)
V- Fg(u, Vuy) ’

Here, R is the lifting operator and o, F are the o- and F-layers, respectively, of a U-FNQO, that are defined

in section The above representation suggests that the Fourier F-layers of a ¥-FNO allow us to take

eract derivatives, and a composition of o-layers of a U-FNO allows us to approximate continuous func-

tions to any desired accuracy (via the standard universal approximation theorem for finite-dimensional

neural networks); in particular, a composition of o-layers can provide an approximation

(u, Vu) — F(u, Vu) = Iy F(u, Vu).

Thus, by a suitable composition of o- and F-layers, W-FNOs can emulate pseudo-spectral methods,
providing a mechanism by which such neural operators can approximate solution operators for a large
class of PDEs efficiently.

We will make this intuition precise for the incompressible Navier-Stokes and Euler equations, the
following.

7.3.1 Incompressible Euler and Navier-Stokes equations

The motion of a viscous, incompressible Newtonian fluid is modeled by the incompressible Navier-Stokes
equations,

ou+u - Vu + Vp = vAu,
{t p=v (7.3.5)

div(u) =0, u(t =0) =,

For simplicity, we assume periodic boundary conditions in the domain T¢. The viscosity is denoted by
v > 0 and we would like to state that the subsequent analysis also applies for v = 0, where reduces
to the incompressible Euler equations modeling an ideal fluid.

We recall that if the initial data @ of belongs to L2(T%4;R%), i.e. if

/Tdﬂ(x)dx =0,

then we also have that the corresponding solution wu(z,t) € L?(T% R?) (reflecting momentum conser-
vation). Next, we recall that the Leray-projection operator P : L2(T% R%) — L2(T¢; div), is defined as
the L2-orthogonal projection onto the subspace LZ(Td; div) C L2(']Td;]Rd), consisting of divergence-free
vector fields; 7.e. we have u € L?(T% div) if, and only if, u € L?(T% R%) and

/’Jl‘d u(z) - Vo(z)de =0, Ve C®(T).
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In terms of Fourier series, the Leray projection P : L?(T%; R%) — L?(T% div) is explicitly given by

, E®k .
~ ik ~ ikm
P E ure = E (1 T ) uge'™. (7.3.6)

kezd kezda\{0}

In terms of the Leray projection P, we can now equivalently write the incompressible Navier-Stokes
equations (7.3.5) as the following equation on the Hilbert space L?(T%;div) as,

{@u = —P(u-Vu) + vAu, (73.7)

u(t=0)=mu.

Given this background, our main objective in this section is to construct a W-FNO that will ap-
proximate the operator G which maps the initial data @ to the solution w(-,7T) (at the final time T')
of the incompressible Navier-Stokes equations , . To this end, we will follow the general
program outlined at the beginning of this section and introduce a suitable pseudo-spectral method for
approximating the Navier-Stokes equations. Then, we construct a W-FNO that can efficiently emulate
this pseudo-spectral method.

A fully-discrete V-spectral approximation of the Navier-Stokes equations ([7.3.5)

The form of the Leray-projected Navier-Stokes equations (7.3.7) naturally suggests the following fully-
discrete approximation of ([7.3.5):

uA,n+1 An

—Uu
4 ]P)N (,ulA,n . vuA,n+1) _ VAUA’n+1,

T (7.3.8)

u®? = Iyu(t = 0).

Here, we fix A = 1/N, N € N and introduce the space, L3 (T% div) := L?(T%div) N L3, (T4 RY). We
fix a time-step 7 > 0 and let ™ € L% (T%div), for all n = 0,...,ny, with np such that Tny = T.
Moreover, we use the following truncated Leray-Fourier projection operator Py : L2(T%) — L% (T%; div)

in analogy with (7.3.6):

Py | D wpe™ | = ) (1 - kﬁf) Upe'r®, (7.3.9)
kezd 0<|kloc <N
to complete the description of the scheme .

We observe that the scheme is implicit i.e., at each time step n, one has to solve an operator
equation to compute the velocity field w®™*! at the next time step. Thus, one needs to show the
solvability of this operator equation in order to ensure that the scheme is well-defined. Under the
following CFL condition for choosing a small enough time step 7,

1
T[ul ™| L N < 3 (7.3.10)

it has been proved in [KLM21l Appendix F.1] that the scheme is well-defined.

Next, in practice, one has to numerically approximate the solutions of the implicit equation for
evaluating the velocity field w®™*! at the next time-step. We choose to do so by recasting the solution
of the implicit equation to finding a fized point for the mapping,

wy = Fwy) = (1 —vrA)u®" — 7(1 — vrA) Py (u®" - Vuy). (7.3.11)
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In [KLM21), Appendix F.1, Lemma F.4], it is shown that a standard Picard-type iteration converges to
a fixed point for the map ([7.3.11)). This suggests the following numerical algorithm for approximating
strong solutions of the incompressible Navier-Stokes equations (7.3.5)),

Algorithm 7.3.2 (Pseudo-spectral approximation of the Navier-Stokes equations ([7.3.5))).
Input: U>0,NeN,T>0, atime-stepT >0, such thatny =T/7 € N, and TUN# 241 <
L initial data u®° € L3 (T%;div), such that |u®°||z: < U.

2e’
Output: w7 € L3 (T4 div) an approzimation of the solution u®"* ~ u(t =T) of (7.3.5)
at timet =T.

@ Set

| log (T%/72)
Ko = ’Vk)g(z)-‘ e N.

@ Forn=0,...,np—1:

(i) Set w?,’o =0,
@ Fork=1,...,k9: Compute

wx,’k =1 —vrA)tu®" — 7(1 - vrA) Py (uA’” . Vw;:,’k_l) ,

Set uAnTl = wi",
O

The convergence of the algorithm together with a convergence rate, to the strong solution of
the Navier-Stokes equations is summarized in the following theorem,

Theorem 7.3.3. Let U,T > 0. Consider the Navier-Stokes equations on T?, for d > 2. Assume that
r>d/2+2, and let u € C([0,T); H") N CL([0,T); H"=2) be a solution of the Navier-Stokes equations
[735), such that |ul|z2 < U. Choose a time-step T, such that TUNY?>t1 < (2¢)~1. There exists a
constant

C= O(Ta da T, ”u”Ct(H;f)v ||u||Ctl(H;’2)) > 07

such that with u™° := Ixu(0), and for the sequence u™*', ..., u®"7 € L3 (T%div) generated by Al-
gorithm we have

max ||u®" — w(t")||2 < C (t+N7T),

n=0,...,n

where npt = T. In particular, choosing 7 ~ N~", we have

max  [[u®" — u(t")||2 < CN",
n=0,...,n

with np ~ N” (and enlarging the constant C > 0 by a constant factor).

The proof of this theorem relies on several techniques from numerical analysis and has been presented
in detail in [KLM21, Appendix F.2].
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Approximation of algorithm by U-FNOs

Next, we are going to construct a U-FNO of the form ((7.2.14)), which can efficiently emulate the pseudo-
spectral algorithm To this end, we have the following result (proved in [KLM21, Appendix F.3])
on the efficient approximation of the non-linear term in the Navier-Stokes equations by FNOs,

Lemma 7.3.4. Assume that the activation function o € C3 is three times continuously differentiable
and non-linear. There exists a constant C > 0, such that for any N € N, and for any €, B > 0, there
exists a V-FNO N : L2 (T4 RY) x L2 (T4 RY) — L2 (T4 R?), with

depth(N), lift(N) < C, width(N) < CN?,

such that we have
IPx (un - Vwn) = N(uy, wy)llpz <

for all trigonometric polynomials uy,wy € L3 (T4 RY) C L2 (T4 RY) of degree |k|o < N, satisfying
the bound ||un| Lz, ||wn|Lz < B.

Thus, from the preceding Lemma, we have that the nonlinearities in algorithm[7.3.2] can be efficiently
approximated by W-FNOs. This paves the way for the following theorem on the emulation of the pseudo-
spectral algorithm by U-FNOs,

Theorem 7.3.5. Let U, T > 0 and viscosity v > 0. Consider the Navier-Stokes equations on T?, for
d > 2. Assume thatr > d/2+2, and let V C C([0,T]; H")NCL([0,T); H"~2) be a set of solutions of the
Navier-Stokes equations (7.3.5)), such that sup,cy ||u|2 < U, and

T = sup {Ilulle, ) + Il s | < oo
u€V

For t € [0,T), denote V;, := {u(t)|u € V}. Let G : Vo — Vr denote the solution operator of (7T.3.F),
mapping nitial data w = u(t = 0), to the solution w(T) at t = T of the incompressible Navier-Stokes
equations. There exists a constant

C=0C(d,r,UU,T) >0,

such that for N € N there exists a W-FNO N : L%, (T4, RY) — L3 (T R?), such that
sup [|G(u) — N(u)||p2 <CN7T,
ueVy

and such that
width(NV) < N9, depth(N) < CN"log(N), lift(N) < C.

The proof of this theorem relies on standard ideas from numerical analysis and is provided in detail
in [KLM21l Appendix F.2].

Remark 7.3.6. It is straightforward to observe from Theorem[7.3.5 that the size of a ¥-FNO to achieve
a desired error tolerance of € > 0, scales (neglecting log-terms) as

size(N) < Ce= (%), (7.3.12)

Given that we need v > d/2 + 2, we observe from that the size of the U-FNQO, approzimating
the initial data to solution operator G, for the Navier-Stokes equations , scales at most sub-
quadratically with respect to the error tolerance € for the physically relevant values d = 2,3. This
polynomial scaling should be compared with the super-exponential growth (see Remark of the size
of FNOs in approzimating a generic Lipschitz-continuous operator. Thus, we are able to demonstrate
that W-FNOs can approzimate the solutions of Navier-Stokes equations far more efficiently than what the
universal approximation Theorem suggests.
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Remark 7.3.7. From the convergence Theorem we observe that the underlying scheme 18
first-order in time. This low accuracy of the scheme necessitates a large number of time steps and affects
the overall complexity. We describe a second-order accurate time discretized version of the pseudo-spectral
method for approximating the Navier-Stokes equations in [KLM21] and in complete analogy with
Theorem [7.3.5, we can construct a W-FNO to emulate this second-order in time pseudo-spectral scheme,
resulting in a W-FNO of

size(N) < Ce=(315), (7.3.13)

to obtain a desired accuracy of €. Thus, we can obtain a more efficient approrimation of the underlying
operator than W-FNO emulating the first-order time scheme (7.3.8). In particular for r > 2d, we obtain
that the size of a W-FNO only grows sub-linearly in terms of the desired accuracy.

For use in the next section, we note that Theorem [7.3.5] is based on the following precise emulation
result for Algorithm by W-FNOs:

Proposition 7.3.8. Let N € N, define A = 1/N, and let /& : L% (T4 RY) — L (T4 RY), uA0 —
yTA(uA’O) = u®"T be the approzimate solution operator defined by Algorithm , There exists a
constant C > 0, such that for any €, B > 0, there exists a W-FNO N : L2 (T4 R?) — L35 (T4 R?), with

width(NV) < N9, depth(N) < Cnrlog(nr), lift(N) < C,

such that
sup [ AR (w) — Nw)llps < e,

llull2<B

where the supremum is taken over {u € L% | |lu .2 < B}.

7.4 Approximation of statistical solutions via surrogates

We now consider the problem of approximating a statistical solution ¢ +— p; of the incompressible Euler
equations based on surrogates. The previous section shows that FINOs can efficiently emulate spectral
methods; in practice, and based on the encouraging initial results of numerical experiments in [LKA™21]
and similar work [LJKT9, DLLM™21, ICWL"21, IMLM™20], we expect FNOs of much smaller size to be
able to provide accurate approximations of the solution operator of the incompressible Euler equations.
Hence, it is natural to attempt to replace the (costly) forward evaluation by spectral methods in the
computation of statistical solutions (cp. Algorithm in chapter 7 by FNOs, whose evaluation is
computationally much cheaper. To this end, we propose the following (prototypical) algorithm:

Algorithm 7.4.1 (Statistical solution surrogate). Given an initial probability measure i € P(L2), a
resolution N € N and a number of samples M € N, we obtain a statistical solution surrogate py for
t>0:

Draw M iid samples @y, ..., up ~ L1,
For j =1,..., M, evaluate the corresponding solution based on the numerical discretization

of the previous section, ujA(t) = A (u,), where A =1/N,

®G

Minimize the empirical loss L over parameters 0 € © of the W-FNO S9: LA — LA, where

)

M

-~ 1 -

=2 3170 @) — ud 0,
j=1

to obtain 7 = .7 L3 — L%, where 6* € © is the optimized parameter,
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@ Define pi := 7 41t as the push-forward measure under ;.

O
Remark 7.4.2. Note that we are considering a surrogate approzimation of the initial data-to-solution
mapping at a fived t € [0,T], in Algorithm m This allows us to directly refer to the error and
complexity analysis carried out in the preceding section. In some cases, especially in the Bayesian context,
one might be interested in a time-parametrized approzimation t — #;*, for all t € [0,T]. In this case, we
propose to add a time-interval parameter At > 0 to the input, which we assume to be small relative to
the time-scales of the evolution of statistical quantities, and train the surrogate recurrently to provide a

mapping
U SR (W) = Soa (@) = S (),

where T = nAt, and where i, = FLx; 0+ 0 SR, is the k-fold composition of #X,. Values at
t € (kAt, (k+ 1)At) can then be obtained by conventional interpolation.

From Proposition we can now deduce the following error and complexity estimate for statistical
solution surrogates:

Theorem 7.4.3 (Error estimate for statistical solution surrogates). Let .#~ : L% — L% denote the
solution operator defined by Algorithm where A = 1/N and with np ~ N4/2+1 timesteps. Let
11 € P(L2) be statistical initial data for the incompressible Navier-Stokes or Euler equations. Assume
that:

e There exists M > 0, such that i is concentrated on B3, (0) := {m € H*(T4RY) | |[w||g: < M}, for
some s > d /2, so that the point-evaluation ev, : w — w(x) is well-defined, fi-almost surely.

e There exist constants C,a > 0, and a statistical solution u; € C([0,T];P(L2)), such that the
approzimate statistical solution p2 := %é#ﬁ satisfies

Wi (ur, pgt) < CA®,
i.e. that ,u% — pur converges at a convergence rate o > 0.
Then there exists a constant C > 0, such that for any € > 0, there exists a U-FNO S L — L%, with
width (.7) < Ce=¥®, depth (.Z5) < Cet2/2% Jog(e™ 1), lift (7)) < C,
and such that the statistical solution surrogate g = fﬁ#ﬁ satisfies,
Wi (pr, pr) < €.

Proof. Fix N € N, N even, for the moment, so that N/2 € N. To derive a suitable estimate, we compare
the surrogate model with the corresponding approximation by the numerical scheme of Algorithm [7.3.2)
at resolution 2A = 2/N. We note that Wy (ur, uh) < Wi(ur, u22) + Wi (422, 11%). By assumption, the
first term is bounded by

Wl(uT,/L%A) < CN™“. (741)

To estimate the second term, we note that for any 1-Lipschitz continuous function ® : L2 — R, we have

/  (u)[dpz® (w) — dpy(u)] = / ®(u)[d (S730) (u) — d (S5 47) (u)]
L L2

_ /L (27 () - @(S7(w)] dri(u)

< [ 19 @ - i ()| zdntw)
12
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Taking the supremum over all such ®, we conclude that
Wi i) < [ 1778 ) - i)z ditw).

Since we clearly have .722 (u) = .Z2(Inu), S5 (u) = 77 (Inu), where Ty denotes the pseudo-spectral
projection, we can further estimate this by

Wi (3, py) < sup 1725 (Inu) — S7(Tnu)| 2
uesupp(

Next, since [ is concentrated on Bj;(0) by assumption, and since Zy : HS — L2 is a bounded operator
for s > d/2 (cp. Theorem in Appendix [A)), it follows that there exists B > 0, such that

|ZnullLe < B, Vwu € supp(p).
We can thus estimate

Wi(uz™ pp) < sup |52 (uw) — L7 (un) ez,

lunll 2 <B

where the supremum is over the (finite-dimensional) ball {uy € L% | lunllzz < B}. By Propositionm
and the fact that np ~ N42%1 there thus exists a constant Cy > 0, such that for any €, B > 0, there
exists a W-FNO N : L% — L%, with width(NV) < CoN?, depth(N) < CoN¥/211og(N), lift(N) < Cy,
and such that
sup |72 (un) = N(un)||z <€
lunlI<B
Applying this result for € = N~%, and defining . := N, we conclude that there exists a U-FNO
S o L3 — L%, such that width(.#3) < CoN%, depth(.7;:) < CoN¥/?t 1 log(e™ 1), lift(.7) < Cp, and
such that
Wi(pz® pp) < sup [ S22 (un) = N(un)|r2 < N2
lunl<B
By , this implies that
Wi(pr, pp) < (C+1)N™%

In particular, we can choose N := [(¢/(C + 1))_1/0‘], to conclude that there exists a constant C' > 0,
independent of €, and a W-FNO %% : L% — L%, such that width(5%5) < Ce %/ depth(.7;) <
Ce(@+2)/2a 100 (N, 1ift () < C, and

Wl(.uT’ /u‘;) <e

This concludes the proof. O

Remark 7.4.4. Theorem shows that, assuming that the spectral scheme converges to a
statistical solution i, then with a sufficiently high resolution, there exists a W-FNO 7%, for which the
corresponding statistical solution surrogate py = S7 4@ provides an accurate approzimation of pr in
the Wasserstein distance. Unfortunately, even if a surrogate 7 can be proven to exist, no theoretical
guarantees are currently available that a machine-learning (optimization) algorithm such as Algorithm
[771] will actually find a good approzimation. In the absence of such a priori guarantees, extensive
numerical experiments will be required to demonstrate the viability of Algorithm [7.4.1}, in practice. We
will leave this interesting topic for future investigations.
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In practice, one is usually interested in statistical quantitites computed from the underlying statistical
solution p;. Following the general observation from chapter [3|that typical btatibtical quantities computed
from p; are generally very smooth, we will assume that the mapping ¢ — [,, G 12 G(u) dps(u) is continuous
for all considered observables, in the following; and hence that point-wise evaluation of these quantitites
in time is well-defined. Algonthm@ then naturally leads to the following algorithm for the estimation
of statistical quantities:

Algorithm 7.4.5 (Surrogate estimation of statistical quantitites). Given an initial probability measure
71 € P(L2) for which there erists a unique statistical solution i, given an observable G : L2 - RK ¢
resolution A = 1/N, N € N, and numbers M, M € N, corresponding to

o M surrogate training samples, and
e M Monte-Carlo samples,

respectively, the following algom'thm computes an approm'mation of the expected values with respect to the
statistical solution g, i.e. of E4[G sz u) dpg(u).

@ Compute the statistical solution surrogate p; by Algorithm with nitial data @, resolution
A =1/N, and based on M empirical samples.

@ Draw M iid samples a7, . .. ,ﬁj\? ~ 1 from the initial measure Ii.

(3) Foreachj=1,..., M, compute G(ui(t)) € RX, where u}(t) := &7 (w}), and estimate E;[G(u)] ~
Ei[G(u)] by

O

We next estimate the error of the output of Algorithm for a Lipschitz continuous observable
Q L2 RX. To this end, let .7 A : L2 — L2 denote the solution operator associated With scheme
, and we assume that the approximate statistical solution p2 := 5’ 4 H, converges p® — py with
respect to the 1-Wasserstein distance to the limiting statistical solution p (cp chapter (3| ' We can then
decompose the error

M
o = B0 - BilG )] = | [ Glu) diuten) - % > 6 1)
<[ Gwydpw) — [ Glu)duP ()
L2 L2
[ G dp ) - / G (w) dyef ()
L2 L2
1 M
+|,, 9 driw) - =2 G(ujl(

=1

.

~

= gdmcretlzatlon + (’?emulmtlon g
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into the discretization error, the surrogate emulation error and the Monte-Carlo sampling error. An
upper bound for the discretization error is given by

Sdiscretization < Llp(g)W1 (/.Lt, utA)

In particular, if we assume that pu2 — u; converges with respect to the 1-Wasserstein distance at a
convergence rate o > 0, then we have
gdiscretization S AL

~

Due to the still ill-understood convergence theory of neural network approximations obtained via an
optimization algorithm, such as Algorithm a precise quantification of the emulation error appears
out of reach at present. Clearly, this emulation error should decay as a function of the number of training
samples M, and by Proposition [7.3.8| we also know that errors arbitrarily close to 0 can be obtained in
theory, provided that the U-FNO neural network exceeds a certain minimal size. We will thus make the
assumption that we have an estimate of the form

5 1
e

mulation ~5 mu
for some convergence rate v > 0. Extensive numerical experiments for model problems in [LJK19l Fig.
10] for a related neural operator architecture (“DeepONets”) have found convergence rates v € [1,4],
albeit for simpler operators. Based on these early results, we will assume that v > 1/2, in the following
discussion.

Finally, the Monte-Carlo error is expected (on average) to be of size

(g)AMC 5 %a

VM

yielding an expected total error estimate Erotal SAY+ M7+ (@’1/2. If v > 1/2 as may be expected

based on the results of [LJK19], then clearly, we must choose M > M to achieve a given accuracy

Erotal S €, i.e. the number of Monte-Carlo samples required is much greater than the number of training

samples for the surrogate model. More precisely, the above estimate indicates a scaling M ~ €2,

M ~ e Y7 Denoting by C* > 0 the cost of a single forward evaluation of the surrogate model,
% in > 0 the training cost per training sample, and by C2 a single forward solve of the numerical

discretization, the total computational cost to achieve an error of size ~ ¢, is thus estimated as follows:

Method Computational cost
direct sampling Che?
1 A * -1 * —2
surrogate sampling (C2 + Cliain) € /7§ C*e
training sampling

Table 7.1: Estimated computational cost for direct Monte-Carlo sampling based on traditional numerical
method, and surrogate sampling employing a W-FNO surrogate — split into a training phase, followed by
a MC sampling phase.

Table illustrates that surrogate sampling is expected to be more efficient than a direct sampling
approach, provided that the training convergence rate v > 1/2: Indeed, it is reasonable to assume that
* o S OB since in practice, the neural network representing the W-FNO should involve (considerably)

fewer neurons than the number of arithmetic operations required for one forward solve of the corres-
ponding numerical algorithm, resulting in the bound on the the computational cost. Hence, we expect
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that C2e¢™2 ~ (CA + C*)e 2 > (CA + Cf )€ /7 for small € — 0. Furthermore, the evaluation of
the surrogate model, once trained, is in practice many orders of magnitude faster than the evaluation
of the numerical algorithm, i.e. we have C* < C?, and hence also C*e¢~2 < C?¢~2. In particular, this
indicates that surrogate sampling might achieve a saving in computational resources, compared to direct
sampling via “traditional” methods.

Thus, the (non-rigorous) estimates summarized in Table|7.1| provide a clear rationale for the potential
benefits of statistical solution surrogates based on operator learning, over straight-forward methods based
on direct sampling using traditional numerical solvers for uncertainty quantification tasks. This is also
in line with empirical observations from numerical experiments in [LMR20] and [LMCR20], where neural
network-based surrogate models (in a finite-dimensional setting) have been used successfully to speed up
similar many-query problems in uncertainty quantification and optimization, respectively.

7.5 Discussion

Many learning tasks, particularly, but not exclusively, in scientific computing, are naturally formulated
as learning operators mapping one infinite-dimensional space to another. Neural operators have recently
been proposed as a framework for operator learning. A particular form, the so-called Fourier Neural
Operators (FNOs) , have been shown to be efficient in approximating a wide variety of operators
that arise in PDEs [LKA™21|. Our main aim in the present work was to analyze FNOs and ¥-FNOs
(7.2.14)), which is a concrete computational realization of FNOs. To this end, we have presented the
following results, following [KLM21]:

e We showed in Theorem and Theorem that FNOs (resp. ¥-FNOs) are universal i.e.,
they can approximate any continuous operator to desired accuracy. Our proof relies heavily on
the ability of FNOs to approximate the Fourier transform and its inverse, together with the neural
network approximation of the finite-dimensional Fourier conjugate operator . Thus, FNOs
have the same universal approximation property as canonical neural networks for finite-dimensional
functions and DeepOnets for operators [LMK21]. This universality result paves the way for the
widespread use of FNOs in the context of operator learning.

e However as stated in remark[7.3.1] in the worst case, the size of a FNO can grow super-ezponentially
in terms of the desired error for approximating a general Lipschitz continuous operator. This might
inhibit the use of FNOs. On the other hand, we argue in the beginning of section[7.3|that ¥-FNOs,
which are a concrete computational realization of FNOs, can approximate the nonlinearities and
differential operators that define PDEs, very efficiently. Hence, one can think of W-FNOs as a new
form of pseudo-spectral methods for PDEs, which in practice are adapted to, and optimized based
on the given training data. Thus, one can expect that W-FNOs can approximate PDEs efficiently.

e We consider the incompressible Navier-Stokes and Euler equations for fluid dynamics, and prove
rigorously that there exists a W-FNO which can approximate the underlying nonlinear operators
efficiently, as we can show that the size of the U-FNO only needs to grow polynomially in terms of
the error. A second application of U-FNOs to the stationary Darcy flow is given in [KLM21]. These
two prototypical examples show that FNOs can approximate these widely used PDEs efficiently,
corroborating the empirical results presented in [LKAT21].

e We propose an algorithm for the approximation of statistical solutions, and the computation of
statistical quantities, based on neural network-based surrogate models. And we provide a clear
rationale for the benefits of the resulting statistical solution surrogates versus the straight-forward
Monte-Carlo evaluation of statistical quantities based on traditional numerical methods.
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Hence, our analysis provides very strong theoretical evidence that FNOs are an effective framework for
operator learning, and for their potential benefits in applications. Extending the analysis summarized
in this chapter to other neural operators can be readily envisaged. The use of FNOs for more general
operators, particularly those arising in non-scientific computing settings, such as images, text and speech,

also needs to be investigated.



Chapter 8

Conclusions and further research

The present thesis has focused on the approximation of the incompressible Euler equations 7 from
both a deterministic and a statistical point of view. Physically, these equations can be seen as an idealized
model of high Reynolds-number flows, in which effects due to viscosity are small compared to the typical
flow speeds and length scales. In such flows, non-linear terms describing the transport of momentum
dominate over regularizing terms due to viscosity, often leading to a very complex, turbulent behaviour.
Physical theories of turbulence predict that typical solutions in this regime possess very low (Holder)
regularity. The mathematical theory for such rough solutions of the incompressible Euler equations is
still very far from complete, and many open questions regarding well-posedness and stability remain. At
the level of numerical approximations, the lack of stability with respect to perturbations in the initial
data results in a lack of rigorous convergence proofs. Furthermore, an absence of (strong) convergence
in any conventional deterministic sense is empirically observed in numerical experiments for initial data
with low regularity.

The first main result of this work is a (weak) convergence result for the approximation of rough
solutions of the two-dimensional Euler equations by the SV scheme, presented in chapter [2 This result
is based on compensated compactness methods, and its proof follows the most general available existence
result for solutions of the two-dimensional incompressible Euler equations, for initial data in the so-
called “Delort class”. The work summarized in chapter 2] closes a long-standing gap between available
existence theory and convergence results for general purpose numerical schemes. Despite these provable
compactness properties, numerical experiments reviewed in chapter [2| show that in practice, even for
carefully tuned parameters of the numerical scheme, the strong convergence of the SV scheme for such
rough initial data is prevented by the appearance of small-scale instabilities at high resolutions, which
are strongly amplified by the flow. This is in line with earlier computations of vortex sheets [FMTT16),
LM15] [Leol8]. These earlier investigations have found that while each deterministic simulation may be
unstable and cannot be robustly computed by state-of-the-art numerical schemes, statistical quantities
are much more stable and can be reliably approximated when considering ensembles of solutions.

The second main result of this thesis is the introduction and study of a statistical solution concept
for the incompressible Euler equations, presented in chapter [3] While a general (a priori) mathematical
well-posedness theory of statistical solutions remains out of reach at present, we study the convergence of
numerical approximations to a statistical solution and derive theoretical convergence criteria which can
be verified a posteriori from numerical experiments. These convergence criteria are either formulated
as uniform bounds (in resolution A > 0) on the structure functions, or are based on a dual (Fourier
transformed) description, in terms of a uniform decay of the energy spectra of the flow. Both of these
quantities are closely related to physical theories of turbulence [FTi95], based on which the required

171
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uniform bounds would be expected to be satisfied in practice. Extensive numerical experiments carried
out for the two-dimensional Euler equations provide empirical evidence that the convergence criteria are
indeed satisfied for a wide range of initial data, and indicate the convergence of numerical approximations
to a well-defined limiting statistical solution.

The observed well-behaved evolution of structure functions in chapter [3| provides the motivation
for the detailed study of uniform bounds on these structure functions, in chapter [l In particular, we
are interested in the question of anomalous energy dissipation in the zero-viscosity limit of the Navier-
Stokes equations. This research direction has lead to the third main result of the present thesis, which
shows that, in two spatial dimensions, any uniform bound on the second-order structure functions (in
the zero-viscosity limit) implies energy conservation of the limiting solution of the incompressible Euler
equations. The results summarized in chapter [4] go considerably beyond the well-known critical regularity
threshold identified by Onsager, which predicts energy-conservation for solutions with a-Holder regularity
for a > 1/3, and clearly shows that solutions obtained in the zero-viscosity limit possess additional fine
properties which are not shared by general (energy-admissible) solutions.

Finally, in chapters [6] and [7] we make first steps towards addressing two limitations of statistical
solutions. The first limitation concerns the blending of statistical solutions with observational data;
combining the underlying mathematical model with observational data has proven pivotal in real-world
applications, such as numerical weather forecasting. In chapter [B] we thus study a statistical Bayesian
approach to state estimation for PDEs for which the forward problem is (potentially) ill-posed. We prove
compactness and uniform stability results for numerical approximations of Bayesian inverse problems and
data assimilation, under very mild assumptions, and show the existence of a limiting posterior obtained
in the high resolution limit (A — 0). Furthermore, we show convergence to the canonical posterior,
provided that the approximate solution operator .7~ (u) — .%;(u), A — 0, merely converges almost
everywhere with respect to the prior probability measure piprior (du).

Finally, in chapter 7| we summarize approximation results for a recently proposed operator learning
framework termed Fourier neural operators (FNOs) [LKA™21], based on neural networks. We discuss
the first universal approximation theorems for this architecture, showing that FNOs can approximate
operators G : H® — H 5/7 s,8" > 0, to arbitrary accuracy. Employing ideas from spectral methods, we
furthermore derive explicit complexity and error estimates for the FNO approximation of the solution
operator of the incompressible Euler and Navier-Stokes equations, proving that this infinite-dimensional
approximation task can be solved efficiently, and more precisely, that the overall complexity scales
at most algebraically in the desired approximation accuracy. These results provide the first theoretical
justification for the use of FNOs in applications. Based on this FNO architecture, we propose a surrogate
model approach for the evaluation of statistical quantities, by the use of a so-called statistical solution
surrogate. We provide empirical complexity estimates for the computation of statistical quantities based
on this surrogate approach, and show that they compare favourably in comparison with a direct evaluation
based on traditional numerical methods.

The results presented in the present thesis thus lay the mathematical foundations for statistical
solutions of the incompressible Euler equations and their numerical approximation, emphasizing the
central role played by structure functions in their convergence theory, as well as making initial steps
toward the incorporation of observational data in a Bayesian approach, and addressing the theoretical
underpinnings of a novel neural network based approach to many-query problems, within the general
framework of “operator learning” architectures.

Future research directions

While the theoretical results on statistical solutions presented in chapter |3| apply also to the three-
dimensional Euler equations, more numerical experiments are needed to investigate whether the obser-
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vations presented for the two-dimensional case also apply in the three-dimensional case. Corresponding
work on statistical solutions of the compressible Euler equations and related hyperbolic conservation laws
strongly indicates that similar conclusions will apply also in three spatial dimensions. Due to the high
computational cost of three-dimensional simulations, to render such numerical experiments feasible, fur-
ther developments will be required in the numerical implementation, taking full advantage of accelerated
computing capabilities based on GPUs. In particular, these experiments can numerically investigate the
more intricate question of three-dimensional anomalous energy dissipation, and will allow for a direct
comparison of two- and three-dimensional turbulence.

The rigorous theoretical justification for many of the empirical observations presented in the present
work remains unknown. For example, more work is needed to explain the observed stability of statistical
quantities and the apparently well-defined evolution of statistical solutions, even in situations where the
underlying deterministic evolution is very unstable, and potentially ill-posed. Progress in the understand-
ing of this distinction between the stability of statistical quantities versus the instability of deterministic
predictions, possibly in the context of simpler model equations, would mark a major contribution towards
the understanding of high Reynolds number flows, in the opinion of the present author.

In this context, we point out a potentially interesting analogy that can be made between the theory
of statistical solutions investigated in the present thesis and related work [FWI8| [LMS16, [FLMW20,
VET7, [FRT10, [PP21], and the well-posedness theory of finite-dimensional ODEs with rough coefficients
initiated by DiPerna and Lions [DL89]: The authors of [DL89] studied solutions of ODEs of the form

dx
o b(X), X(t=0)=7¢cR% (8.0.1)

for vector-fields b which possess only Sobolev regularity, e.g. for b € WH(R4;R?), with distributional
divergence div(b) = 0 (in fact, much more general vector fields are considered in [DL89]). Classical
existence and uniqueness results for require considerably more regularity on the vector field b,
such as Lipschitz continuity, to guarantee well-posedness for solutions of . The main idea of [DL89]
is that while the ODE is generally ill-posed, the associated transport equation (PDE)

dp+b-Vp=0, p(t=0)=peL'(R7), (8.0.2)

can nevertheless be well-posed; in fact, it can be used to study and shed light on the initial value problem
(8.0.1)), and can be used to define a unique flow X € C(R; L*(R%;R?)) providing solutions of the ODE.

DiPerna-Lions theory Statistical solutions
d;t( = b(X), Oy = —Pdiv(u ® u),
X(tZ ):f, u(tzO):H.

Oip+b-Vp=0, (Statistical sol. ),
— H —
p(t=0)=p. fitlt=0 = A

Table 8.1: Analogy between DiPerna-Lions theory [DL89] and statistical solutions.

To make the analogy to statistical solutions apparent, we now interpret non-negative initial data
p € L' of (8.0.2) as a probability distribution 7 on initial data Z to the ODE (8.0.1)), so that for
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measurable A C R?, we have
_ [, () dx
Jpa P(2) dz
In this analogy, the solution ¢t — p(-,t) of the transport PDE (8.0.2)) corresponds to a “statistical
solution”,

7i(A) = Prob[z € 4]

_ S, 1) dx
fRd p(z,t)dx

describing the evolution of the uncertain (statistical) initial data & to . By the results of the
DiPerna-Lions theory, there thus exists a class of “statistical initial data” for which the evolution of the
corresponding statistical solution is well-defined, even though the deterministic problem (corres-
ponding to Dirac initial data @ = §,) is ill-posed.

Extensive numerical experiments conducted in the context of statistical solutions for PDEs arising
in fluid dynamics suggest that there might exist a similar class of statistical initial data for which
the (infinite-dimensional) statistical evolution is well-posed, even though the problem at the level of
deterministic solutions is ill-posed. We have summarized this analogy in Table Future work could
attempt to make progress towards making this analogy more precise. A key element that is currently
missing in the PDE context is a better understanding of the well-posedness theory for the infinite-
dimensional analogue of the transport equation , describing the evolution of statistical solutions
wt € P(L2). We have proposed a description of the evolution of y; in Definition formulated in
terms of a hierarchy of equations, relying on the duality between the probability measure u; € P(L2)
and the corresponding correlation marginals Vt’fx € P(U*), k € N, on state-space U.

The theoretical benefit of this hierarchy of equations for statistical solutions is its linearity, similar
to ; the main drawback is the formulation as a infinite hierarchy of coupled PDEs. Currently, it is
not clear to what extent this hierarchy is amenable to direct mathematical analysis, and future work is
needed to better understand the mathematical properties of this hierarchy, and to what extent it might
allow to make the analogy with finite-dimensional transport equations, indicated in Table precise.

In chapter [6] we have presented a theoretical discussion of the numerical approximation of Bayesian
inversion and data assimilation for prototypical models of fluid dynamics, the incompressible Euler and
Navier-Stokes equations. The theoretical results of chapter [f] should be complemented by numerical
experiments, investigating the practical convergence of approximate posteriors obtained by numerical
discretizations, as A — 0.

The approximation theory developed in chapter [7] for Fourier neural operators represents the first
steps in the analysis of neural network architectures for operator learning, with potential for applications
to many-query problems including uncertainty quantification, Bayesian inversion and PDE constrained
optimization. Many open questions and challenges remain in establishing the mathematical foundations
of this emerging field; Open research directions include the numerical investigation and comparison
of different operator learning frameworks, demonstrating the practical viability of neural network based
surrogate models, as well as extensions of the approximation theory, in particular for statistical solutions.

The author hopes that the work presented in this thesis may serve as a starting point for future
work in a variety of interesting and fruitful research directions, with potential for impact on problems in
science and engineering.

i (A) € P(RY),



List of symbols

Throughout this work, we follow the convention that constants C' appearing in estimates may change
their value from line to line. The dependency of the constant C' on the given data (e.g. parameters
a, 3,7) should usually be clear from the context and will be indicated by writing C = C(«, 8,7). For
the convenience of the reader, we provide a list of the most common symbols used in this work, below:

Frequently used symbols

Td periodic torus, identified with [0, 27]¢
d spatial dimension of domain
u (flow) vector field u : T x [0,T] — R?
[ initial data @ : T? — R? (for incompressible Euler)
Uy, (spatial) Fourier coefficient of u
w (scalar) curl of u, w = curl(u) € R (for d = 2)
A grid scale parameter A =1/N, N € N
u® discretized velocity, u® = Dkl <N ulethe
wh (scalar) curl of u?, w® = curl(u®) € R (for d = 2)
P(X), (P(L2)) space of Borel probability measures on Banach space X (L2)
Pp(X) set of p € P(X) with finite p-th moment
M set of bounded Radon measures on T¢
My set of non-negative Radon measures on T¢
v viscosity parameter in Navier-Stokes equations
Lt time-parametrized probability measure (or statistical solution)
I statistical initial data, € P(L2)
pd approximate statistical solution
Sa(p; ) statistical (second-order) structure function
ST (s ) time-integrated statistical structure function
Wi (p,v) 1-Wasserstein distance between p, v € Py(L2)
dr(pe, ve) time-integrated 1-Wasserstein distance
L{(P) space of time-parametrized probability measures, s.t. dr(u, dg) < 0o
Sa(u;r) deterministic structure function
ST (u;7) time-integrated structure function
u— S(u) solution operator
u — S (a) approximate solution operator (from discretization)
o(r) modulus of continuity
Banach spaces
L? Space of square-integrable functions
L? [2cL? square-integrable functions with zero mean p- [180
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L?v L?v C LZ trigonometric polynomials of degree < N p- 180
L% L3 = L? N L% trigonometric polynomials with zero mean p- [180
H*® Sobolev space of smoothness s > 0, with norm || - || g= p- (179
H—*® dual of H®
H® Sobolev space with zero mean, with norm || - || ;. p. 180

Projection operators
Py L2-orthogonal Fourier projection Py : L? — L% p- 180
Py Fourier projection Py : L? — L3, with zero mean p. [18]]
In Pseudo-spectral Fourier projection, i.e. trigonometric interpolation on p. 181
regular grid {z;};cry

P Leray projection onto divergence-free vector fields p- 161
Py Leray projection followed by projection Py; Py = Py o P p- 161]

Bayesian inversion T
LA (u), L(u) observable p.
y measurement, y € R? p-
n measurement noise p-
dp™Y (u) posterior probability measure p-
PAY (u) log-likelihood function p.
Gi(u) Eulerian observable o
Y; measurements Y; = (y1,...,y;) in time interval [0, ¢;] p.
l/tA Y (du) Bayesian estimate at time ¢, given measurements Y o
VtA v filtering distribution, Bayesian estimate given past measurements p-

Neural networks

o activation function
da, dy, dy number of components of input, output and lifting p-
A(D;R%) input function space p-
U(D;Rw) output function space p.
F, F! Fourier transform and inverse Fourier transform p-
FN, .7-']\_,1 discrete Fourier transform and inverse p-
{z;}jean regular periodic grid, z; = 275 /(2N + 1) p.
IN grid point indices, Jy = {0,...,2N}? p-
Ky Fourier wavenumbers Ky = {k € Z¢ | |[k|oc < N}
R lifting operator p-
Ly neural operator layer p-
Q projection operator p-
F-layer linear, non-local layer; v(x) — F~1(PFv)(z) p.
o-layer non-linear, local layer; v(z) — o(Wwv(z) + b(x)) p.
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Appendix A

Mathematical complements

In this appendix, we summarize frequently used notation in the thesis main text, summarize some
essential facts about Fourier analysis and recall two well-known theorems in analysis.

A.1 Fourier analysis

In the main text, we focus on functions defined on the periodic torus T¢, identified as T¢ = [0, 27]9.
Following standard practice, we denote by L?(T%) the space of square-integrable functions. For any such
function v € L?(T%), we can define the Fourier transform as,

F)(k) := ﬁ Ad v(x)e *Tdx, VEkeZ4 (A.1.1)

For any k € Z4, the k-th Fourier coefficient of v is denoted by vy = F(v)(k).
Given a set of Fourier coefficients {0y }rcza, the inverse Fourier transform is defined as,

F @) (z) = Z vpe’tT Vo e T (A.1.2)
kezd

We recall Parseval’s identity for u,v € L?(T%):

(u,v)p2 == /T u(@)o(w) dr = (2m)" > Uik (A.1.3)

kezd
Using the Fourier transform (A.1.1]) and for s > 0, we denote by H*(T%) the Sobolev space of functions
v € L*(T9), with Fourier coefficients {0, }rezq, having a finite H*-norm:
1/2
lvllzs == | (2m)¢ Z (1 + |k|)*|ox]? < 00. (A.1.4)
kezd
Note that with this definition, we have from Parseval’s identity, that ||v||zo = ||v| 12, so that HO(T?) =

L?(T9). Furthermore, we note that for any s > 0, the dual space H~* is the space of distributions
v € D'(T4), with Fourier coefficients v}, satisfying

1/2
1
—s = 2 d I —k < .
||UHH ( ﬂ-) Z (1+|k‘)25|vk“ S
kezd
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Furthermore, for any functions u,v € L?(T?), we have from Parseval’s identity and the Cauchy-Schwarz
inequality:
(u, 0) 2 < lullzs 0]l -
We also introduce the corresponding homogeneous Sobolev spaces HS(Td) (and L2(']I‘d) =
H°(T%)), consisting of functions v(z) € H*(T?) and with zero mean f, v(z)dz = Ty = 0. The space
H*(T?) is endowed with the norm

1/2

ollge == 20" > [kZEP |- (A.1.5)
kezd4\{0}

Given N € N, throughout this work, we will denote by L% (T¢), the space of trigonometric polynomials
vy : T4 = R, of the form

on() = > et (A.1.6)

where the summation is over all k = (ki, ..., kq) € Z? such that

|kloo := max |k;] < N.
i=1,...,d

The space L% (T¢) is viewed as a normed vector space with norm || - || 2. Similarly, for s > 0, we denote

by H3 (T¢) the normed vector space of trigonometric polynomials vy of degree < N, with norm || || grs.
We note that in order to ensure that vy (z) € R is real-valued for all z € T¢, the coefficients ¢, € C

must satisfy the relations c_ = ¢ for all |k|oo < N, and where ¢ denotes the complex conjugate of c.
We denote by

Py : L*(T%) — L%(T%), v~ Pyv, (A.1.7)
the L2-orthogonal projection onto L%, (T?); or more explicitly,
Py Z cre™T | = Z cre™T Y (ep)peze € (2.
kezd k| oo <N

In fact, the mapping Py defines a projection H*(T¢) — H$,(T?) for any s > 0. We have the following
spectral approximation estimate: Let s > 0 be given. There exists a constant C' = C(s,d) > 0, such that
for any v € H*(T?), we have

v — Pyollgs < CN~CE=9)||v||gs, for any < € [0, s]. (A.1.8)

We furthermore note that the norm of the projection Py : L' — L' is not uniformly bounded.
Instead, we have the following estimate:

Proposition A.1.1. Let N € N, N > 2. The norm of the Fourier projection Py : L*(T?) — L(T9),
interpreted as an operator on L', is bounded by ||Py| g1z < Clog(N)d, where C' > 0 is an absolute
constant, independent of N.
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Proof. Let D}, : T — R be the (one-dimensional) Dirichlet kernel, D} (¢) = (27)~! Zé\]:_zv es. We
recall in passing that D} can be expressed in the closed form

sin((N +1/2)¢)

D}V(E) - 27 sin(§)

Let Dy (z) := szl D} (zx) be the d-fold tensor product of D}. We note that the projection Py can
be written as a convolution with Dy, i.e. that Pyu = Dy * u for any u € L*(T?). It follows that

[Prvullr = Dy *ulpr < | Dnl[zaflullzt,

and hence, ||Py| 1oz < |Dyllzi. The claim now follows from the well-known fact that ||D} ||z <
C'log(N) for some constant C' > 0, and from the identity

d d d
1Dxls = [ TP @0l de =TT [ 1040l o= T 1Dk le: < C*log(v)"
k=1 k=1 k=1

O

We also define a natural projection
Py : L2(T%) — L3(T%), (A.1.9)

by removing the mean, i.e. Pyv = Pyv — fra v(z) dz, or equivalently:
Py Z cpe* T | = Z ke Y (cr)peza € C(ZY).
kezd 0<|k|oc <N
Furthermore, we denote by by

Iy : C(TY) — L%(TY), wuw— Iyu, (A.1.10)

the pseudo-spectral projection onto L?V(’]I‘d); we recall that the pseudo-spectral projection Zyv of a
continuous function v is defined as the unique trigonometric polynomial Zyv € L% (T?), such that

Inv(z;) =v(z;), VjeEIn, (A.1.11)

where {x,}je7, denotes the set of all regular grid points z; € Z% of the form x; = 27j/(2N + 1) € T¢,

j € Z% (cp. equation (A.1.12)).

We also recall the following embedding theorem for the Sobolev spaces H*(T%):

Theorem A.1.2 (Sobolev embedding). Let d € N. For any s > d/2, we have a compact embedding
H*(T?) < CO(T?) into the space of continuous functions. In particular, there ewists a constant C' =
C(s,d) > 0, such that

[vL= < Cllolla-, Vv e H(TY.

The Sobolev embedding theorem implies in particular that the pseudo-spectral projection Zy is well-
defined as an operator Iy : H*(T9) — L% (T9) for s > d/2. In the following theorem, we recall a
well-known approximation error estimate for the pseudo-spectral projection Zy:
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Theorem A.1.3 (Pseudo-spectral approximation estimate). Let d € N. For any s > d/2 and N € N,
the spectral interpolation operator Iy : H*(T?) — L% (T?) is well-defined. Furthermore, there exists a
constant C = C(s,d) > 0, such that the following approzimation error estimate holds

(1 = Zn)oll e <CN=CEI|l|ge, Vo€ H(TY,
for any ¢ €0, 5.
Finally, for N € N, we fix a regular grid {z;};c7, of values

27
YT ON ¥

(A.1.12)

where the index j € Jn belong to the index set
In :=10,...,2N}<. (A.1.13)

Recall the set of Fourier wave numbers ([7.2.10) and we define the discrete Fourier transform Fy :
RIN — CE~ by
1 —2mi(k-x;
Fn () (k) == PR > ek, (A.1.14)
JjEIN
with inverse }“X,l :Clv 5 RIV,

FR @) = ) vpemitma), (A.1.15)
ke N

We finally remark that all of the above notions are extended to functions w : T — R?" in the obvious
way (with multiplication u(z)v(z) replaced by the dot-product w(z) - v(x)), leading to corresponding
spaces L2(T4RY), H5(T%RY), H*(T% R?). We will use the same notation Py, Py, Zy for the corres-
ponding projections defined on vector-fields u : T4 — R%. If the domain and co-domain are clear from
the context, we will occasionally write H*, instead of H*(T¢%; Rd/); in order to emphasize the fact that we
consider functions with a spatial dependence, we shall also use the short-hand notation H3 = H*(T¢%; Rd/).
In particular, for a time-parametrized mapping w : [0, T] — H3, we will write ||u(t)| s for the H*-norm
of u(t) € H? at time t € [0,T]. Corresponding Bochner spaces, such as LP([0, T]; H*(T% R%)) will often
be written in the abbreviated form LY H.

A.2 Compactness theorems

We finally recall the following two mathematical facts, which will be used in the main text: The first is
the Arzela-Ascoli theorem, characterizing compactness in Cjo.(X,Y), for topological spaces X, Y:

Theorem A.2.1 (Arzela-Ascoli). Let X be a locally compact Hausdorff space. Let'Y be a complete
metric space. A subset F C Cioc(X,Y), of the space of continuous functions X — 'Y in the topology of
local uniform convergence, is relatively compact if, and only if, it is equi-continuous and for all x € X,
the set {f(x)| f € F} is relatively compact in'Y .

We also recall the following characterization of weakly compact subsets of L!([0, 7] x T¢), commonly
known as the Dunford-Pettis theorem (for a proof, see [DS58]).

Theorem A.2.2 (Dunford-Pettis). A subset K C L'([0,T] x T%) is relatively compact in the weak
topology (induced by the duality pairing with L) if, and only if,
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o K is bounded in the L'-norm,

e for every e > 0, there exists a § > 0 such that for all Lebesgue-measurable A C [0,T] x T<,

Al <0 = /f(ac,t)dxdt<e7 forall f € K.
A
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Appendix B

Wasserstein distance

Here, we summarize a few elementary facts about the Wasserstein distance and the convergence of
measures. An excellent reference on this material (and much more) is [Vil0§]. Given a separable Banach
space X, we denote by P(X) the space of Borel probability measures on X. The term “measurable” will
always refer to Borel measurability. A sequence p, € P(X) is said to converge weakly to a limit g,
denoted p,, — p, if

/¢dun—>/ ddu, Vo€ Cy(X), (B.0.1)
X X

where C(X) denotes the space of bounded, continuous functions on X.
We call a family of probability measures {®}aso C P(X) tight, provided that for any ¢ > 0 there
exists a compact subset K C X such that

pA(K)>1—¢ VYA>D0.

It is a classical result due to Prokhorov (see e.g. Theorems 8.6.7, 8.6.8 of the monograph [Bog07]) that
a family y® € P(X), with X a separable Banach space, is tight if and only if u® is relatively compact
under the weak topology.

We denote by P,(X) the space of Borel probability measures p € P(X), possessing finite p-th
moments, [y [|ul% du(u) < co, metrized by the p-Wasserstein distance W

W,(u,v) = inf (/XXXUW); dﬂ(u,u))l/p. (B.0.2)

w€el(p,v)

where the infimum is taken over all transfer plans 7 € I'(y, v) defined as,

I(p,v) = {77 € P(X x X) ‘ / (F(u) + G(v))dr(u,v) = / F(u)dp(u) +/ G(v)du(v)},
XxX X X
for all F,G € Cp(X).
Given a measurable map F': X — Y, we denote by Fup € P(Y) the push-forward of a probability

measure u € P(X) by F, defined by (Fyup)(A) :== p(F~(A)) for measurable A C Y; the push-forward
measure satisfies the relation

/Y 6(v) d (Fyp) (v) = /X (60 F)(u) du(u),
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for all measurable functions ¢ : ¥ — R such that ¢ o F € L'(u). We recall that the 1-Wasserstein
distance W1 (u, v) between measures p, v € P1(X) can also be determined via the Kantorovich duality:

Wiv) = sup [ () [duw) - dvw)]. (B.0.3)

where the supremum is taken over all Lipschitz continuous ® € Lip(X), with ||®||Lip, < 1, and we define
the semi-norm || - ||Lip by

[l o= sup 2= 20N
S T

(B.0.4)

We also recall that for a sequence of measures u® € Py(X), A — 0, and p € P;(X), we have

p? — p converges weakly and

lim Wy (p2, pu) =0 < (B.0.5)
A% /X lullxc dp (u) /X lullx dpu).

We will denote the Kullback-Leibler (KL) divergence of a measure v € P(X) with respect to p € P(X)
by Dk (v||p); We recall that the Kullback-Leibler divergence is defined by

[ log (%) dv, (v < p),

B.0.6
+o00, (v £ ). ( )

DxL(v||p) :== {

It is well-known that P(X) — R, v — Dy (v||u) is a strictly convex, coercive and lower semi-continuous
function. In particular, for any o > 0 the set {v € P(X)|Dkwr(v||n) < a} is compact in the weak
topology on P(X).
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