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Abstract

The inviscid, incompressible Euler equations are an idealized model for flows at high Reynolds number.

Solutions of inviscid fluid models, such as the incompressible Euler equations, are highly sensitive to small

perturbations of the initial data. Mathematically, this is reflected by a lack of general uniqueness and

well-posedness results. For numerical approximations, this lack of stability implies that the convergence

of numerical schemes to a unique limit cannot be guaranteed for general (energy-admissible) initial data.

The present thesis studies the approximation of solutions of the incompressible Euler equations, focusing

on spectral methods. Besides extending the convergence theory of these methods in a deterministic

setting, we propose statistical solutions as a suitable framework to study the convergence of numerical

methods for rough solutions of the Euler equations, at low regularity. These statistical solutions are

time-parametrized probability measures on flow fields. The main observation of the present work is

that, for the approximation of solutions at low regularity, a marked contrast is observed numerically

between the failure of (strong) convergence in any classical, deterministic sense, versus the apparent

stability and convergence of statistical quantities at increasing numerical resolution. In addition to

presenting extensive numerical experiments to study different aspects of the convergence of statistical

quantities, we develop a theoretical framework of statistical solutions. This theoretical framework allows

us to interpret these empirical observations as the convergence of numerical approximants to a limiting

statistical solution. Building on the insights gained in the analysis of statistical solutions, we next

investigate the question of anomalous energy dissipation in the zero-viscosity limit of the Navier-Stokes

equations, and provide a characterization of energy conservative solutions of the incompressible Euler

equations in two dimensions, considerably going beyond the critical 1/3-Hölder regularity for energy

conservation identified by Onsager. Finally, we address the practically important question of combining

available observational data with the underlying fluid model in a Bayesian formulation, and the use of

neural network based surrogate models to provide novel approximations of statistical solutions.
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Zusammenfassung

Ein idealisiertes Modell für Strömungen hoher Reynoldszahl sind die invisziden, inkompressiblen Eu-

lergleichungen. Lösungen von invisziden Fluidmodellen, wie den inkompressiblen Eulergleichungen, sind

hochempfindlich gegenüber Störungen der Anfangsdaten. Mathematisch spiegelt sich dies wider in der

Nichtverfügbarkeit von allgemeinen Ergebnissen zur Eindeutigkeit und Existenz von Lösungen. Für nu-

merische Näherungen bedeutet dieser Mangel an Stabilität, dass die Konvergenz numerischer Schemata

zu einem eindeutigen Grenzwert für allgemeine (energiezulässige) Ausgangsdaten nicht garantiert wer-

den kann. Die vorliegende Arbeit beschäftigt sich mit der Approximation von Lösungen der inkompres-

siblen Eulergleichungen, mit Schwerpunkt auf spektralen Methoden. Neben der Erweiterung der Kon-

vergenztheorie dieser Methoden in einem deterministischen Kontext schlagen wir statistische Lösungen

der Eulergleichungen vor. Letzteres sind zeitparametrisierte Wahrscheinlichkeitsmasse auf dem Raum

der Strömungsfelder, welche uns zu einem besseren Verständnis der Konvergenz numerischer Methoden

verhelfen, insbesondere wenn die zugrunde liegende Lösung eine geringe Regularität aufweist. Die wich-

tigste Erkenntnis dieser Arbeit ist, dass bei der numerischen Annäherung von Lösungen mit niedriger

Regularität ein deutlicher Kontrast beobachtet wird, zwischen dem Ausbleiben der (starken) Konver-

genz im klassischen, deterministischen Sinne gegenüber der augenscheinlichen Stabilität und Konvergenz

statistischer Grössen bei steigender numerischer Auflösung. Neben der Präsentation umfangreicher nu-

merischer Experimente zur Untersuchung verschiedener Aspekte dieser Konvergenz statistischer Grössen,

entwickeln wir einen theoretischen Rahmen für statistische Lösungen, der es uns ermöglicht, eine Inter-

pretation dieser empirischen Beobachtungen als numerische Konvergenz zu einer statistischen Lösung zu

geben. Aufbauend auf den gewonnenen Erkenntnissen für statistische Lösungen untersuchen wir desweite-

ren die Frage der anomalen Energiedissipation im Nullviskositäts-Limes der Navier-Stokes-Gleichungen;

Wir geben eine Charakterisierung energieerhaltender Lösungen der inkompressiblen Eulergleichungen in

zwei Dimensionen. Dieses Resultat geht deutlich über die von Onsager identifizierte kritische 1/3-Hölder-

Regularität für die Energieerhaltung hinaus. Abschließend wenden wir uns der praktisch wichtigen Frage

zu, wie vorhandener Beobachtungsdaten mit dem zugrunde liegenden Fluidmodell in einer Bayes’schen

Formulierung kombiniert werden können, und wir diskutieren neuronale Netzwerk-basierte Stellvertreter-

Modelle, um eine neuartige Darstellung statistischer Lösungen zu erhalten.
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1

Outline of this thesis

For the convenience of the reader, we provide a brief outline of the contents of the present thesis.

In chapter 1, we introduce the incompressible Euler equations. These equations form the main object

of study of this work. After a short recapitulation of the physical meaning of the equations, we review

elements of their mathematical theory. We summarize short-time existence and uniqueness of classical

solutions, the concepts of weak and measure-valued solutions and point out the central role played by

the vorticity in their mathematical analysis. Furthermore, we discuss rough solutions with unbounded

vorticity in the two-dimensional case, and the connection of such rough solutions with physical theories

of turbulence. The first chapter also introduces spectral methods, and in particular the spectral (hy-

per-)viscosity (SV) scheme for the numerical approximation of the incompressible Euler equations.

In chapter 2, we study the convergence of the SV scheme to rough solutions. Using compensated

compactness methods, we show that a suitable choice of parameters for the SV scheme ensures that

approximate solution sequences computed by this discretization converge (subsequentially) to a weak

solution of the incompressible Euler equations, even for rough initial data. More precisely, we provide

a proof of convergence for initial data in the so-called “Delort class”. This result closes a long-standing

gap between the available existence theory and convergence results for numerical schemes. Chapter 2 is

based on the publication [LM20].

In chapter 3, we introduce statistical solutions of the incompressible Euler equations. We propose

an algorithm for their numerical approximation and study the convergence of approximate statistical

solutions, both analytically and by numerical experimentation. In particular, we emphasize the import-

ance of “structure functions” for the compactness and convergence theory of statistical solutions. These

structure functions are also central to physical theories of turbulence, and thus provide a natural link to

these physical theories. Chapter 3 reviews the main results of [LMPP21b].

In chapter 4, we study the structure functions of the preceding chapter in further detail, and in

connection with the question of anomalous energy dissipation for the incompressible Euler equations.

We focus on the two-dimensional case, where we first provide a characterization of energy conservation

for physically realizable solutions, i.e. solutions which are obtained in the zero-viscosity limit of the

incompressible Navier-Stokes equations. We then discuss the energy conservation of statistical solu-

tions computed by numerical discretization. Numerical experiments for a number of rough initial data

demonstrate the relevance of the proposed estimates. This chapter summarizes the results of [LMPP21a].

In chapter 5, we point out two major limitations of the approach to statistical solutions introduced

in the preceding chapters. Initial steps at addressing these limitations are undertaken in the subsequent

chapters 6 and 7.

In chapter 6, we show how available measurement data can be incorporated in the framework of the

present thesis, based on a Bayesian point of view: More precisely, we discuss Bayesian inversion and data
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assimilation/filtering for PDEs defining ill-posed forward problems, such as the incompressible Euler

equations. This chapter is based on [LMW21].

In chapter 7, we discuss the emerging field of operator learning and analyse a novel neural network

architecture, Fourier neural operators (FNOs), to approximate operators defined on infinite-dimensional

function spaces, i.e. mapping input functions to output functions. We review the universal approxim-

ation theorem for FNOs, showing that FNOs can approximate general continuous operators mapping

between Sobolev spaces, to arbitrary accuracy. In addition, we use ideas from spectral methods to de-

rive explicit complexity and error estimates for the FNO approximation of the solution operator of the

incompressible Euler and Navier-Stokes equations. We also indicate how FNO surrogates can be used

to provide an alternative numerical approximation of statistical solutions, and provide a rationale for

their potentially improved efficiency, compared to traditional numerical methods. This chapter is mainly

based on [KLM21], with elements taken from [LMK21].

Finally, in chapter 8 we present conclusions and remark on possible further research directions.

For reference, a list of commonly used symbols throughout this thesis has been included on page 175.

A brief summary of basic results in harmonic analysis and measure theory are provided, respectively, in

Appendices A and B.



Chapter 1

Introduction

1.1 The incompressible Euler equations

The present thesis studies the numerical approximation of the incompressible Euler equations. The

incompressible Euler equations describe the motion of an ideal, incompressible fluid in the absence of

viscous effects, and are given by the following system of partial differential equations (PDEs) [MB01,

CM90]: {
∂tu+ (u · ∇)u+∇p = 0,

div(u) = 0, u(t = 0) = u.
(1.1.1)

Here, u : D × [0, T ] → Rd, (x, t) 7→ u(x, t) = (u1(x, t), . . . , ud(x, t)) denotes the fluid velocity as a

function of the spatial location x = (x1, . . . , xd) ∈ D and at time t ∈ [0, T ], with D ⊂ Rd, d ∈ {2, 3}, the

underlying domain. The function p : D × [0, T ] → R, (x, t) 7→ p(x, t) denotes the pressure. The vector

field u : D → Rd denotes the initial data, and it is assumed here and in the following that div(u) = 0

for any initial data. The incompressible Euler equations (1.1.1) have to be complemented by suitable

boundary conditions. In the present thesis we will throughout assume periodic boundary conditions, i.e.

we assume that the domain D = Td can be identified with the 2π-periodic torus Td ' [0, 2π]d.

We also recall that ∂tu is a compact notation for the partial derivative ∂u/∂t with respect to t, and

that ∇ = (∂x1 , . . . , ∂xd) denotes the (spatial) gradient operator, such that

∇p = (∂x1
p, . . . , ∂xdp) ∈ Rd, (u · ∇)u =

 d∑
j=1

uj∂xju1, . . . ,

d∑
j=1

uj∂xjud

 ∈ Rd.

We define the divergence of a matrix-valued function A : D → Rd×d, x 7→ A(x) = (Aij(x))i,j by

div(A) =
∑d
i=1 ∂xiAij ∈ Rd. Owing to the divergence-free constraint, div(u) =

∑d
i=1 ∂xiui = 0, we

then have the equality u · ∇u = div(u⊗ u), where the tensor product u⊗ u is the matrix with entries

(uiuj)i,j ∈ Rd×d. This allows us to write (1.1.1) in the (formally) equivalent form{
∂tu+ div(u⊗ u) +∇p = 0,

div(u) = 0, u(t = 0) = u.
(1.1.2)

3



4 CHAPTER 1. INTRODUCTION

x Φt(x)

(a) Fluid element advected by the flow.

∆x

n

(b) Fluid element C(x; ∆x) and normal n.

Figure 1.1: Schematic for fluid elements: (a) advection and (b) outward unit normal n.

1.2 Physical meaning of the equations

1.2.1 Momentum equation and force balance

Physically, the first equation of (1.1.1) describes the acceleration of fluid elements due to the force exerted

by the pressure. To see why, we consider an infinitesimal fluid element at the initial position x at t = 0,

and follow its evolution t 7→ Φt(x) over time (cp. Figure 1.1a). Here, x is treated as a parameter. The

fluid element is advected by the flow, yielding

dΦt(x)

dt
= u(Φt(x), t), Φ0(x) = x. (1.2.1)

By Newton’s second law F = ma, the acceleration of the fluid element is therefore given by

a =
d2Φt(x)

dt2

(1.2.1)
↓
= (∂tu+ u · ∇u)

∣∣∣
(Φt(x),t)

=
F

m
, (1.2.2)

where F is the force acting on the fluid element, and m is its mass.

The force F due to the pressure acting on a small cube C(x; ∆x) of side length ∆x and center x (cp.

Figure 1.1b) is given by the integral of the pressure over its faces:

F = −
ˆ
∂C(x;∆x)

p(ξ) dn(ξ),

where n is the outward pointing normal to the surface. For small ∆x� 1, we have

F ≈ −
d∑
j=1

[
p

(
x+

∆x

2
ej

)
− p

(
x− ∆x

2
ej

)]
(∆x)2 ej ,

where ej ∈ Rd denotes the j-th unit vector. Assuming a constant mass density = 1, we furthermore note

that

m =

ˆ
C(x;∆x)

1 dx = (∆x)3,

implying that the acceleration a is given by (for infinitesimal fluid elements):

a = lim
∆x→0

F

m
= lim

∆x→0

´
∂C(x;∆x)

p(ξ) dn(ξ)´
C(x;∆)

1 dx

= lim
∆x→0

−
d∑
j=1

1

∆x

[
p

(
x+

∆x

2
ej

)
− p

(
x− ∆x

2
ej

)]
ej = −∇p(x).
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Thus, if the total force acting on the fluid element is determined by the pressure alone, then (1.2.2)

implies that

∂tu+ u · ∇u = −∇p,

yielding the first equation of the incompressible Euler equations (1.1.1).

We also remark that if there are additional forces acting on the fluid elements, such as the gravitational

force or frictional forces between fluid elements, represented by a force density f : D× [0, T ]→ Rd, then

the same argument shows that the momentum equation of the incompressible Euler equations becomes

∂tu+ (u · ∇)u+∇p = f .

In particular, additional stresses due to internal friction of the fluid elements can be modeled by f =

∇ · (ν∇u) = ν∆u, where ν > 0 denotes the viscosity, leading to the incompressible Navier-Stokes

equations {
∂tu+ (u · ∇)u+∇p = ν∆u,

div(u) = 0, u(t = 0) = u.
(1.2.3)

1.2.2 Incompressibility

Φt

A Φt(A)

Figure 1.2: The flow map Φt.

We next show that the divergence-free constraint div(u) = 0 reflects the incompressibility of the under-

lying fluid: Indeed, if A ⊂ Rd is any bounded subdomain, then by the change of variables formula with

y = Φt(x), the volume of the domain Φt(A) transported by the flow is given by

Vol(Φt(A)) =

ˆ
Φt(A)

1 dy =

ˆ
A

|det(DxΦt(x))| dx. (1.2.4)

Taking a time-derivative of the integrand, we obtain

∂

∂t
det(DxΦt(x)) = det(DxΦt(x)) tr

(
[DxΦt(x)]

−1 · ∂tDxΦt(x)
)
,

where DxΦt(x) denotes the Jacobian matrix of Φt(x), and where equation (1.2.2) implies that

∂tDxΦt(x) = Dx∂tΦt(x) = Dx [u(Φt(x), t)] = Dxu|(Φt(x),t) ·DxΦt(x).

It thus follows that

∂

∂t
det(DxΦt(x)) = det(DxΦt(x)) tr

(
[DxΦt(x)]

−1 ·Dxu|(Φt(x),t) ·DxΦt(x)
)

= det(DxΦt(x)) tr
(
Dxu|(Φt(x),t)

)
= det(DxΦt(x)) div (u) |(Φt(x),t).
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Hence, assuming the divergence-free constraint div(u) = 0, it follows that ∂t det(DxΦt(x)) = 0. From

(1.2.4), this implies that d
dtVol(Φt(A)) = 0, or equivalently

Vol(Φt(A)) = Vol(Φ0(A)) = Vol(A),

for any bounded subdomain A ⊂ Td, i.e. that the flow associated with u is incompressible.

1.2.3 Kinetic energy

We finally note that the kinetic energy of a fluid element C(x; ∆x) of unit mass density, and hence

of mass m = (∆x)3, is given by 1
2m|u|

2 = 1
2 |u|

2 (∆x)3. Considering infinitesimal fluid elements, this

indicates that the energy density of the fluid is given by e(x, t) = 1
2 |u(x, t)|2 dx, and the total kinetic

energy at time t is given by

E(t) =
1

2

ˆ
Td
|u(x, t)|2 dx =

1

2
‖u(t)‖2L2

x
.

A formal calculation based on the incompressible Euler equations (1.1.1) shows that

d

dt
E(t) =

ˆ
Td
∂tu · u = −

ˆ
Td

[(u · ∇)u+∇p] · u dx

= −
ˆ
Td

(u · ∇)

(
1

2
|u|2

)
dx−

ˆ
Td
∇p · u dx

= −
ˆ
Td

div

(
1

2
|u|2u

)
dx+

ˆ
Td
p div(u) dx

= 0,

where we have integrated by parts and used the divergence-free condition div(u) = 0, as well as the

divergence-theorem on the last line, and we have assumed u to be sufficiently regular to justify all of

the manipulations. In particular, this argument shows that smooth solutions of the incompressible Euler

equations are energy-conservative.

1.3 Elements of the mathematical theory

Even though the incompressible Euler equations were formulated by Leonhard Euler already in 1757

[Eul57] and are amongst the first PDEs to have been devised, their mathematical analysis and under-

standing is still very far from complete. In this section, we will review some key elements of the available

mathematical theory which are pertinent to the contents and contributions of the present thesis. We

refer the reader to Appendix A for a brief summary of some fundamental facts on the Fourier transform

and Sobolev spaces.

1.3.1 Leray projection and Fourier transformed equations

Mathematically, the divergence-free constraint div(u) = 0 implies that the pressure can be determ-

ined (up to an unimportant constant) from the velocity field u: Indeed, taking the divergence of the

momentum equation, and using that the divergence of ∂tu vanishes, we find

−∆p = div (div (u⊗ u)) , (1.3.1)



1.3. ELEMENTS OF THE MATHEMATICAL THEORY 7

where ∆p =
∑d
i=1 ∂

2
xip denotes the Laplacian applied to p. The equation for the pressure (1.3.1) indicates

that the pressure is not a true dynamic variable, but instead acts as a Lagrange multiplier in (1.1.1), to

ensure the divergence-free constraint div(u) = 0. In fact, the gradient term ∇p in the incompressible

Euler equations acts as a L2-orthogonal projection of the non-linear term onto divergence-free vector

fields, as will be discussed next. To this end, let us first point out that in view of the close relation of the

L2-norm with the kinetic energy of the fluid, explained in the previous section, it is natural to assume

that the flow field u has finite energy, i.e. that supt∈[0,T ] ‖u‖L2
x
< ∞, for any physically admissible

solution. We will implicitly assume this in the following formal calculations.

To develop a better intuition for the meaning of the pressure term, it is instructive to consider the

Fourier transformed version of the incompressible Euler equations (1.1.2). To this end, we write u(x, t) =∑
k∈Zd ûk(t)eik·x, and p(x, t) =

∑
k∈Zd p̂k(t)eik·x in terms of their Fourier series. The incompressible

Euler equations then lead to the following system of equations for the Fourier coefficients ûk (k 6= 0):

dûk
dt

= −ik · ̂(u⊗ u)k − ikp̂k, ̂(u⊗ u)k =
∑
`∈Zd

(û` ⊗ ûk−`) . (1.3.2)

and dû0

dt = 0 for k = 0. Equation (1.3.1) for the pressure can now be expressed as p̂k = − (k⊗k)
|k|2 : ̂(u⊗ u)k,

for k 6= 0, where we denote A : B =
∑d
i,j=1AijBij for matrices A, B. Substitution of this identity for

p̂k in (1.3.2), yields (k 6= 0)

dûk
dt

=

(
I − k ⊗ k

|k|2

)(
−ik · ̂(u⊗ u)k

)
, ̂(u⊗ u)k =

∑
`∈Zd

(û` ⊗ ûk−`) , (1.3.3)

where I ∈ Rd×d denotes the identity matrix. We furthermore observe that the divergence constraint

div(u) = 0 is equivalent to the condition that k · ûk = 0, for all k ∈ Zd, i.e. that the k-th Fourier

coefficient of u is perpendicular to k. The matrix I − k⊗k
|k|2 is clearly the orthogonal projection onto the

perpendicular complement of k, and hence multiplication with this matrix ensures that the right-hand

side of (1.3.3) remains divergence-free.

We can define an associated operator P : L2(Td;Rd)→ L2(Td;Rd), v 7→ Pv via the Fourier transform

as follows:

P

∑
k∈Zd

v̂ke
ik·x

 :=
∑

k∈Zd\{0}

(
I − k ⊗ k

|k|2

)
v̂ke

ik·x. (1.3.4)

It is not hard to see that P is an L2-orthogonal projection onto divergence-free vector fields. We will

refer to the projection P defined by (1.3.4) as the Leray projection. Utilizing P, we can now eliminate

the pressure from the incompressible Euler equations, and formally write (1.1.2) as an equation on the

space of divergence-free vector fields: {
∂tu+ Pdiv(u⊗ u) = 0,

u(t = 0) = u.
(1.3.5)

This evolution equation is formally equivalent to (1.3.3), and furnishes one of the most succinct formu-

lations of the incompressible Euler equations.

1.3.2 Well-posedness theory and the vorticity equation

Given a PDE such as the incompressible Euler equations (1.1.1), it is natural to ask whether there is

a function space X ⊂ L2(Td;Rd), on which the initial value problem is well-posed; i.e. there exists



8 CHAPTER 1. INTRODUCTION

a solution operator St : X → X (t ≥ 0), such that for any u ∈ X, the time-dependent vector field

u(t) := St(u) is the unique solution of equation (1.1.1). Natural candidate spaces include the whole

space of L2-bounded, divergence-free vector fields, or Sobolev spaces Hs = Hs(Td;Rd), s ≥ 0, consisting

of vector fields u, whose Fourier coefficients ûk satisfy (cp. Appendix A)∑
k∈Zd

(1 + |k|)2s|ûk|2 <∞.

Global well-posedness results have so far only been achieved in the two-dimensional case, where it can

be shown that solutions to smooth initial data (e.g. u ∈ Hs, for s > 3) remain smooth also at later

times, and are unique [MB01]. In the three-dimensional case, no global in time existence and uniqueness

results are available. Short-time existence and uniqueness results for solutions starting from sufficiently

regular initial data are classical [MB01, Thm 3.4]:

Theorem 1.3.1 (Short-time existence and uniqueness). Let u ∈ Hs be initial data for the incompressible

Euler equations on Td. Assume that s > d
2 + 2. Then there exists a time T > 0, depending on ‖u‖Hs ,

such that there exists a unique solution u ∈ C([0, T ];Hs) of the incompressible Euler equations (1.1.1).

The short-time existence and uniqueness Theorem 1.3.1 implies in particular, that for any initial data

u, there exists a maximal time T ∗ = T ∗(u) > 0, such that there exists a solution u ∈ C([0, T ∗);Hs) of

the incompressible Euler equations with initial data u. For d ≥ 3, it is not known whether one always

has T ∗ = ∞, or whether the Hs-norm of u might blow-up for certain initial data u, at a finite time

T ∗ <∞.

A crucial tool in the study of the regularity of solutions of the incompressible Euler equations is the

vorticity equation, describing the evolution of the vorticity curl(u). The vorticity equation is obtained

by taking the curl of (1.1.1). In the three-dimensional case, the vorticity is a vector field ω = curl(u),

and the vorticity equation is given by

∂tω + u · ∇ω = ω · ∇u. (1.3.6)

In the two-dimensional case, the vorticity is a scalar quantity ω = curl(u) = ∂x1
u2 − ∂x2

u1, and the

vorticity equation reduces to the following transport equation

∂tω + u · ∇ω = 0. (1.3.7)

Due to the divergence-free constraint div(u) = 0, this equation can also be written in the formally

equivalent form ∂tω + div(uω) = 0. The importance of the vorticity equation is highlighted by the

following well-known blow-up criterion, due to Beale, Kato and Majda [BKM84]:

Theorem 1.3.2 (Beale-Kato-Majda criterion). Let s > d
2 + 1 be an integer, and let u ∈ C([0, T ∗);Hs)

be a solution of the incompressible Euler equations (1.3.8). If u cannot be extended to a solution on the

closed interval [0, T ∗], then we must have

ˆ T∗

0

‖ω(t)‖L∞x dt =∞.

A consequence of Theorem 1.3.2 and the short-time existence and uniqueness Theorem 1.3.1 is that

if
´ T∗

0
‖ω‖L∞ dt <∞, then the solution u can be extended to a strictly larger time interval [0, T ∗ + δ),

for δ > 0.
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Remark 1.3.3. In the two-dimensional case, the transport equation (1.3.7) implies an a priori bound

‖ω(t)‖L∞ ≤ ‖ω‖L∞ , where ω := curl(u), at least for solutions constructed by a suitable regularization.

It therefore follows from Theorem 1.3.2 that for any integer s > d/2 + 2 and initial data u ∈ Hs,

there exists a unique global-in-time solution of the incompressible Euler equations in u ∈ C([0,∞);Hs).

Corresponding a priori estimates for the three-dimensional case have so far not been obtained, because

of the presence of the additional (vortex stretching) term on the right-hand side of (1.3.6).

In the three-dimensional case, it is a long-standing open problem whether solutions starting from

smooth initial data are globally well-defined (T ∗ =∞), or whether there exist smooth initial data u for

which the corresponding (strong) solution is only defined on a finite maximal time-interval (T ∗ < ∞).

A careful recent numerical study [LH19] suggests that finite-time break-down of smoothness may be

possible. Even though global-in-time existence and uniqueness can be shown for solutions with sufficiently

regular initial data in the two-dimensional case, many flows of interest, such as vortex sheets, do not

possess the regularity required by the above well-posedness results. Hence, there is considerable interest

in going beyond the well-posedness theory of Theorem 1.3.1 for both the two- and three-dimensional

incompressible Euler equations.

1.3.3 Weak solutions and measure-valued solutions

As pointed out in the previous section, the question of global (in time) well-posedness of classical solutions

of the incompressible Euler equations (1.1.1) in three space dimensions, even with sufficiently smooth

initial data u, is not yet resolved. Moreover in two space dimensions, where one can prove well-posedness

of classical solutions as long as the initial data is sufficiently regular, many interesting initial data of

interest do not possess this regularity. Hence, it is imperative to consider weak solutions of (1.1.1),

defined as follows:

Definition 1.3.4. A vector field u ∈ L∞([0, T );L2(Td;Rd)) is a weak solution of the incompressible

Euler equations with initial data u ∈ L2(Td;Rd), if

ˆ T

0

ˆ
Td
u · ∂tϕ+ (u⊗ u) : ∇ϕ dx dt = −

ˆ
Td
u ·ϕ( · , 0) dx, (1.3.8)

for all test vector fields, ϕ(x, t) ∈ C∞c (Td × [0, T );Rd) satisfying div(ϕ) = 0, and

ˆ
Td
u · ∇ψ dx = 0, (1.3.9)

for all test functions ψ ∈ C∞(Td) and for a.e. t ∈ [0, T ].

It is customary to require additional admissibility criteria in order to recover uniqueness of weak

solutions. A natural criterion in this context is given by the so-called dissipative or admissible weak

solutions: a weak solution u is (energy) admissible, if

‖u(t)‖L2
x
≤ ‖u‖L2

x
, (1.3.10)

for a.e. t ∈ [0, T ]. In the general case, no coercive a priori estimates for solutions of the incompress-

ible Euler equations are known, beyond the physically natural energy admissibility constraint (1.3.10).

Although the global existence of admissible weak solutions in three space dimensions is open, one can

prove global existence of admissible weak solutions in two dimensions with very general initial data.

A general strategy for constructing weak solutions of the incompressible Euler equations (1.3.8) is to

start from an a priori well-posed approximation of the incompressible Euler equations, e.g. obtained via
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regularization or a numerical discretization depending on a parameter ∆ > 0. This yields a sequence of

approximate solutions u∆ index by ∆→ 0. The aim is then to prove the existence of a (suitable) limit u =

lim∆→0 u
∆, and to show that this limit u is a weak solution of the incompressible Euler equations [MB01].

A careful construction of the approximation often allows some uniform a priori control on quantities of

interest for the sequence u∆, such as a uniform bound on the L2-norm, lim sup∆→0 ‖u∆‖L2 ≤ C < ∞.

A suitable abstract notion of such approximate solution sequences has been introduced by Diperna and

Majda in [DM87b]:

Definition 1.3.5 (Approximate solution sequence). Let ∆↘ 0 be a sequence. Let {u∆} be a sequence

in L∞([0, T ];L2(Td;Rd)). The sequence {u∆} is an approximate solution sequence for the incom-

pressible Euler equations, if the following properties are satisfied:

1. The sequence {u∆} is uniformly bounded in L∞([0, T ];L2(Td;Rd)),

2. The sequence {u∆} is uniformly bounded in Lip([0, T );H−L(Td;Rd)), for some L > 1.

3. For any test vector field ϕ ∈ C∞c (Td × [0, T );Rd) with div(ϕ) = 0, we have:

lim
∆↘0

ˆ T

0

ˆ
Td
ϕt · u∆ + (∇ϕ) : (u∆ ⊗ u∆) dx dt+

ˆ
Td
ϕ( · , 0) · u∆( · , 0) dx = 0.

4. div(u∆) = 0 in D′(Td × [0, T ]), i.e. in the sense of distributions.

While Definition 1.3.5 encompasses the available a priori estimates on approximate solution sequences

obtained in the zero-viscosity limit of the Navier-Stokes equations, or from many numerical schemes, these

properties are insufficient in general to guarantee the (weak) convergence to a weak solution [DM87b].

The uniform L2-bound for example guarantees the weak convergence (of a subsequence) u∆ L2

⇀ u in L2,

but does not allow to pass to the limit in the quadratic term u∆ ⊗ u∆ D
′

⇀ u⊗ u of the Euler equations,

even in a distributional sense. Instead, the limiting behaviour under such weak assumptions has to be

encompassed by a Young measure, leading to the concept of a measure-valued solution [DiP85, DM87b].

We follow [AB97, BDLS11], and introduce the following definition of generalized Young measures.

Definition 1.3.6 (Generalized Young measure). We denote by P(X) the space of Borel probability

measures on a topological space X, and P(X) is given the topology of weak convergence of measures

(cp. Appendix B). A generalized Young measure is a triple (νx,t, λ, ν
∞
x,t) consisting of the oscillation

measure νx,t, the concentration measure λ = λt(dx)⊗ dt, and the concentration-angle measure ν∞x,t, such

that

• λ = λt(dx)⊗dt is a Radon measure on Td× [0, T ] that is singular with respect to Lebesgue measure

dx dt, and [0, T ] 7→ P(Td), t 7→ λt is Lebesgue measurable,

• the mapping Td × [0, T ]→ P(Rd), (x, t) 7→ νx,t is Lebesgue measurable,

• the mapping Td × [0, T ]→ P(Sd−1), (x, t) 7→ ν∞x,t is λ-measurable.

We let T denote the following space of test functions:

T =

{
g ∈ C(Rd)

∣∣∣∣ g∞(θ) := lim
s→∞

g(sθ)

s2
exists ∀θ ∈ Sd−1 on the unit sphere

}
.

We will say that a sequence of functions uk ∈ L2 converges in the sense of Young measures to

(ν, λ, ν∞), denoted uk
Y
⇀ (ν, λ, ν∞), provided that

g(uk) dx dt
∗
⇀ 〈νx,t, g〉 dx dt+ 〈ν∞x,t, g∞〉λt(dx) dt,
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converges in the sense of measures, for every g ∈ T , where

〈νx,t, g〉 :=

ˆ
Rd
g(ξ) νx,t(dξ), 〈ν∞x,t, g∞〉 :=

ˆ
Sd−1

g∞(θ) ν∞x,t(dθ).

We also define a Young measure as a generalized Young measure without concentration, i.e. for which

λ ≡ 0.

Remark 1.3.7. We note that the quadratic term in the incompressible Euler equations (1.1.2), g(ξ) =

ξ ⊗ ξ, belongs to the space of test functions T of Definition 1.3.6, with g∞(θ) = θ ⊗ θ.

Based on these Young measures, we extend the weak solutions of the incompressible Euler equations

given in Definition 1.3.4, to the notion of a measure-valued solution, following [DM87b]:

Definition 1.3.8 (Measure-valued solution). A generalized Young measure (ν, λ, ν∞) is a measure-

valued solution of the incompressible Euler equations (1.1.1) with initial data u, provided that it satisfies

ˆ T

0

ˆ
Td
〈νx,t, ξ〉 · ∂tϕ+〈νx,t, ξ ⊗ ξ〉 : ∇ϕ dx dt

+

ˆ T

0

ˆ
Td
〈ν∞x,t,θ ⊗ θ〉 : ∇ϕλt(dx) dt = −

ˆ
Td
u ·ϕ( · , 0) dx,

(1.3.11)

for all test vector fields, ϕ(x, t) ∈ C∞c (Td × [0, T );Rd) such that div(ϕ) = 0, and
ˆ
Td
〈νx,t, ξ〉 · ∇ψ dx = 0, (1.3.12)

for all test functions ψ ∈ C∞(Td) and for a.e. t ∈ [0, T ]. A measure-valued solution (ν, λ, ν∞) is said to

be (energy) admissible, if

1

2

ˆ
Td
〈νx,t, |ξ|2〉 dx+

1

2
λt(Td) ≤

1

2

ˆ
Td
|u|2 dx for a.e. t ∈ [0, T ].

Remark 1.3.9. We note that if (ν, λ, ν∞) is a measure-valued solution, such that λ ≡ 0, and νx,t =

δu(x,t) is a Dirac measure, then u(x, t) is a weak solution of the incompressible Euler equations. Hence,

measure-valued solutions extend the notion of weak solutions.

We can now state the following convergence theorem to measure-valued solutions, due to Diperna

and Majda (cp. [DM87b, Prop. 5.1]):

Theorem 1.3.10. If {u∆}, ∆ → 0 is an approximate solution sequence of the incompressible Euler

equations, then there exists a subsequence ∆k → 0, and a generalized Young measure (ν, λ, ν∞), such

that u∆k converges to (ν, λ, ν∞) in the sense of Young measures. Any Young measure limit (ν, λ, ν∞) that

can be obtained from the sequence u∆ is a measure-valued solution of the incompressible Euler equations.

One consequence of Theorem 1.3.10 is that for any L2 initial data u, there exists a (global-in-time)

measure-valued solution (ν, λ, ν∞) of the Euler equations with initial data u.

Clearly, admissible measure-valued solutions are a very weak solution concept, with a lot of scope for

non-uniqueness. One may thus wonder whether this notion is in fact too weak to be of any practical sig-

nificance. We end our summary of weak and measure-valued solutions with the following two remarkable

results: The first results has been obtained in [BDLS11, Thm. 2], and shows that – in the presence of a

classical solution u – any admissible measure-valued solution collapses to a Dirac delta concentrated on

u.
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Theorem 1.3.11 (Weak-strong uniqueness). Assume that u ∈ C([0, T ];L2(Td;Rd)) is a solution of the

incompressible Euler equations with
´ T

0
‖∇u‖L∞ dt < ∞, and let (ν, λ, ν∞) be any admissible measure-

valued solution with the same initial data. Then λ ≡ 0, and νx,t = δu(x,t) for a.e. (x, t) ∈ Td × [0, T ].

Finally, we summarize the following result from [SW12], which shows that, in a precise sense, ad-

missible weak solutions actually have the same scope for non-uniqueness as admissible measure-valued

solutions (MVS).

Theorem 1.3.12 (MVS are generated by weak solutions). A Young measure (ν, λ, ν∞) is an admissible

measure-valued solution of the Euler equations with initial data u if, and only if, there exists a sequence

un of admissible weak solutions to the Euler equations, such that un(t = 0)→ u strongly in L2 and un
converges to (ν, λ, ν∞) in the sense of Young measures.

1.3.4 Rough solutions in two dimensions

As pointed out in the last section, the two-dimensional Euler equations benefit from additional a priori

control on the solutions due to the fact that the (scalar) vorticity ω = ∂x1u2 − ∂x2u1 (formally) satisfies

a transport equation ∂tω + u · ∇ω = 0. This statement can be made precise for the two-dimensional

incompressible Navier-Stokes equations (1.2.3), allowing the construction of solutions of the Euler equa-

tions with similar bounds by passing to the zero-viscosity limit uν → u, ν → 0. For the incompressible

Navier-Stokes equations, we have the following well-posedness result (cp. [Lio96, Thm. 3.1]):

Theorem 1.3.13 (Navier-Stokes well-posedness, d = 2). For any divergence-free u ∈ L2(T2;R2), there

exists a unique weak solution uν ∈ L2([0, T ];H1) ∩ C([0, T ];L2) of the incompressible Navier-Stokes

equations (1.2.3) with viscosity ν > 0 on T2. Furthermore, the solution uν(t) is smooth for any t > 0,

and satisfies the energy identity

1

2
‖uν(t)‖2L2

x
+ ν

ˆ t

0

‖∇uν(t)‖2L2
x
ds =

1

2
‖u‖L2

x
. (1.3.13)

Remark 1.3.14. We recall that, as shown by a straight-forward calculation,

‖∇uν‖L2
x

= ‖ων‖L2
x
, (1.3.14)

holds for any uν ∈ H1
x, such that div(uν) = 0, curl(uν) = ων . One may therefore write (1.3.13) in the

equivalent form

1

2
‖uν(t)‖2L2

x
+ ν

ˆ t

0

‖ων(s)‖2L2
x
ds =

1

2
‖u‖2L2

x
. (1.3.15)

In particular, the smoothness guaranteed by Theorem 1.3.13 allows us to rigorously take the curl of

the Navier-Stokes equations at times t > 0. In fact, we have the following (folklore) results:

Theorem 1.3.15 (Navier-Stokes vorticity, d = 2). Let uν be a solution of the Navier-Stokes equations

(1.2.3) with initial data u ∈ L2(T2;R2). The vorticity ων = curl(uν) is a smooth solution of

∂tω
ν + uν · ∇ων = ν∆ων , (1.3.16)

for any t > 0. The enstrophy E = 1
2‖ω

ν‖2L2
x

satisfies

d

dt

1

2
‖ων‖2L2

x
= −ν‖∇ων‖2L2

x
. (1.3.17)
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Furthermore, the vorticity satisfies the following a priori estimates in terms of the initial vorticity ω =

curl(u):

‖ων(t)‖Lpx ≤ ‖ω‖Lpx , ∀ p ∈ [1,∞], t ≥ 0, (1.3.18)

‖ων(t)‖L2
x
≤
‖u‖L2

x√
νt

, ∀ t > 0. (1.3.19)

Sketch of proof. We note that due to the smoothness of solutions at t > 0 (cp. Theorem 1.3.13), equation

(1.3.16) is immediate from taking the curl of the Navier-Stokes equations (1.2.3), which is rigorously

justified in this case. The enstrophy equation (1.3.17) follows from (1.3.16) upon multiplication by

ων and spatial integration. The a priori Lp estimate on ων can be derived similarly by multiplying

with ων |ων |p−2 and integrating over T2. Finally, the vorticity bound (1.3.19) can be derived from the

enstrophy equation, by observing that after an integration by parts we have

ˆ
T2

|ων |2 dx = −
ˆ
T2

uν · ∇⊥ων dx ≤
(ˆ

T2

|uν |2 dx
)1/2(ˆ

T2

|∇ων |2 dx
)1/2

,

where ∇⊥ = (−∂x2 , ∂x1) is a “rotated” gradient; using also the energy identity (1.3.13), this implies that

‖ων‖L2
x
≤ ‖u‖1/2L2

x
‖∇ων‖1/2L2

x
, or equivalently, −ν‖∇ων‖2L2

x
≤ −ν‖ων‖4L2

x
/‖u‖2L2

x
(assuming wlog u 6= 0).

Substitution in the enstrophy equation (1.3.17) then shows that yν(t) = ‖ων(t)‖2L2
x

satisfies the differential

inequality dyν
dt ≤ −νy

2
ν/‖u‖L2

x
. Integrating this differential inequality, it is straight-forward to show that

yν(t) ≤ ‖u‖2L2
x
/(νt), for all t > 0, yielding (1.3.19).

The preceding theorem can be used to show the existence of solutions of the incompressible Euler

equations for initial data with unbounded vorticity ω ∈ Lp, using the a priori Lp-estimate (1.3.18) on

the approximate solution sequence uν obtained by considering the zero-viscosity limit of the Navier-

Stokes equations. Such an existence result for vorticity ω ∈ Lp , 1 < p < ∞ has first been obtained

by Diperna and Majda [DM87a], utilizing the fact that a sequence uν with uniformly bounded vorticity

ων ∈ Lp is strongly compact in L2, by Sobolev embedding. The existence of a weak solution of the Euler

equations for initial data u ∈ L2 with ω ∈ Lp can thus be established by passing to the (subsequential)

limit uν → u, as ν → 0. Further extensions of the result of Diperna and Majda can be obtained by

similar compactness methods for initial vorticity ω belonging to Orlicz spaces such as ω ∈ L log(L)α,

α ≥ 1/2, which are compactly embedded in H−1 [Mor92, Cha93, Cha94, LFNLT00]. These methods

break down for ω ∈ L1, as there is no compact embedding L1 6↪→ H−1 in this case. We also note that

in the special case where the initial vorticity is bounded, ω ∈ L∞, existence had already been shown by

Yudovich [Yud63], who not only proved the existence but also the uniqueness of solutions in this case.

The uniqueness result of [Yud63] has later been extended to vorticities belonging to slightly more general

spaces in [Vis98, Vis99, Yud95]. The uniqueness of the solutions constructed by Diperna and Majda in

[DM87a], with initial vorticity in Lp spaces for p <∞, however, remains an open problem.

In his celebrated work [Del91], Delort has shown the existence of weak solutions to the Euler equations

with even more general initial vorticity ω = ω′ + ω′′, where ω′ is a finite, non-negative Radon measure

belonging to H−1, and ω′′ ∈ L1∩H−1. We will subsequently refer to this set of initial data as the Delort

class. These initial data include the interesting case of vortex sheets, i.e. vorticity concentrated on curves

in the two-dimensional spatial domain [MB01]. In [Del91] a rigorous proof of this existence result has

been given for ω′′ ∈ Lp, p > 1, with a remark on the possible extension to p = 1. A detailed proof of the

extension to ω′′ ∈ L1 has subsequently been provided by Vecchi and Wu [VW93]. We recall from the last

section, that approximate solution sequences, as e.g. obtained by considering the zero-viscosity limit,

converge (subsequentially) uν
Y
⇀ (ν, λ, ν∞) to a measure-valued solution in the sense of Young measures
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(cp. Theorem 1.3.10). If the the initial vorticity is a bounded measure, then it can be shown that there

are no oscillation effects in this limit, i.e. the oscillation measure ν = δu is a Dirac measure. Delort’s

main observation is a compensated compactness result, which shows that for initial data in the Delort

class, the structure of the concentration measure satisfies additional constraints, which ensure that

ˆ T

0

ˆ
T2

〈ν∞x,t,θ ⊗ θ〉 : ∇ϕλt(dx) dt = 0,

for any solenoidal test function ϕ. Delort’s result should thus be viewed a statement about the fine

properties of the concentration-angle measure ν∞; in particular, no claim is made that λ ≡ 0, i.e.

concentration effects are not ruled out, and hence there may be lack of strong L2-convergence uν 6→ u

in the limit ν → 0. However, possible concentration effects in this limit are not seen upon integration

against a test function in the definition of measure-valued solutions (1.3.11), and hence the barycenter

u = 〈δu, ξ〉 = 〈ν, ξ〉 of the (Dirac) oscillation measure defines a weak solution.

Apart from a generalization relying on special symmetry properties [LFLX01], the result of Delort

[Del91] remains the most general existence result for the incompressible Euler equations in two dimen-

sions. The question of existence of solutions beyond this Delort class, for instance, when ω is an arbitrary

bounded measure in H−1 with varying sign, remains open. The uniqueness of rough solutions in the

Delort class also remains unknown.

1.3.5 Turbulence and anomalous energy dissipation

The incompressible Euler equations (1.1.1) can formally be obtained as the zero-viscosity limit ν → 0 of

the incompressible Navier-Stokes equations (1.2.3). These equations have received considerable attention

in particular due to their connection with turbulence. Turbulence is conventionally described as an energy

cascade process, where energy cascades from large scales of the flow to ever smaller scales [Fri95]. For

a given viscosity ν > 0, the incompressible Navier-Stokes equations formally satisfy an energy balance

equation of the form
d

dt

1

2

ˆ
D

|uν |2 dx = −ν
ˆ
D

|∇uν |2 dx.

Here, the left-hand side describes the time evolution of the kinetic energy E(t) = 1
2‖u(t)‖2L2

x
, while the

right-hand side term describes the energy dissipation (at small scales) by viscosity. Formally, taking the

limit ν → 0 in these equations suggests that solutions of the incompressible Euler equations should be

energy conservative. This is certainly true for sufficiently smooth solutions u of (1.1.1); e.g. if uν → u

and ‖∇uν‖L2
x

remains uniformly bounded as ν → 0, then the dissipation term will tend to zero. However,

in general, ‖∇uν‖L2
x

may diverge as ν → 0, so it is not clear a priori, whether ν
´ t

0
‖∇uν‖2L2

x
dt → 0

in the limit ν → 0. In three dimensions, it is one of the fundamental postulates of Kolmogorov’s

1941 physical theory of fully developed, homogeneous turbulence that 〈ν‖∇uν‖2L2
x
〉 → ε0 > 0, as ν →

0 [Kol91, KLH+91]. Here, 〈. . .〉 refers to a suitable averaging over an ensemble of solutions. Based

on a series of physical arguments [Fri95], the following “2/3-law” is then derived for fully developed,

homogeneous turbulence:〈
|u(x+ h)− u(x)|2

〉
. |h|2/3, for length scales |h| � η,

where η ∼ ν3/4 is the Kolmogorov dissipation scale, beyond which viscosity dominates. This indicates

that turbulent, dissipative solutions of the Euler equations, which are obtained in the zero-viscosity limit,

should (on average) obey a Hölder-type regularity condition with exponent α = 1/3.
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The question of whether or not such anomalous energy dissipation is present in turbulent flows

described by the Euler equations has also been posed by Onsager [Ons49], see also [ES06] for a modern

account of this topic. In [Ons49], it was first argued that Hölder continuous solutions of the incompressible

Euler equations u ∈ Cα should conserve energy provided that α > 1/3, whereas solutions at lower

regularity α < 1/3 might exhibit anomalous dissipation of energy, even in the zero viscosity limit ν → 0.

Onsager did not provide a rigorous proof of this claim, and his observation has subsequently been

formulated as a mathematical conjecture by Eyink [Eyi94], who referred to it as Onsager’s conjecture.

Eyink also gave the first mathematically rigorous proof of energy conservation assuming a somewhat

stronger regularity condition on u (which in turn implies u ∈ Cα, for some α > 1/3). For this positive

direction of Onsager’s conjecture (energy conservation for fractional regularity α > 1/3), a very short

and elegant proof has been found by Constantin, Titi, E [CET94], who prove energy conservation if

u ∈ L3([0, T ];B
1/3+ε,∞
3 ), ε > 0, where Bα,qp denotes the Besov spaces.

The negative direction of Onsager’s conjecture is the statement that for any ε > 0, there exists an

energy dissipative solution u ∈ C1/3−ε. A proof of this assertion has only recently been achieved by

Isett [Ise18] and Buckmaster, DeLellis, Szekelyhidi and Vicol [BdLSV19], based on a series of technical

improvements of the celebrated break-through work of DeLellis and Szekelyhidi [DLS09]. In [DLS09],

the authors formulated a concept of subsolutions for the incompressible Euler equations; they show that

convex integration techniques can be used in this framework to construct solutions, in analogy with

the geometric convex integration developed by Nash [Nas54] in the context of isometric embeddings of

manifolds. The technique introduced by these authors in fact does not only exhibit single instances of

Hölder continuous energy dissipative flows, but shows that there is a dense set in L2
x of initial data for the

incompressible Euler equations for which there exist infinitely many weak solutions of the incompressible

Euler equations, infinitely of which conserve energy and infinitely of which dissipate energy at any given

(smooth) energy dissipation rate.

1.3.6 Anomalous energy dissipation in two dimensions

While the positive direction of Onsager’s conjecture is independent of the spatial dimension d, the negative

direction is so far restricted to d ≥ 3. Since two-dimensional flows are more constrained than higher-

dimensional ones, it is not clear whether the Onsager critical exponent α = 1/3 can also be achieved

for d = 2. In general, the convex integration technique shows the existence (and density) of wild initial

data for which there exist infinitely many dissipative solutions of the incompressible Euler equations.

It does not, however, give any explicit examples of such wild initial data. In this direction, Szekelyhidi

[Szé11] has been able to show that the flat vortex sheet (with distinguished sign) is an explicit example

of initial data for which the convex integration method can be applied to construct infinitely many weak

solutions. We recall that vortex sheet initial data are initial data u ∈ L2
x for which the distributional

vorticity ω = curl(u) ∈ M is a bounded measure; in the case of the flat vortex sheet, ω is concentrated

uniformly on a straight line.

For vortex sheet initial data in two dimensions, it can be shown by a priori estimates that if a solution

is obtained in the zero-viscosity limit ν → 0, then its vorticity ω(t) ∈ M is a bounded measure, and in

fact ‖ω(t)‖M ≤ ‖ω‖M for t ≥ 0, where ‖ · ‖M denotes the total variation norm. In contrast, for weak

solutions constructed via convex integration methods, there is no a priori bound on the vorticity, and it

is not a bounded measure in general. Thus, it remains unclear what the physical relevance of these wild

solutions is. It might also hint at the important role played by additional constraints on weak solutions

of the incompressible Euler equations, which are imposed by considering physically realizable solutions,

obtained in the zero-viscosity limit.

In two dimensions, it can be shown that Onsager-critical Hölder regularity of u is achieved for ω ∈
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L3/2+ε, ε > 0 [CFLS16]. This poses the question whether energy dissipative weak solutions of the

incompressible Euler equations can be constructed with vorticity bounded in Lp, p < 3/2, and if so,

whether such energy dissipative solutions can be obtained in the physically relevant zero-viscosity limit

ν → 0. Recently, the group of authors [CFLS16] have been able to give a negative answer to this last

question: They prove that if a weak solution of the incompressible Euler equations u with initial data

having vorticity ω ∈ Lp, p > 1, is obtained as the limit uν → u of solutions uν of the ν-Navier-Stokes

equations, then u is energy conservative. These solutions do not belong to any Holder space Cα, α > 1/3,

for p < 3/2. Thus – at least in two dimensions – Onsager criticality is not the last word on the question

of anomalous dissipation. We will come back to this question of anomalous energy dissipation in chapter

4, where we provide a characterization of physically realizable energy conservative solutions of the Euler

equations in the deterministic case, and study the question of energy conservation also at the level of

statistical solutions. Our results imply that an arbitrary uniform Hölder bound (α > 0) on the sequence

uν suffices to ensure energy conservation in the limit, thus going far beyond the Onsager criticality in

this case.

1.4 Numerical discretization: Spectral methods

A wide variety of numerical methods have been developed to robustly approximate the incompressible

Euler and the closely related incompressible Navier-Stokes equations. These include spectral methods

[DGO84], finite element methods [SS17], finite difference-projection methods [Cho68, JBBG89] and vor-

tex methods [Kra86b, Kra86a, MB01].

Although finite difference and finite element methods are very useful when discretizing the Euler

equations in domains with complex geometry, spectral methods, based on projecting (1.1.1) into a finite

number of Fourier modes are the method of choice for approximating (1.1.1) with periodic boundary

conditions. These methods are very efficient to implement (aided by the fast Fourier transform (FFT)),

fast to run and have spectral, i.e. superpolynomial convergence rates for smooth solutions of (1.1.1)

[DGO84]. Consequently, spectral methods are widely used in the simulation of homogeneous and isotropic

turbulence [Gho96, KK00]. In the present section we will review spectral methods, discuss the concept

of spectrally vanishing viscosity, first introduced by Tadmor in [Tad89], and discuss elements of their

implementation in the SPHINX code, on which the numerical experiments presented in this thesis are

based. For further details on this code, we refer to the thesis [Leo18].

1.4.1 Fourier spectral methods: the SV scheme

To employ Fourier spectral methods for the numerical discretization of the incompressible Euler equa-

tions, we consider, for N ∈ N, the finite-dimensional subspace L2
N ⊂ L2, spanned by real-valued vector

fields u∆ ∈ L2(Td;Rd), of the form

u∆(x) =
∑
|k|∞≤N

ûke
ik·x,

(
ûk ∈ Cd

)
, (1.4.1)

where we denote |k|∞:= maxi=1,...,d |ki|. Throughout this thesis, we will consistently denote by

∆ ≡ 1/N (1.4.2)

the “grid size” parameter, defined as the reciprocal of N . Clearly, ∆ is a measure of the numerical

resolution of the scheme, with ∆→ 0 the limit of infinite resolution. The requirement that u∆ in (1.4.1)

be real-valued imposes the constraint û−k = conj (ûk) on the coefficients ûk, where conj( · ) denotes the

complex conjugate.
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We will denote by PN : L2 → L2
N the orthogonal projection onto this subspace. In analogy with the

Leray projection P : L2(Td;Rd)→ L2(Td;Rd) onto divergence-free vector fields introduced in (1.3.4), we

introduce the truncated Leray projection PN : L2(Td;Rd) → L2
N (Td;Rd) by v 7→ PNv := PNPv, which

is equivalently defined by

PN

∑
k∈Zd

v̂ke
ik·x

 :=
∑

0<|k|∞≤N

(
I − k ⊗ k

|k|2

)
v̂ke

ik·x, (1.4.3)

for all v.

Spectral hyper-viscosity scheme (SV scheme)

We consider the following spectral viscosity approximation of the incompressible Euler equations, which

follows an idea first proposed by Tadmor for the numerical approximation of scalar conservation laws

[Tad89, Tad04]: {
∂tu

∆ + PN
(
u∆ · ∇u∆

)
= −εN |∇|2s(QN ∗ u∆),

div(u∆) = 0, u∆|t=0 = PNu.
(1.4.4)

Here PN is the spatial truncated Leray projection operator (1.4.3) and QN is a Fourier multiplier of the

form

QN (x) =
∑

mN<|k|≤N

Q̂ke
ik·x, (1.4.5)

and we assume 0 ≤ Q̂k ≤ 1, and Q̂k ≡ 0 for |k| ≤ mN , so that dissipation is only applied on the upper

part of the spectrum, i.e. for |k| > mN , thus preserving the formal spectral accuracy of the method,

while at the same time enabling us to enforce a sufficient amount of energy dissipation on the small scale

Fourier modes which is needed to stabilize the method. The additional hyperviscosity parameter s ≥ 1

in (1.4.4) can be chosen larger to enforce more numerical dissipation on the high Fourier modes, thus

allowing a larger part of the Fourier spectrum to remain free of numerical diffusion, while still ensuring

stability of the resulting numerical scheme. The sequence εN > 0 allow us to control the amount of

dissipation applied. A minimal requirement is that εN → 0, as N → ∞, to ensure consistency with the

limiting Euler equations (1.1.2).

Following the derivation of the Fourier transformed Euler equations (1.3.3) on page 7, we also note that

equation (1.4.4) is equivalent to the following set of ODEs for the Fourier coefficients ûk(t), 0 < |k|∞ ≤ N :

dûk
dt

=

(
I − k ⊗ k

|k|2

)
·

 ∑
|`|∞,|k−`|∞≤N

(−ik · û`) ûk−`

− εN |k|2sQ̂kûk. (1.4.6)

Hence (1.4.4) uniquely determines the numerical evolution of the Fourier coefficients, and thus defines

a semi-discretization of the incompressible Euler equations (1.1.1), through the system of ODEs (1.4.6).

We obtain a fully discretized scheme by combining (1.4.6) with a time-stepping scheme of our choice.

1.4.2 Numerical implementation and 2/3-dealiasing

As already mentioned at the beginning of this section, the numerical experiments presented in this thesis

have been obtained with the SPHINX code, written by F. Leonardi [Leo18]. The SPHINX code solves
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the ODE system (1.4.6), employing the strongly stability preserving Runge-Kutta (SSP-RK) scheme

[GST01] of order 3 with adaptive time-stepping, and allows for parallel computations based on MPI and

OpenMP, and the use of GPUs based on CUDA kernels.

A direct implementation of the ODE system in the form (1.4.6) would require O(N2d) multiplication

operations, and hence imply a quadratic computational cost in the number of degrees of freedom (O(Nd))

of the numerical scheme. Such a quadratic scaling would be prohibitive for the large-scale simulations

required for the numerical experiments of the following chapters. Therefore, the SPHINX code relies on

the so-called 2/3-dealiasing rule to reduce the computational cost to O(Nd log(N)). The 2/3-dealiasing

rule allows for the efficient computation of the non-linear term

̂[u∆ · ∇u∆]k =
∑
`

(−ik · û`)ûk−`, (1.4.7)

based on the availability of the fast Fourier-transform (FFT) algorithm [CT65], which computes the

d-dimensional Fourier transform (and its inverse) in O(Nd log(N)) operations. More precisely, given the

function values u∆(xj) on a equispaced grid {xj}j∈JN ⊂ Td with grid spacing ∆x = 2π/(2N + 1) in

each direction (cf. Appendix A), the FFT computes the discrete Fourier transform

ûk =
1

(2N + 1)d

∑
j∈JN

u∆(xj)e
−ik·xj ,

for all k ∈ Zd, |k|∞ ≤ N , and its inverse

u∆(xj) =
∑
|k|∞≤N

ûke
ik·xj .

To reduce the computation complexity of the evaluation of (1.4.7), the idea is to replace the direct

evaluation in Fourier space of the quadratic term (1.4.7), by the following composition

ûk 7→
[

ûk
ik ⊗ ûk

]
IFFT7→

[
u∆(xj)

∇u∆(xj)

]
7→ u∆(xj) · ∇u∆(xj)

FFT7→ ̂[u∆ · ∇u∆]k,

where the computational complexity of these mappings isO(Nd), O(Nd log(N)), O(Nd) andO(Nd log(N)),

respectively; hence the total computation only takes O(Nd log(N)) operations, substantially outperform-

ing the naive O(N2d)-algorithm for large N . The main difficulty is that the Fourier expansion of the

non-linear term u∆ · ∇u∆ is

u∆ · ∇u∆ =
∑

|k|∞,|`|∞≤N

(i` · ûk)û`e
i(k+`)·x,

and hence includes wavenumbers for which |k + `|∞ > N . Thus, when the Fourier coefficients of
̂[u∆ · ∇u∆]k, |k|∞ ≤ N , are computed based on a discrete Fourier transform on the grid points xj , this

inevitably leads to “aliasing errors”, as explained in detail in [Leo18, Chapter 6.2]. The 2/3-dealiasing

rule states that such aliasing errors can be avoided by computing the discrete Fourier transform on a

larger grid with a finer grid spacing ∆̃x ∼ 2
3∆x. In practice, this can be accomplished in a numerical

implementation by zero-padding the Fourier spectrum of u∆, i.e. writing

u∆(x) =
∑

|k|∞≤N ′
ûke

ik·x,

where N ′ > 3
2N , and setting ûk := 0, for |k|∞ > N . For further details, and the mathematical

justification of the 2/3 dealiasing technique, we refer to [Leo18, Chapter 6.2]. This technique is used in

the SPHINX code to efficiently compute the non-linear term in the SV scheme.
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1.4.3 Stability properties of the SV scheme

Multiplying the evolution equation (1.4.4) by u∆ and integrating by parts, we note the following energy

balance:

‖u∆(t)‖2L2
x

+ 2(2π)dεN

ˆ t

0

∑
|k|∞≤N

Q̂k|k|2s|û∆
k (τ)|2 dτ = ‖u∆(t = 0)‖2L2

x
≤ ‖u‖2L2

x
. (1.4.8)

In particular, this implies that approximate solutions u∆ computed with the SV scheme satisfy the

a priori energy admissibility condition ‖u∆(t)‖L2
x
≤ ‖u‖L2

x
for all t ∈ [0, T ].

In fact, the approximations obtained by the spectral viscosity method are approximate solutions in

the sense of Definition 1.3.5. To show the Lip-boundedness, we simply note that for any ϕ ∈ C∞(Td;Rd),
and 0 ≤ t1 < t2 ≤ T , we have from (1.4.4)

〈ϕ,u∆(·, t2)− u∆(·, t1)〉 ≤ C(t2 − t1)‖∇ϕ‖L∞x ‖u
∆‖2L∞([0,T ];L2

x)

+ εN (t2 − t1)‖|∇|2sϕ‖L∞x ‖u
∆‖L∞([0,T ];L2

x)

≤ CE0(t2 − t1)‖∇ϕ‖L∞x + εN
√
E0(t2 − t1)‖|∇|2sϕ‖L2

x
,

where E0 =
´
Td |u|

2 dx is (twice) the kinetic energy of the initial data u (cp. (1.4.8)). Now we choose L

large enough so that, by Sobolev embedding:

HL(Td;Rd) ↪→ W 1,∞(Td;Rd) ∩H2s(Td;Rd).

Then

〈ϕ,u∆(·, t2)− u∆(·, t1)〉 ≤ C|t2 − t1|‖ϕ‖HL ,

with a constant C depending on supN εN (assumed finite) and E0, but independent of N . Taking the

supremum of all ϕ ∈ HL(Td;Rd) ∩ C∞(Td;Rd) with ‖ϕ‖HL ≤ 1 on the left, we find

‖u∆(·, t2)− u∆(·, t1)‖H−L ≤ C|t2 − t1|,

proving that u∆ ∈ Lip((0, T );H−L), with a uniformly bounded Lipschitz constant. The other two proper-

ties are easily shown; The consistency property has been shown in [LM15, Lemma 3.2], the divergence-free

property is satisfied exactly. Thus, we have shown:

Theorem 1.4.1. The sequence u∆ obtained from the SV scheme for the incompressible Euler equations

form an approximate solution sequence in the sense of Definition 1.3.5.

By Theorem 1.3.10, this immediately implies convergence to a measure-valued solution as ∆→ 0:

Theorem 1.4.2. Let {u∆} ⊂ L2, ∆ = 1/N → 0 be the sequence obtained by solution of the SV scheme

(1.4.4) at resolution ∆ for given initial data u. Then there exists a subsequence ∆k → 0 and a generalized

Young measure (ν, λ, ν∞), such that u∆k
Y
⇀ (ν, λ, ν∞) converges in the sense of Young measures.

As a consequence of weak-strong uniqueness, Theorem 1.3.11, we can also conclude:

Corollary 1.4.3. If the initial data u admits a solution u, such that
´ T

0
‖∇u(t)‖L∞x dt < ∞, then the

sequence u∆ computed by the SV scheme (1.4.4) converges u∆ → u strongly in L2(Td × [0, T ]).
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Chapter 2

Convergence of the spectral viscosity

scheme to rough solutions

2.1 Introduction

As explained in the last chapter, there is considerable interest in the analysis and the numerical ap-

proximation of rough solutions of the incompressible Euler equations, in both two and three spatial

dimensions. In the present chapter, we will discuss the numerical approximation of rough solutions

of the two-dimensional incompressible Euler equations by spectral methods. As opposed to the three-

dimensional case, the mathematical theory of solutions in two dimensions, even at low regularity, is

considerably more mature and several existence results for rough solutions (and, to a lesser extent,

uniqueness results) have been established, leveraging the additional a priori control on the vorticity in

this setting. In particular, we will focus on the convergence of numerical schemes for initial data in the

“Delort class”, i.e. having vorticity ω of the form ω = ω′ + ω′′, where ω′ ∈ M+ ∩H−1 is a finite, non-

negative Radon measure bounded in H−1, and ω′′ ∈ L1∩H−1. These initial data include the interesting

case of signed vortex sheets, i.e. initial data for which the (non-negative) vorticity is concentrated on

curves in the two-dimensional spatial domain.

For numerical approximations of the incompressible Euler equations, rigorous convergence results

have been mostly available when the underlying solution is sufficiently smooth, see [BT15] for spectral

methods, [LMS16] for finite-difference projection methods, [SS17] for discontinuous Galerkin methods

and [MB01] for vortex methods. For rough initial data, only a few rigorous results are available. And

usually, these results either only prove convergence in a very weak sense (e.g. to a measure-valued

solution), or they rely on a direct discretization of the vorticity equation to provide the necessary a priori

control and hence the resulting numerical methods are specific to the two-dimensional case; A notable

result in this regard is the convergence of a central finite difference scheme ([LT97]) for the vorticity

formulation (cp. (1.3.7)) of the two-dimensional Euler equations [LT97]. This scheme was shown to

possess a discrete maximum principle for the vorticity. Hence, one can prove that it converges to a weak

solution of (1.3.7), as long as the initial vorticity ω ∈ Lp for 1 < p ≤ ∞ [LFNLT00]. However, it is

unclear if the convergence analysis for this scheme can be extended to the case where the initial data

ω ∈ L1 ∩ H−1, let alone in the Delort class. Similarly for spectral methods and for finite difference-

projection methods, the only available results for (1.1.1), are of convergence to the significantly weaker

solution framework of dissipative measure-valued solutions in [LM15] and in [Leo18], respectively.

When ω ∈M∩H−1 is a bounded measure, the best available convergence results to date have been

21



22 CHAPTER 2. CONVERGENCE OF THE SV SCHEME TO ROUGH SOL’S

achieved by Liu and Xin for the vortex blob method in [LX95] and by Schochet for both the vortex point

and blob methods in [Sch96] (see also the related work by Liu and Xin [LX01]). In [LX95, Sch96, LX01],

it is shown that for initial data with vorticity ω ∈ H−1 a finite, non-negative Radon measure in M+,

the vortex methods will converge weakly to a weak solution of the incompressible Euler equations with

ω ∈M+∩H−1. The assumption on the definite sign (either positive or negative in the whole domain) of

the initial vorticity appears to be an essential ingredient in these convergence results [LX95, Sch96, LX01]:

If ω has a definite sign, then the conserved Hamiltonian of these vortex methods can be leveraged to

provide a priori control the concentration of the discretized vorticity. When the initial vorticity ω is not

necessarily of definite sign, then the Hamiltonian no longer provides control on vorticity concentration

and the available convergence results are somewhat weaker in this case. Without any sign restriction,

convergence of the vortex point/blob methods has been shown by Schochet [Sch96] for initial data

with vorticity ω ∈ L(logL). The fundamental difficulty that prevents the convergence results for vortex

methods to be extended to initial data of the form ω = ω′+ω′′, ω′ ∈M+∩H−1, ω′′ ∈ L1∩H−1 considered

by Delort [Del91, VW93], apparently lies in the fact that at the continuous level, concentration of ω′′ ∈ L1

is prevented by the incompressibility of the advecting flow. However, in the case of vortex methods,

incompressibility of the advecting flow is not known to be sufficient to prevent concentration of the

discretized vortices. In the definite sign case (ω′′ = 0), it turns out that the discrete energy conservation

can be used to circumvent this issue [Maj93, LX95, Sch96, LX01]. Without any sign restriction, but

assuming that ω ∈ L(logL), the conservation of phase-space volume (Liouville’s theorem) can be used

to show that no concentration occurs for suitable vortex approximations to the initial data ω [Sch96].

Therefore a considerable gap remains between the existence result of Delort and the available convergence

results for numerical methods, including even very specialized schemes such as vortex methods.

In the present chapter, we will present rigorous convergence results based on (compensated) com-

pactness techniques, for approximations by the spectral viscosity scheme of the two-dimensional Euler

equations with rough initial data in the afore-mentioned Delort class. The discussion in this chapter is

based on the original publication [LM20], where detailed proofs of all results, as well as refined estimates

on Lp vorticity control for 1 < p < ∞ can be found. Here, we will streamline the discussion and focus

instead only on the Delort case, requiring as one key ingredient a priori L1-control on the approximations,

i.e. sup∆ ‖ω∆‖L1 <∞.

2.2 A fine-tuned SV scheme

In the following, we will consider the following fine-tuned spectral vanishing viscosity (SV) scheme for

the incompressible Euler equations, which is a slight adaptation of the general SV scheme outline in

chapter 1.4 ensuring additional a priori bounds even for very rough initial data: Given N ∈ N, we fix a

“grid-scale” ∆ = 1/N , and consider the following approximation of the incompressible Euler equations{
∂tu

∆ + PN (u∆ · ∇u∆) = εN∆(QN ∗ u∆),

div(u∆) = 0, u∆|t=0 = KaN ∗ u,
(2.2.1)

with periodic boundary conditions. Here PN is the truncated Leray projection operator (1.4.3), mapping

onto divergence-free vector fields. QN is a Fourier multiplier of the form

QN (x) =
∑

mN<|k|≤N

Q̂ke
ik·x, (2.2.2)
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and we assume

0 ≤ Q̂k ≤ 1, Q̂k =

{
0, |k| ≤ mN ,

1, |k| > 2mN .
(2.2.3)

The choice of parameters mN and εN will be specified later.

Remark 2.2.1. In equation (2.2.3), we have assumed that the coefficients Q̂k change only in the interval

|k| ∈ [mN , 2mN ]. This assumption could have been replaced by taking [mN , cmN ], for any constant c > 1,

without changing the results of this chapter. We have chosen c = 2 here for simplicity, and in order not

to introduce further parameters into the numerical scheme. In practice, a different choice may be more

suitable.

As a slight extension to the SV scheme discussed in chapter 1.4, we have introduced an additional

Fourier kernel KaN . This kernel gives an another degree of freedom in our numerical method, and will

be necessary to obtain suitably approximated initial data, providing further control on the numerical

solution. The Fourier kernel KaN is a trigonometric polynomial of the form

KaN (x) =
∑
|k|≤aN

K̂ke
ik·x, |K̂k| ≤ 1.

The exact form of the kernel KaN and the choice of parameters aN will be specified later. However, we

shall assume that KaN satisfies a bound of the form

‖KaN ‖L1 ≤ C log(N)2, for all N ∈ N. (2.2.4)

The above discretization of the initial conditions will be necessary in our convergence proofs for un-

bounded initial vorticity, and in particular if the initial data is a vortex sheet as considered by Delort

[Del91].

Remark 2.2.2. The SV scheme for the incompressible Euler equations depends on the three parameter

sequences εN ,mN , aN . To fix ideas, we note that we will later on choose εN → 0, aN ∼ mN ∼ Nθ →∞
for some θ ≤ 1

2 .

Since the u∆ are smooth, and since the Fourier projection commutes with differentiation, it turns

out that we can equivalently write the system (2.2.1) in its vorticity form
∂tω

∆ + PN (u∆ · ∇ω∆) = εN∆(QN ∗ ω∆),

curl(u∆) = ω∆,

ω∆|t=0 = curl (KaN ∗ u) .

(2.2.5)

Here, PN : L2 → L2
N is the L2-orthogonal Fourier projection (cp. Appendix A for further details). We

recall the following simple result, which will be of fundamental importance for the current work:

Proposition 2.2.3 (Lemma 3.10, [LM15]). The systems (2.2.1) for u∆ and (2.2.5) for ω∆ are equivalent.

Remark 2.2.4. Proposition 2.2.3 allows us to focus on the vorticity formulation (2.2.5). The strategy

is then as follows: The vorticity formulation will be used to obtain uniform a priori control on the Lp-

norm of the approximate vorticities ω∆, for some 1 ≤ p ≤ ∞. The bounds on ω∆ in turn provide

additional control on the velocity u∆, which can be used to prove the convergence of the non-linear

terms in the primitive variable formulation (2.2.1). The convergence of the non-linear terms will rely
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either on establishing pre-compactness of the sequence u∆ in L2(T2;R2), following the original ideas of

Diperna and Majda [DM87a], or by employing compensated compactness results established by Delort

[Del91, VW93, Sch95]. It is thus the interplay between the primitive and the vorticity formulation, which

will allow us to obtain convergence proofs even for rough initial data.

As a first step towards proving the convergence of the SV method, we make the error terms more

apparent. We rewrite the system (2.2.5) in the following form

∂tω
∆ + u∆ · ∇ω∆ − εN∆ω∆ = (I − PN )(u∆ · ∇ω∆)︸ ︷︷ ︸

=:err1

+ εN∆RmN ∗ ω∆︸ ︷︷ ︸
=:err2

. (2.2.6)

The left-hand side corresponds to the vorticity formulation of the Navier-Stokes equations in 2d with

viscosity εN . The right hand side consists of a projection error (err1), and a ”viscosity” error (err2),

which is written in terms of a convolution with RmN ≡ 1 − QN . We note that RmN (x) has Fourier

coefficients

0 ≤ R̂k ≤ 1, R̂k =

{
1, |k| ≤ mN ,

0, |k| > 2mN .
(2.2.7)

Similar to (2.2.4), we will assume a bound of the form

‖RmN ‖L1 ≤ C log(N)2, for all N ∈ N, (2.2.8)

for the kernel RmN . For the construction of a kernel satisfying the last estimate, see Maday and Tadmor

[MT89, Appendix], which generalizes to the two dimensional case via a tensor product.

2.3 Overview of the strategy

Given initial data u in the Delort class, with vorticity ω ∈
(
M+ + L1

)
∩ H−1, our goal is to show

that – up to the extraction of a subsequence – the sequence u∆(t) ∈ L2 computed by the SV method

converges u∆ ⇀ u weakly in L2 to a weak solution u ∈ L∞([0, T ];L2(T2;R2)) of the incompressible

Euler equations. In fact, we will show that any (weak) limit of this sequence is a weak solution. Our

proof of convergence will rely on the following fact, first (implicitly) established by Delort [Del91], and

later explicitly pointed out by Vechhi and Wu [VW93], see also the discussion in [Sch95].

Theorem 2.3.1 (Delort [Del91], Vecchi and Wu [VW93], Shochet [Sch95]). Let ω∆(x, t) be a sequence

of vorticities, satisfying the following conditions:

(i) ‖ω∆(·, t)‖H−1 ≤M , uniformly for ∆ > 0, and for t ∈ [0, T ],

(ii) ‖ω∆(·, t)‖L1 ≤M , uniformly for ∆ > 0, and for t ∈ [0, T ],

(iii) for all ε > 0, there exists δ > 0, such that

|A| < δ =⇒
ˆ
A

[ω∆]−(·, t) dx < ε, ∀t ∈ [0, T ], ∀∆ > 0,

where [ω∆]−:= max(0,−ω∆) ≥ 0 denotes the absolute value of the negative part of ω∆.

Then there exists a subsequence ∆k → 0, and a measure ω ∈
(
M+ + L1

)
∩H−1, such that ω∆k ⇀ ω in

the sense of measures. Furthermore, for the corresponding sequence of velocities u∆k , one has u∆k ⇀ u

weakly in L2, and for any divergence-free test function ϕ ∈ C∞([0, T ]× T2;R2), we have

lim
k→∞

ˆ T

0

ˆ
T2

(u∆k ⊗ u∆k) : ∇ϕ dx dt =

ˆ T

0

ˆ
T2

(u⊗ u) : ∇ϕ dx dt.
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In particular, Theorem 2.3.1 implies that one can pass to the limit in the non-linear term of the

incompressible Euler equations, in the weak formulation.

To apply this theorem, our goal will thus be to prove (i) a uniform a priori bound on u∆ ∈ L2,

(ii) a uniform L1-bound on the vorticity ω∆, and (iii) uniform control on the negative parts of the

vorticity (equi-integrability). The required L2-bound is straightforward, since Fourier spectral methods

are adapted to L2-spaces (cp. Proposition 2.4.1). To control the L1-norm of the vorticity and show equi-

integrability of the negative parts, we will rely on (2.2.6). To this end, we multiply (2.2.6) by φ′(ω∆) for

convex, Lipschitz continuous φ, and integrate against x, to obtain

d

dt

ˆ
T2

φ(ω∆) dx ≤ Lip(φ)
(
‖(I − PN )(u∆ · ∇ω∆)‖L1 + ‖εN∆RmN ∗ ω∆‖L1

)
.

We will show that the error terms in the bracket converge to 0, as N →∞, implying uniform control
ˆ
T2

φ(ω∆(x, t)) dx ≤
ˆ
T2

φ(ω∆(x, 0)) dx+ o(1) ≤M + o(1),

provided that φ(ω∆(x, 0)) ≤M is uniformly bounded (cp. Proposition 2.6.8). For φ(ω) := |ω|, this yields

L1-control. Equi-integrability of the negative parts will be deduced from the choice φ(ω) = [ω + c]− =

max(0,−(ω + c)) for suitable c > 0 (cf. Lemmas 2.6.9, 2.6.10).

The main difficulty in the proof will be the a priori control of the non-linear projection error ‖(I −
PN )(u∆ · ∇ω∆)‖L1 . To control this error, we split u∆ = PN/2u∆ + (I − PN/2)u∆ and ω∆ = PN/2ω

∆ +

(I − PN/2)ω∆ into the contributions of Fourier modes with wavenumber |k| ≤ N/2 and |k| > N/2,

respectively. Since the Fourier spectrum of the product PN/2u∆ ·∇PN/2ω∆ is confined to Fourier modes

≤ N , it follows that

(I − PN )(u∆ · ∇ω∆) = (I − PN )
(
u∆ · ∇(I − PN/2)ω∆

)
+ (I − PN )

(
(I − PN/2)u∆ · ∇PN/2ω∆

)
,

(2.3.1)

involves products, where at least one of the factors only includes high wavenumbers. To control these

terms, we shall show that with a sufficient amount of spectral viscosity, the Fourier modes in the range

N/2 < |k| ≤ N decay (exponentially) in N (see section 2.4). In particular, this provides very strong

decay estimates on both (I −PN/2)ω∆ and (I − PN/2)u∆, as N →∞, which will allow us to control the

non-linear projection error (cp. Lemma 2.4.6). A technical caveat is that the spectral viscosity requires a

short initial time t∗N > 0 in order to provide this damping of the high Fourier components, and hence the

spectral decay estimates can only be established for t ∈ [t∗N ,∞). Thus, the above spectral decay estimate

has to be complemented by short-time control over the initial time-interval [0, t∗N ], which ensures bounds

on the vorticity before the viscosity can act to control the small scale behaviour. Short-time control is

the subject of section 2.5. Since the required estimates are often somewhat involved, we will focus on

providing an overview of the main results, and provide detailed references to the original publication

[LM20], where the complete technical proofs can be found.

2.4 Spectral decay estimate

As outlined in the last section, before establishing more detailed L1-estimates for the vorticity, we note

that L2 estimates for the approximate solutions, u∆ and ω∆ are readily obtained.

Proposition 2.4.1. If u ∈ L2, then the approximation sequence u∆ satisfies

‖u∆(·, t)‖L2 ≤ ‖u∆(·, 0)‖L2 ≤ ‖u‖L2 .
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In particular, this implies that we have a uniform bound

‖ω∆(·, t)‖H−1 ≤ ‖u‖L2 .

Proof. Multiply (2.2.1) by u∆, integrate over the spatial variable, we find

d

dt

ˆ
T2

|u∆|2 dx = −
ˆ
T2

∇u∆ : ∇(QN ∗ u∆) dx

(Parseval)
↓
= −(2π)2

∑
k

Q̂k|k|2|(̂u∆)k|
2 ≤ 0.

Integration over time yields the first inequality. The second inequality follows from

‖u∆(·, 0)‖2L2 = ‖KaN ∗ u‖2L2 = (2π)2
∑
k

K̂2
k |(̂u)k|

2 ≤ (2π)2
∑
k

|(̂u)k|
2 = ‖u‖2L2 .

The non-linear terms in (2.2.1) cancel out after multiplication with u∆ in the above estimate. The upper

bound for ‖ω‖H−1 is trivial.

The main tool employed to prove the convergence results in this chapter will be the decay estimate for

the vorticity stated below in Proposition 2.4.2. A similar idea has in fact been used in the context of the

one-dimensional Burgers equation to prove the uniform L∞-boundedness of the numerical approximations

by the SV method [MT89]. The method employed in [MT89], which is based on a bootstrap argument

adapted from [HKR90], does not appear to allow a straightforward extension to the present case. Instead,

we shall adapt a different method from [DT95].

To state the next proposition, we first need to define the operators eα|∇| for α ∈ R, and |∇|. They

are defined as distributions D′(T2) via their Fourier coefficients, as follows:(̂
eα|∇|

)
k

= eα|k|, (̂|∇|)k = |k|. (2.4.1)

We can now state the spectral decay estimate, based on the method employed in [DT95].

Proposition 2.4.2. Let ω∆ be a solution of the voriticty equation (2.2.5), with arbitrary parameters

εN ,mN , aN > 0. Let {
βN = α2 + 8ε2Nm

2
N ,

γN = C log(N),
(2.4.2)

where C is a constant such that (k ∈ Z2) ∑
|k|≤N

1

|k|2
≤ C log(N).

Then for any α > 0, we have the estimate

‖eαt|∇|ω∆(·, t)‖2L2 ≤
‖ω∆(·, 0)‖2L2eβN t/εN

1− γN‖ω∆(·,0)‖2
L2

βN

[
eβN t/εN − 1

] , (2.4.3)

for all t < t∗, with

t∗ =
εN
βN

log

(
1 +

βN
γN‖ω∆(·, 0)‖2L2

)
.
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Sketch of proof. For all details of the proof, we refer to [LM20, Prop. 4.4]. Here, we sketch the main

ideas: To prove the spectral decay estimate, we consider the evolution equation for eαt|∇|ω∆. We find

from

∂tω
∆ = εN∆ω∆ + εN∆(RmN ∗ ω∆)− PN (u∆ · ∇ω∆),

that ‖eαt|∇|ω∆‖2L2 satisfies the following differential inequality

d

dt
‖eαt|∇|ω∆‖2L2 ≤

βN
εN
‖eαt|∇|ω∆‖2L2 +

γN
εN
‖eαt|∇|ω∆‖4L2 ,

where βN :=α2 + 8ε2Nm
2
N and γN = C log(N). Integration of this inequality can then be shown to yield

‖eαt|∇|ω∆‖2L2 ≤
‖ω∆(·, 0)‖2L2eβN t/εN

1−
γN‖ω∆(·, 0)‖2L2

βN

[
eβN t/εN − 1

] .

Note that the L2 norm on the left provides a very crude upper bound for the Fourier coefficients of

ω∆ via

e2αt|k||ω̂k|2 ≤ ‖eαt|∇|ω∆‖2L2 . (2.4.4)

Next, we can employ Proposition 2.4.2 together with a simple a priori estimate on ‖ω∆( · , 0)‖L2 =

‖KaN ∗ ω‖L2 , to arrive at the following theorem (cf. [LM20, Thm. 4.8]):

Theorem 2.4.3. Let u ∈ L2 be given initial data for the incompressible Euler equations. Then there

exist absolute constants A,B > 0 such that the approximations, ω∆ = curl(u∆), obtained from the

spectral viscosity method satisfy the following estimate on their Fourier coefficients:

|ω̂k(t)|2 ≤ Aa2
N‖u‖2L2

(
1 +

βN
B log(N)a2

N‖u‖2L2

)
e−2αt∗N |k|,

for t ∈ [t∗N , T ], and

t∗N =
εN
βN

log

(
1 +

βN
B log(N)a2

N‖u‖2L2

)
.

We next observe that we can choose the sequences εN → 0, mN , aN →∞ in a suitable manner, such

that the Fourier coefficients in the range N/2 ≤ |k| ≤ N decay superpolynomially in N . This is the

content of the next theorem:

Theorem 2.4.4. With the notation of Theorem 2.4.3. Choose the free parameters εN , aN ,mN as follows

mN . Nθ, where 0 ≤ θ < 1

3
, aN ∼ Nθ, εN ∼

aN log(N)s

N
, (s > 6). (2.4.5)

Then, for any σ > 0, there exists a constant Cσ > 0, such that

|ω̂k(t)| ≤ CσN−σ, for N/2 ≤ |k| ≤ N, t ∈ [t∗N ,∞), (2.4.6)

where t∗N → 0, at a convergence rate

t∗N �
1

aNN log(N)2
. (2.4.7)
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It will be convenient to state the following definition:

Definition 2.4.5. We will say that a choice of parameters εN ,mN , aN and Fourier kernels QN ,KaN

for the SV method ensures spectral decay, provided that the conclusions (estimates (2.4.6), (2.4.7)) of

Theorem 2.4.4 hold true.

As a consequence of Theorem 2.4.4 and the identity (2.3.1), expressing the fact that only high-

frequencies contribute to the projection error, one can now readily show that the projection error vanishes

in the limit N →∞, at least for t ≥ t∗N . This is the content of the next lemma:

Lemma 2.4.6. If the parametrization for the SV method ensures spectral decay, then the projection

error can be bounded from above, i.e. there exists a constant C > 0 depending on the initial data u, but

independent of N , such that for all t ∈ [t∗N ,∞) and for any 1 ≤ p <∞:

‖(I − PN )(u∆(t) · ∇ω∆(t))‖Lp ≤ CN−1‖ω∆(t)‖Lp .

Alternatively, one can find a constant C ′ > 0, again depending on the initial data, but independent of

N , such that

‖(I − PN )(u∆(t) · ∇ω∆(t))‖Lp ≤ C ′N−1.

For a detailed proof, we refer to [LM20, Lemma 4.12]. We also remark that the asymptotic decay

N−1 was chosen arbitrarily, and could have been replaced by any polynomial rate N−σ, σ > 0.

The next lemma summarizes that the second discretization error can also be bounded from above.

Lemma 2.4.7. Under the present assumptions on the SV method (cp. (2.2.8)), We have

‖∆(RmN ∗ ω∆)‖L1 ≤ 2m2
N‖RmN ‖L1‖ω∆‖L1 ≤ 2m2

N log(N)2‖ω∆‖L1 .

Based on Lemmas 2.4.6 and 2.4.7, we can now control the error terms on the right hand side. We

conclude this section by proving the following theorem, stating that the L1-norm is uniformly controlled

for t ≥ t∗N .

Theorem 2.4.8 (L1 control after short time). If the numerical parameters ensure spectral decay, then

there exists a sequence cN → 0 such that

‖ω∆(·, t)‖L1 ≤ (1 + cN t) ‖ω∆(·, t∗N )‖L1 , for all t ≥ t∗N .

Proof. We start from equation (2.2.6):

∂tω
∆ + u∆ · ∇ω∆ − εN∆ω∆ = (I − PN )(u∆ · ∇ω∆) + εN∆RmN ∗ ω∆.

Multiplying by sign(ω∆) (or smooth approximations thereof; we will forego the details here), and integ-

rating over x, we find
d

dt
‖ω∆(·, t)‖L1 ≤ ‖err1‖L1 + ‖err2‖L1 .

Using Lemmas 2.4.6 and 2.4.7, we obtain (for t ≥ t∗N )

d

dt
‖ω∆(·, t)‖L1 ≤ C

[
N−1‖u‖L2 + εNm

2
N log(N)2

]
‖ω∆(·, t)‖L1 .

After an integration over [t∗N , t], it follows that

‖ω∆(·, t)‖L1 ≤ ‖ω∆(·, t∗N )‖L1 exp (cN t) ,

where cN = C
[
N−1‖u‖L2 + εNm

2
N log(N)2

]
→ 0.
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2.5 Short-time estimates

In the last section, we have shown that the numerical parameters can be chosen to ensure the spectral

decay of the Fourier modes N/2 ≤ |k| ≤ N for t ∈ [t∗N ,+∞), where (cp. (2.4.7))

t∗N �
1

aNN log(N)2
. (2.5.1)

As a consequence, we have proven L1-control of the vorticity for t ≥ t∗N in terms of ‖ω∆(·, t∗N )‖L1 . In

this section, we will bridge the gap [0, t∗N ] and prove short time L1 control of the vorticity for the initial

interval 0 ≤ t ≤ t∗N in terms of ‖ω∆(·, 0)‖L1 . We will prove the following theorem,

Theorem 2.5.1. If ω∆(·, 0) ∈ L1, then there exists a sequence cN → 0 (depending only on the initial

data ω), such that

‖ω∆(·, t)‖L1 ≤ (1 + cN ) ‖ω∆(·, 0)‖L1 + cN , for all t ∈ [0, t∗N ].

Proof. We begin by observing that

∂tω
∆ = −PN (u∆ · ∇ω∆) + εN∆ω∆ + εN∆(RmN ∗ ω∆). (2.5.2)

Using also the operator norm bound ‖PN‖L1→L1 ≤ C log(N)2 (cp. Proposition A.1.1 in Appendix A),

the identity (2.5.2) implies that,

d

dt
‖ω∆‖L1 ≤ ‖PN (u∆ · ∇ω∆)‖L1 + εN‖∆(RmN ∗ ω∆)‖L1

≤ C log(N)2‖u∆ · ∇ω∆‖L1 + CεNm
2
N log(N)2‖ω∆‖L1 ,

(2.5.3)

for some constant C > 0. Setting δN := CεNm
2
N log(N)2, we note that δN → 0 and δN ≥ 0, we find

d

dt

(
‖ω∆‖L1e−δN t

)
≤ C log(N)2‖u∆ · ∇ω∆‖L1 . (2.5.4)

On the right hand side, we have used the simple estimate e−δN t ≤ 1. We will now show that if ω∆(·, 0) ∈
L1, then there exists a constant C > 0 such that

‖ω∆(·, t)‖L1 ≤ ‖ω∆(·, 0)‖L1eδN t
∗
N + C‖u‖2L2 [aNN log(N)2]t∗N ,

for all t ∈ [0, t∗N ]. Here δN → 0. The claimed estimate then follows from the observation that δN t
∗
N → 0

(is independent of the initial data), and from (2.5.1).

To this end, we start by noting that

‖u∆(t) · ∇ω∆(t)‖L1 ≤ C‖u∆(t)‖L2‖∇ω∆(t)‖L2

≤ CN‖u∆(t)‖L2‖ω∆(t)‖L2 .

From the a priori L2-bounds for u∆, ω∆, we can furthermore estimate the right-hand side by ‖u∆(·, t)‖L2 ≤
‖u‖L2 , and

‖ω∆(·, t)‖L2 ≤ ‖ω∆(·, 0)‖L2 = ‖KaN ∗ ω‖L2 ≤ CaN‖KaN ∗ u‖L2 ≤ CaN‖u‖L2 .

From (2.5.4), we now find

d

dt

(
‖ω∆(·, t)‖L1e−δN t

)
≤ CNaN log(N)2‖u‖2L2 .
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Integrating in time from 0 to t, we find, for some constant C,

‖ω∆(·, t)‖L1 ≤ ‖ω∆(·, 0)‖L1eδN t + CNaNe
δN t log(N)2‖u‖2L2t.

The right hand side is uniformly bounded for t ∈ [0, t∗N ], by

‖ω∆(·, t)‖L1 ≤ ‖ω∆(·, 0)‖L1eδN t
∗
N + CNaNe

δN t
∗
N log(N)2‖u‖2L2t.

Furthermore, since δN t
∗
N → 0, we can absorb the (uniformly bounded) factor eδN t

∗
N by increasing constant

C, yielding the claimed estimate.

2.6 Uniform L1 control and equi-integrability

Combining Theorems 2.4.8 and 2.5.1 of the last two sections, we can now conclude that the L1-norm of

the vorticity can be uniformly controlled on compact intervals [0, T ].

Theorem 2.6.1 (vorticity L1 control). Let u ∈ L2(T2;R2) be given initial data for the incompressible

Euler equations. Let T > 0 be given. If the parameters for the spectral viscosity approximation ensure

spectral decay, then there exists a sequence cN → 0, such that

‖ω∆(·, t)‖L1 ≤ (1 + cN ) ‖ω∆(·, 0)‖L1 + cN .

Remark 2.6.2. We point out that Theorem 2.6.1 provides a bound on the L1-norm of ω∆(·, t), in terms

of the L1-norm of ω∆(·, 0), rather than ω. This is made necessary because the Fourier projections

PaN : L1 → L1, ω 7→ PaNω, (N ∈ N),

do not define a family of uniformly bounded operators on L1 (and even less so for ω ∈M+ a measure);

indeed we only have ‖PaN ‖L1→L1 . log(aN )2 by Proposition A.1.1 in Appendix A. Thus, for Delort initial

data, a more careful approximation of the initial data needs to be made to ensure uniform boundedness in

L1 of the approximation sequence ω∆, i.e. we can not choose the initial data projection kernel KaN = DaN

as the Dirichlet kernel, in this case.

We recall that, in order to apply Theorem 2.3.1 to the approximate solution sequence generated by

the SV scheme, we need to establish (i) uniform H−1 control, (ii) uniform L1 control and (iii) equi-

integrability. The required uniform H−1-bound on the vorticity has been obtained in Proposition 2.4.1.

The uniform L1-bound on the vorticity has been established in Theorem 2.6.1, provided that ω∆(·, 0)

remains uniformly bounded in L1. As indicated in the last remark, this restriction is a non-trivial issue.

A discussion of one possible way to obtain suitable approximations of the initial data will now be given.

Remark 2.6.3. The uniform L1-boundedness of the sequence ω∆( · , 0) requires an initial approximation

for which the vorticity does not only converge in H−1, but also in the sense of (signed) measures with

a uniform L1-bound. One way to ensure L1 boundedness is as follows: Fix a mollifier ψ ∈ C∞ with

support in a unit ball B1(0). Denote ψρ(x) := ρ−2ψ(x/ρ). We will obtain the initial data for the

numerical approximation by convolution with a smoothing kernel ω 7→ ψρ ∗ ω, and subsequently project

to the lowest Fourier modes ≤ N , viz.

ω 7→ DN ∗ (ψρ ∗ ω) = (DN ∗ ψρ) ∗ ω,

where DN (x) =
∑
|k|∞≤N exp(ik · x) is the Dirichlet kernel. Since ψρ is smooth, we are assured that

DN∗ψρ → ψρ uniformly as N →∞ (for fixed ρ > 0). In particular, it follows that ‖DN∗ψρ‖L1 → ‖ψρ‖L1 .

The idea is now to choose a sequence ρN , such that N � ρ−1
N ( i.e. such that the convolution kernel is

asymptotically resolved by the numerical approximation). If the convolution is adequately resolved, then

we would expect that KN :=DN ∗ ψρN is a suitable kernel to ensure convergence of the initial data.
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The following proposition confirms the intuition pointed out in the last remark. As the proof does

not provide any further insight beyond Remark 2.6.3, we refer the interested reader to [LM20, Prop. 6.4]

for details of the argument.

Proposition 2.6.4. Let Ψ ∈ C∞c (R2) be a non-negative function,
´
R2 Ψ(x) dx = 1, and assume that

Ψ is compactly supported in (−π, π)2. Define Ψρ:=ρ
−2Ψ(x/ρ), a compactly supported mollifier. Let ψρ

be the periodization of Ψρ, such that we can consider ψρ as an element in C∞(T2). For M ∈ N, let

KM :=DM ∗ ψρM for some sequence ρM → 0. If ρM ∼M−1+δ with δ > 0, then KM is a good kernel, in

the sense that KM ∗ φ→ φ for all φ ∈ C∞(T2), and there exists a constant C, such that ‖KM‖L1 ≤ C.

In addition, we have

‖ψρM −KM‖L1 → 0, as M →∞.

The observations of Proposition 2.6.4 will allow us to control numerical approximations for initial

data in the Delort class, and in particular, will ensure that ‖ω∆( · , 0)‖L1 remains uniformly bounded.

We make the following

Definition 2.6.5. We will say that the SV method has suitably approximated initial data, if ω∆(·, 0) =

KaN ∗ ω (for aN ∈ N specified in the scheme) is obtained by convolution with a kernel KM as described

in Proposition 2.6.4.

Our final ingredient in the convergence proof requires equi-integrability of the negative parts. The

following proposition gives us some control on the negative part [ω∆]−:= max(0,−ω∆) of ω∆, if the initial

approximation is chosen as in Proposition 2.6.4:

Proposition 2.6.6. Consider initial data ω = ω′ + ω′′ ∈ H−1, where ω′ ∈ M+ is a finite non-negative

measure and ω′′ ∈ L1. If ω∆(·, 0) is obtained as suitably approximated initial data for the SV method,

then for any ε > 0, there exists c > 0 and N0 ∈ N, such that

ˆ

T2

[
ω∆(·, 0) + c

]
− dx < ε, ∆ ≡ 1/N, ∀N ≥ N0.

Remark 2.6.7. Note that [ω∆(·, 0)+c]− 6= 0, only on the set {x | ω∆(x, 0) < −c}. The above proposition

therefore gives us some control on the size of the negative part of the approximation ω∆. The proposition

will be used below to show that the negative vorticity cannot concentrate on small sets.

Proof. Note that w 7→ [w]− := max(0,−w) is convex, homogeneous and bounded from above by |w|.
From these properties, it follows that[

ω∆(·, 0) + c
]
− ≤ |ω

∆(·, 0)− ψρN ∗ ω|+ [ψρN ∗ ω + c]− .

Next, note that ψρN ≥ 0 and c > 0, implies that

[ψρN ∗ ω + c]−

(ω′≥0)
↓
≤ [ψρN ∗ ω′′ + c]−

(Jensen)
↓
≤ ψρN ∗ [ω′′ + c]− .

Therefore, we obtain upon spatial integration, using also that
´
T2 ψρN dx = 1:

ˆ
T2

[
ω∆(·, 0) + c

]
− dx ≤ ‖ω

∆(·, 0)− ψρN ∗ ω‖L1 +

ˆ
T2

[ω′′ + c]− dx.
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Since ω′′ ∈ L1, we can now choose c > 0 large enough to ensure that the second term is smaller than

ε/2. From the estimate

‖ω∆(·, 0)− ψρN ∗ ω‖L1 = ‖(KN − ψρN ) ∗ ω‖L1 ≤ ‖KN − ψρN ‖L1‖ω‖M,

and the fact that ‖KN − ψρN ‖L1 → 0, by Proposition 2.6.4, we can find N0 ∈ N, such that ‖ω∆(·, 0) −
ψρN ∗ ω‖L1 < ε/2. For this choice of c > 0 and N0 ∈ N, we then haveˆ

T2

[
ω∆(·, 0) + c

]
− dx < ε, ∆ ≡ 1/N, for all N ≥ N0.

The next goal is to show that the result of Proposition 2.6.6 remains true also at later times t > 0.

To this end, we first show the following improvement on the mere L1-boundedness implied by Theorem

2.6.1.

Proposition 2.6.8. Let φ ∈ C1 be a convex function, such that |φ′(ω)| ≤ D, for some constant D. If

there exists a constant M , such thatˆ
T2

|ω∆(·, 0)| dx ≤M, ∆ ≡ 1/N, for all N ∈ N,

then the numerical solutions ω∆(x, t) (computed with parameters ensuring spectral decay) satisfy, in

addition ˆ
T2

φ(ω∆(·, t)) dx ≤
ˆ
T2

φ(ω∆(·, 0)) dx+ cN , for t ∈ [0, T ], (2.6.1)

with a sequence cN converging to zero, cN → 0. Furthermore, the sequence cN depends on φ only via the

constant D, i.e. the bound on |φ′|.

Sketch of proof. The proof again relies on a combination of a short-time estimate on the interval [0, t∗N ],

combined with the spectral decay estimate for t ≥ t∗N . The short-time estimate is very similar to the

short-time estimate for the L1-norm, and the reader is referred to [LM20, Prop. 6.7] for details. The

result is that for 0 ≤ t ≤ t∗N , we have an estimate of the formˆ
T2

φ(ω∆(·, t)) dx ≤
ˆ
T2

φ(ω∆(·, 0)) dx+ CDNaN log(N)2t∗N︸ ︷︷ ︸
→0 (as N→∞)

,

where we note that the last term on the right-hand side converges to 0, by assumption on the parameters

ensuring spectral decay (cp. (2.4.7)).

To finish the proof, we observe that for t ≥ t∗N , we find from the evolution equation for ω∆ (equation

(2.2.6)):

d

dt

ˆ
T2

φ(ω∆) dx ≤ 〈φ′(ω∆), (I − PN )(u∆ · ∇ω∆)〉+ 〈φ′(ω∆), εN∆(RmN ∗ ω∆)〉

≤ D‖(I − PN )(u∆ · ∇ω∆)‖L1 +D‖εN∆(RmN ∗ ω∆)‖L1 .

The two terms on the right hand side, can be estimated using Lemma 2.4.6 and 2.4.7, yielding ‖(I −
PN )(u∆ · ∇ω∆)‖L1 ≤ CN−1, and ‖εN∆(RmN ∗ ω∆)‖L1 ≤ CεNm

2
N log(N)2, for a constant C > 0

depending only on the initial data. It now follows that

d

dt

ˆ
T2

φ(ω∆) dx ≤ CD(N−1 + εNm
2
N log(N)2)︸ ︷︷ ︸

→0 (as N→∞)

,
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for some constant C, independent of N and φ. Integrating in time, it follows that for t ∈ [t∗N , T ]:
ˆ
T2

φ(ω∆(·, t)) dx ≤
ˆ
T2

φ(ω∆(·, t∗N )) dx+ c
(1)
N ≤

ˆ
T2

φ(ω∆(·, 0)) dx+ c
(1)
N + c

(2)
N ,

with

c
(1)
N :=CD(N−1 + εNm

2
N log(N)2)T → 0, (as N →∞).

and

c
(2)
N :=CDNaN log(N)t∗N → 0, (as N →∞),

This proves the claim with cN :=c
(1)
N + c

(2)
N .

Applying the above Proposition 2.6.8 with a suitable sequence of smooth approximations φε(ω) →
[ω + c]−, and relying on Proposition 2.6.6, it is now straightforward to show the following result:

Lemma 2.6.9. If ω∆ is obtained from the SV method, with suitably approximated initial data and

parameters ensuring spectral decay, then for any ε > 0, there exists a c > 0 and N0 ∈ N, such that
ˆ
T2

[
ω∆(·, t) + c

]
− dx < ε, for all t ∈ [0, T ], and for all ∆ = 1/N , N ≥ N0.

As a consequence of Lemma 2.6.9, we now prove that the sequence [ω∆]− satisfies the equi-integrability

property (iii) of Theorem 2.3.1.

Lemma 2.6.10. Under the assumptions of Lemma 2.6.9, the sequence [ω∆]− is uniformly equi-integrable

on [0, T ], in the following sense: For all ε > 0, there exists a δ > 0, such that

|A| < δ =⇒
ˆ
A

[ω∆]−(·, t) dx < ε, for all ∆ = 1/N > 0, and t ∈ [0, T ]. (2.6.2)

Proof. Let ε > 0. We have to find δ > 0, such that (2.6.2) is satisfied. By Lemma 2.6.9, there exists

c > 0 and N0 ∈ N, ∆0 = 1/N0, such that
ˆ
T2

[
ω∆(·, t) + c

]
− dx < ε/2,

for all ∆ ≤ ∆0 and t ∈ [0, T ]. We now observe that for any subset A ⊂ T2, we have
ˆ
A

[ω∆]−(·, t) dx ≤
ˆ
A

(
c+

[
ω∆(·, t) + c

]
−

)
dx = c|A|+

ˆ
A

[
ω∆(·, t) + c

]
− dx.

Since the second term is smaller than ε/2 by our choice of c, it now suffices to choose δ < ε/(2c), to find

|A| < δ =⇒
ˆ
A

[ω∆]−(·, t) dx < ε, for all ∆ ≤ ∆0, and all t ∈ [0, T ].

On the other hand, let M := sup∆>∆0
‖ω∆‖L∞([0,T ]×T2) = supN<N0

‖ω∆‖L∞([0,T ]×T2), where we recall

that by definition, ∆ = 1/N depends on the grid size N ∈ N, and ∆0 = 1/N0 for some N0 ∈ N. Note

that for N = 1, . . . , N0 − 1, each ω∆ is a smooth function on [0, T ]× T2. In particular, this implies that

M <∞ is finite. Choosing now δ < ε/M , it follows that we also have

|A| < δ =⇒
ˆ
A

[ω∆]−(·, t) dx < ε, for ∆ ≡ 1/N, N = 1, . . . , N0 − 1, and for t ∈ [0, T ].

This proves the claim.
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2.7 Convergence in the Delort class

In this section, we will finally prove that any (weak) limit point of the approximate solution sequence

generated by the SV method is in fact a weak solution of the incompressible Euler equations, for initial

data in the Delort class.

Theorem 2.7.1. Let ω∆ = curl(u∆), u∆ be obtained by solving the approximate Euler equations, with

parameters ensuring spectral decay, and with suitably approximated initial data obtained from ω = ω′+ω′′,

where ω′ ∈M+∩H−1 and ω′′ ∈ L1∩H−1. Then the sequence u∆ converges weakly (up to the extraction

of a subsequence) to a weak solution u ∈ L2 of the Euler equations. Furthermore, the limiting vorticity

ω = curl(u) is an element of ω ∈ (M+ +L1)∩H−1, i.e. ω can be written as a sum ω = ω+−ω−, where

ω+(·, t) ∈M+ is a finite, non-negative measure on T2, and ω−(·, t) ∈ L1(T2).

Proof. By Proposition 2.4.1, we have ‖u∆(·, t)‖L2 ≤ ‖u‖L2 for all N and t ∈ [0, T ]. Therefore there

exists a subsequence u∆, and u ∈ L∞([0, T ];L2(T2;R2)), such that u∆ ⇀ u weakly in L2([0, T ] × T2).

By Theorem 2.6.1, the associated sequence of vorticities ω∆ satisfies uniform bounds ‖ω∆(·, t)‖L1 ≤
M , for all t ∈ [0, T ]. By Lemma 2.6.10, we also have uniform equi-integrability. From this, it then

follows that the relevant non-linear terms in the incompressible Euler equations converge in the sense

of distributions, according to Delort’s result (Theorem 2.3.1). Thus, from the weak consistency of the

spectral approximation (cp. Theorem 1.4.1), we conclude that u∆ ⇀ u in L2, and that u is a weak

solution of the incompressible Euler equations.

Furthermore, since the non-negative parts [ω∆]+ are uniformly bounded in L1([0, T ] × T2), we can

extract a subsequence of [ω∆]+ dx dt, converging weakly in the sense of measures to a limiting measure

ω+ ≥ 0. Since the sequence [ω∆]+ is uniformly bounded in L∞([0, T ];L1(T2)), there exists a constant

M , such that for any t1 < t2, t1, t2 ∈ [0, T ]:

ˆ
(t1,t2)×T2

dω+ ≤ lim inf
N→∞

ˆ t2

t1

ˆ
T2

[ω∆]+ dx dt ≤M(t2 − t1).

In particular, it follows that ω+ is “absolutely continuous with respect to dt”, in the sense that we can

disintegrate ω+ = ω+(·, t) dt, with ω+(·, t) a finite, non-negative measure on T2 for t ∈ [0, T ], and for any

f ∈ C(T2), the mapping

t 7→
ˆ
T2

f(x)ω+(dx, t)

is Lebesgue-measurable.

On the other hand, by the equi-integrability of the negative parts [ω∆]−, the Dunford-Pettis theorem

A.2.2 now implies that the sequence [ω∆]− is weakly compact in L1([0, T ]×T2). Furthermore, we again

have for any t1 < t2, with t1, t2 ∈ [0, T ]:

ˆ t2

t1

ˆ
T2

[ω∆]− dx dt ≤M(t2 − t2).

Passing to the limit ∆ → 0 (employing weak compactness, [ω∆]− ⇀ ω− in L1, and possibly after the

extraction of a further subsequence), it follows that also

ˆ t2

t1

ˆ
T2

ω− dx dt ≤M(t2 − t2).

Hence, we conclude that
´
T2 ω−(x, t) dx ≤ M for almost all t ∈ [0, T ]. Since ω− ≥ 0, this implies in

particular that ω− ∈ L∞([0, T ];L1(T2)).
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Using finally the uniform a priori bound

‖ω∆(·, t)‖H−1 ≤ ‖u∆(·, t)‖L2 ≤ ‖u‖L2 ,

we conclude that the numerical approximation converges to a Delort-type solution with limiting vorticity

ω(·, t) = ω+(·, t)− ω−(·, t) ∈ (M+ + L1) ∩H−1.

2.8 Numerical experiments

In this section, we will present a suite of numerical experiments to illustrate the convergence results proved

in the last section. We start with a brief description of some essential details of the implementation of

the spectral viscosity method.

2.8.1 Numerical implementation

We adapt the implementation of the spectral viscosity method (2.2.1), based on the the SPHINX code,

presented in chapter 1.4. We recall that in the SPHINX code, the spectral scheme is implemented in the

primitive formulation (2.2.1), and remark that in the numerical implementation, the domain has been

chosen to be a torus of unit periodicity, T 2 = [0, 1]2, rather than T2 = [0, 2π]2. Clearly, the results of the

previous sections remain true, up to rescaling.

For our simulations, the diffusion parameter εN in (2.2.1) is chosen to be of the form εN = ε/NG =

ε/(2N), where ε is a fixed constant and whereNG = 2N denotes the number of grid points {xi,j}i,j=1,...,NG ,

in each direction. This scaling for εN with NG has been found to be sufficient to cause the required

decay of the highest Fourier modes, to ensure vorticity control.

It has been suggested in [Tad89] (in the context of the Burgers equation), that the numerical stability

of the SV method is greatly enhanced in practice, if the Fourier coefficients Q̂k are smooth functions of

k. Therefore, for all following simulations carried out with the spectral viscosity method, we have set

Q̂k as a smooth cutoff function of the form

Q̂k = 1− exp (− (|k|/k0)
α

) ,

where k0 = N/3 (or k0 = N/8), and α = 18. The coefficients Q̂k so obtained are depicted in Figure 2.1a,

as a function of |k|/N . We remark that for |k| = 0.1N , we have Q̂k < 10−9, whereas for |k| = 0.4N , we

find Q̂k > 1 − 10−11. For all practical purposes, this implies that mN ≈ 0.1N , and that Q̂k effectively

changes from 0 to 1 over the interval |k| ∈ [mN , 4mN ] (rather than over the interval [mn, 2mN ]). As has

already been noted in Remark 2.2.1, the choice of a factor 2 is not essential for the theoretical results

established in the previous sections.

2.8.2 Sinusoidal vortex sheet

In our first numerical experiment, we consider approximations to a vortex sheet, i.e. vorticity concen-

trated along curves in the two-dimensional periodic domain. In particular, we take initial data of the

following form,

ω(x):=δ(x− Γ)−
ˆ
T 2

dΓ.

Note that we have added a second term to ensure that
´
ω dx = 0. We define the curve Γ as the graph

Γ:={ (x1, x2) |x1 ∈ [0, 1], x2 = d sin(2πx1) }, and we choose d = 0.2. We define a mollifier as the following
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(a) Coefficients Q̂k (b) Mollifier ψ

Figure 2.1: Coefficients defining the SV projection (left) and mollifier used in the approximation of the

vortex sheet initial data (right).

third order B-spline

ψ(r):=
80

7π

[
(r + 1)3

+ − 4(r + 1/2)3
+ + 6r3

+ − 4(r − 1/2)3
+ + (r − 1)3

+

]
.

The mollifier is depicted in Figure 2.1b. We define ψs(x):=s−2ψ(|x|/s). The numerical approximation

to the above initial data is obtained by setting

ω∆(xi,j , 0):=(ω ∗ ψρN )(xi,j),

where ρN determines the thickness (smoothness) of the approximate vortex sheet, and xi,j , i, j ∈
{1, . . . , NG} denote the grid points. The convolution at a point x ∈ T2 is computed by numerical

quadrature:

(ω ∗ ψρN )(x) =

ˆ
ψρN (x− y) dΓ(y)

=

ˆ 1

0

ψρN (x− (ξ, g(ξ)) )
√

1 + |g′(ξ)|2 dξ

≈ ρN
M

M∑
i=−M

ψρN (x− (ξi, g(ξi)) )
√

1 + |g′(ξi)|2,

with ξi = x1 + iρN/M are equidistant quadrature points in x1, and g(ξ) = d sin(2πξ), g′(ξ) = 2πd cos(ξ).

The additional factor
√

1 + |g′(ξ)|2 is the length element along the graph ξ 7→ (ξ, g(ξ)). For our simula-

tions, we have used M = 400.

Smoothened (fat) vortex sheet

First we consider a smoothened vortex sheet, where ρN is a fixed constant, independent of N . Con-

sequently, the resulting vorticity is smooth. The initial data (on a sequence of successively finer resolu-

tions) is shown in Figure 2.2. As seen from the figure, we have already resolved the vorticity at 512 grid

points (in each direction). Hence, this test case can serve as a benchmark for the performance of the

spectral viscosity method when the initial data (and solution) is smooth.
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(a) NG = 512 (b) NG = 1024 (c) NG = 2048

Figure 2.2: Numerical approximation of the initial data (vorticity) for the smoothened (fat) vortex sheet

with ρN = 0.05, at three different spectral resolutions.

We approximate the solution of the two-dimensional Euler equations with this initial data with two

variations of the spectral viscosity method. To this end, we first consider the pure spectral method by

setting ε = 0 in (2.2.1). This is justified as the initial data is smooth and the classical convergence theory

(see [BT15]) holds for the spectral method, without any added viscosity. In Figure 2.3, we present the

evolution of this smoothened vortex sheet over time, at the highest resolution of NG = 2048 grid points

in each direction. As seen from this figure, the initial (fat) vortex sheet has started folding by the time

t = 0.4 and has folded into two distinct vortices at time t = 0.8.

(a) t = 0.0 (b) t = 0.4 (c) t = 0.8

Figure 2.3: Evolution in time for the smoothened vortex sheet with the pure spectral method, i.e.

(ε, ρ) = (0, 0.05), at the highest resolution of NG = 2048.

The convergence of the pure spectral method in this case is presented in Figure 2.4 where we present

the approximated vorticities, at time t = 1, on three different levels of resolution. From this figure,

we observe that the pure spectral method appears to converge and the vorticity is very well resolved,

already at a resolution of NG = 512 grid points in each direction. This convergence can be quantified by

computing the following L2-error (of the velocity field):

ENG(t):=‖uNG(·, t)− uNG,max
(·, t)‖L2 , (2.8.1)

Here, NG,max = 2048 and uNG is the velocity field computed at resolution NG (grid size). In other

words, we compute error with respect to a reference solution computed on a very fine grid. This error

(as a function of resolution) in plotted in Figure 2.5 (A). We observe from this figure that there is con-

vergence with respect to increasing spectral resolution and the errors are already very low at resolutions
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of approximately 5122 grid points. We further analyze the performance of the numerical method by

computing the Fourier energy spectrum of ω∆ at the highest resolution, which we define by

E(κ):=
∑
|k|∞=κ

|ω̂k|2. (2.8.2)

The spectrum (for three different times) is shown in Figure 2.5 (B) and shows that the bulk of the energy

(with respect to the vorticity) is concentrated in the low Fourier modes (large scales). Moreover, this

spectrum decays very fast and there is almost no contribution from the high Fourier modes. This is along

expected lines as the underlying solution is smooth.

(a) NG = 512 (b) NG = 1024 (c) NG = 2048

Figure 2.4: Numerical approximations at three different spectral resolutions of the smoothened vortex

sheet with the pure spectral method, i.e. (ε, ρ) = (0, 0.05), at time t = 1

(a) L2-error (b) Energy spectrum

Figure 2.5: Results for the smoothened vortex sheet with the with the pure spectral method, i.e. (ε, ρ) =

(0, 0.05) at time t = 1. (A): Error of the approximate velocity field (2.8.1) in L2 (B): Energy spectrum

(2.8.2) for the highest resolution of NG = 2048 at different times.

Next, we approximate solutions of the two-dimensional Euler equations with the smoothened vortex

sheet initial data, but with a spectral viscosity method, i.e. with parameters described at the beginning

of this section, in particular with ε = 0.05 and the cut-off parameter k0 = N/3. The computed vorticities

(for successively refined spectral resolutions) at time t = 1 are shown in Figure 2.6. As seen from this

figure, the computed vorticities look almost indistinguishable from the vorticities computed with the
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pure spectral method (compare with Figure 2.4). This is further corroborated by the computed energy

spectrum (2.8.2), shown in Figure 2.7 (B), which is also indistinguishable from the pure spectral case

(Figure 2.5(B)). Moreover, we plot the L2 error of the velocity (2.8.1) in Figure 2.7 (A) and observe that

the method converges with increasing resolution. Furthermore, the convergence is cleaner than the one

seen for the pure spectral method case (compare Figure 2.7 (A) with Figure 2.5 (A)). This suggests that

adding a little bit of viscosity in the higher modes (as we do with the spectral viscosity method) might

improve observed convergence, even for underlying smooth solutions.

(a) NG = 512 (b) NG = 1024 (c) NG = 2048

Figure 2.6: Numerical approximations at three different spectral resolutions of the smoothened vortex

sheet with the spectral viscosity method, i.e. (ε, ρ) = (0.05, 0.05), at time t = 1

(a) L2-error (b) Energy spectrum

Figure 2.7: Results for the smoothened vortex sheet with the with the spectral viscosity method, i.e.

(ε, ρ) = (0.05, 0.05) at time t = 1. (A): Error of the approximate velocity field (2.8.1) in L2 (B): Energy

spectrum (2.8.2) for the highest resolution of NG = 2048 at different times.

Singular (thin) vortex sheet

Next, we consider an initial data which belongs to the Delort class by setting ρN = ρ/NG = ρ/(2N),

where ρ is a fixed constant. In particular, this implies that the vortex sheet becomes thinner with

increasing resolution, in contrast to the case of the smoothened (fat) vortex sheet (Figure 2.2). This can

also be observed from Figure 2.8, where we depict the initial data, for successively increasing resolutions

and ρ = 10. Moreover, this initial data is well approximated, as stipulated by the theory presented in

the last section.
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(a) NG = 512 (b) NG = 1024 (c) NG = 2048

Figure 2.8: Numerical approximation of the initial data (vorticity) for the singular vortex sheet with

ρN = 10/N , at three different spectral resolutions. Compare with the smoothened vortex sheet of Figure

2.2.

It is clear that a pure spectral method will not suffice in this case. In fact, our numerical experiments

showed that the pure spectral method was unstable. Hence, we have to use the spectral viscosity method

to approximate the solutions in this case. At the first instance, we consider a spectral viscosity method

with the parameters, θ = 0 in (2.4.5) and ε = 0.05. We remark that this particular case of the spectral

viscosity method, corresponds to a vanishing viscosity method as a Navier-Stokes type viscous damping

is applied to every (even low) Fourier modes, i.e. mN = 0 in (2.2.1). Consequently, this method will

only be (formally) first-order accurate. On the other hand, it can be expected to more stable than just

applying viscous damping to the high Fourier modes. The evolution of the approximate vortex sheet in

time, at the highest resolution of NG = 2048 is shown in Figure 2.9.

(a) t = 0.0 (b) t = 0.4 (c) t = 0.8

Figure 2.9: Evolution in time for the singular (thin) vortex sheet with the vanishing viscosity method,

i.e. (ε, ρ) = (0.05, 10), at the highest resolution of NG = 2048.

We observe from this figure that as in the case of the smoothened vortex sheet, the initial vortex

sheet rolls up and spirals around two vorticies, but with structures that are considerably thinner than in

the case of the smoothened vortex sheet (compare with Figure 2.3).

The convergence of the numerical method is investigated qualitatively in Figure 2.10. where we plot

the computed vorticities at time t = 1, at three successively finer resolutions and observe convergence as

the resolution is increased. However, we do notice that by time t = 1, there are small wave like instabilities

that are developing along both spiral arms of the rolled up sheet. Nevertheless, these structures do not

seem to impede convergence in L2 norm, which is depicted in Figure 2.11 (A). We also plot the computed

spectrum (2.8.2) in Figure 2.11 (B). We see from this figure that the spectrum, even for the initial data,
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decays much more slowly with wave number, when compared to the smoothened vortex sheet (Figure

2.5 (B)). Nevertheless, there seems to be enough dissipation in the system to damp the spectrum at high

wave numbers and enable a stable computation of the vortex sheet.

(a) NG = 512 (b) NG = 1024 (c) NG = 2048

Figure 2.10: Numerical approximations at three different spectral resolutions of the singular vortex sheet

with the vanishing viscosity method with (ε, ρ) = (0.05, 10), at time t = 1

(a) L2-error (b) Energy spectrum

Figure 2.11: Results for the singular (thin) vortex sheet with the with the vanishing viscosity method,

i.e. (ε, ρ) = (0.05, 10) at time t = 1. (A): Error of the approximate velocity field (2.8.1) in L2 (B):

Energy spectrum (2.8.2) for the highest resolution of NG = 2048 at different times.

Next, we approximate the singular vortex sheet with a spectral viscosity method, as described in

section 2.8.1. As for the smoothened vortex sheet, we consider a cut-off parameter k0 = N
3 and viscosity

parameter ε = 0.05. The time evolution of the computed vorticity with this scheme is shown in Figure

2.12. In contrast to the situation for the vanishing viscosity method (Figure 2.9), there is a marked

appearance of instabilities in the form of small wave like structures along the spiral arms by time t = 0.4.

By a later time of t = 0.8, these structures evolve into a large number of small vortices and the whole

sheet breaks up into small scale structures. The spontaneous emergence of these small scale numerical

instabilities clearly impedes convergence of this version of the spectral viscosity method. This lack of

convergence is seen from Figure 2.13 where plot the approximate vorticities, computed with this spectral

viscosity method at time t = 1, at three successively finer mesh resolutions. From this figure, we observe

that although the computed vortex sheet is stable at a moderate resolution of 5122 Fourier modes, it
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starts becoming unstable at the next level of refinement, i.e. NG = 1024, with the appearance of small

vortices along the outer spiral arms. These vortices appear to break up into even smaller structures at

the finest level of refinement, i.e. NG = 2048 and the whole sheet disintegrates into a soup of small

incoherent vortices. The lack of convergence (at least at later times) is also observed from Figure 2.14

(A) where we plot the L2 error (2.8.1),with respect to the velocity field at the finest resolution. Clearly,

there is no observed convergence at the time t = 0.8. The appearance of structures at small scales can

also be inferred from the spectrum (2.8.2), plotted in Figure 2.14 (B). In comparison to the spectrum

computed with the vanishing viscosity method (Figure 2.11 (B)), we observe that the spectrum with this

spectral viscosity method shows that a non-negligible amount of energy is contained in the small scales

(high wave numbers).

(a) t = 0.0 (b) t = 0.4 (c) t = 0.8

Figure 2.12: Evolution in time for the singular (thin) vortex sheet with the spectral viscosity method,

i.e. (ε, ρ, k0) = (0.05, 10, N/3), at the highest resolution of NG = 2048.

(a) NG = 512 (b) NG = 1024 (c) NG = 2048

Figure 2.13: Numerical approximations at three different spectral resolutions of the singular vortex sheet

with the spectral viscosity method with (ε, ρ, k0) = (0.05, 10, N/3), at time t = 1

These numerical results lead to an interesting dilemma. We have proved in Theorem 2.7.1 that, up

to a subsequence, the spectral viscosity method converges as the spectral resolution is increased. On the

other hand, we see in this experiment that this method may not converge, at least on moderately long

time scales. Is there a way to reconcile these two facts. We argue that there is no contradiction between

the theorem and the numerical observations. As it happens, the solutions of the Euler equations with

rough initial data are highly unstable [MB01]. In particular, very small differences in the initial data

can be amplified by possibly double exponential instabilities that lead to very large separation between

the underlying solutions, after even a short period of time. Computations of the Euler equations are
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necessarily approximate and it can happen that even small round off errors are amplified in time and

yield small scale vortical structures that eventually can lead to the disintegration of the sheet. These

instabilities are damped at low to moderate resolutions but will appear at very high resolutions. Moreover,

they tend to accumulate in time and only seems to appear at later times.

(a) L2-error (b) Energy spectrum

Figure 2.14: Results for the singular (thin) vortex sheet with the with the spectral viscosity method with

(ε, ρ, k0) = (0.05, 10, N/3) at time t = 1. (A): Error of the approximate velocity field (2.8.1) in L2 (B):

Energy spectrum (2.8.2) for the highest resolution of NG = 2048 at different times.

It is interesting to contrast the lack of convergence of the spectral viscosity method (Figure 2.14 (A))

with the apparent convergence of the vanishing viscosity method (Figure 2.11 (A)). Clearly the vanishing

viscosity method, at least for the parameters considered above, is significantly more dissipative than the

spectral viscosity method at the same resolution. This is seen from the computed spectrum (comparing

Figure 2.11 (B) and Figure 2.14 (B)) as we observe that the vanishing viscosity method damps the small

scale instabilities and prevents the transfer of energy into the smallest scales. However, the amount of

viscosity is εN = ε
N . Thus, increasing the resolution further with the vanishing viscosity method can

reduce the viscous damping and possibly to the instabilities building up and leading to the disintegration

of the sheet. Given that it is unfeasible to increase the resolution beyond NG = 2048, we mimic this

possible behavior by reducing the constant to ε = 0.01 in the vanishing viscosity method. The resulting

approximate vorticities at time t = 1, for three different resolutions is shown in Figure 2.15. We observe

from this figure that the results are very similar to the spectral viscosity method (compare with Figure

2.13) and the sheet disintegrates into a soup of small vortices at the highest resolution. Consequently,

there is no convergence of the velocity in L2 as seen from Figure 2.16 (A) and the spectrum shows that

more energy is transferred to the smallest scales now than it was when ε = 0.05 (compare with Figure

2.11 (B)).
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(a) NG = 512 (b) NG = 1024 (c) NG = 2048

Figure 2.15: Numerical approximations at three different spectral resolutions of the singular vortex sheet

with the vanishing viscosity method with (ε, ρ) = (0.01, 10), at time t = 1

(a) L2-error (b) Energy spectrum

Figure 2.16: Results for the singular (thin) vortex sheet with the with the vanishing viscosity method i.e.

(ε, ρ) = (0.01, 10) at time t = 1. (A): Error of the approximate velocity field (2.8.1) in L2 (B): Energy

spectrum (2.8.2) for the highest resolution of NG = 2048 at different times.

The lack of convergence of computations of singular vortex sheets, on account of the formation

and amplification of small scale instabilities, is well known and can be traced back to the pioneering

work of Krasny [Kra86b, Kra86a] and reference therein. In those papers, the author computed singular

vortex sheets by solving the Birkhoff-Rott equations of vortex dynamics and was able to ensure stable

computation by controlling the round-off errors with an adaptive increase of the arithmetic precision

of the computation. We believe that this fix is only relevant for a few levels of increasing resolution

and ultimately at very high resolutions, the vortex sheet will disintegrate into smaller vortices. This

is already evidenced by our computations at different resolutions, at different times and with different

values of the viscosity parameter ε. Paraphrasing [MB01], the phenomenon of the exponential growth

of small instabilities ‘is a feature of the underlying equation itself as opposed to an instability of the

numerical method.’
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2.9 Discussion

In this chapter, we have considered the two-dimensional incompressible Euler equations. In contrast

to the three-dimensional case, global well-posedness results are available in two space dimensions. In

particular, existence and uniqueness of weak solutions can be proved under the assumption that the initial

vorticity is in L∞. Moreover, global (in time) existence of weak solutions is proved for significantly less

regular initial data, for instance when the initial vorticity belongs to the so-called Delort class. Such

rough initial data are encountered in practice when one considers the evolution of vortex sheets in an

ideal fluid.

Although many different numerical methods have been developed to approximate the incompressible

Euler equations, convergence results for these schemes have mostly been available in the regime where

the initial data and the underlying solutions were smooth. Notable exceptions were considered in [LT97]

and [LFNLT00], where the authors prove convergence of central finite difference schemes for the vorticity

formulation of the equations under the assumption that the initial vorticity is in Lp, for 1 < p ≤ ∞, and

more generally if the vorticity belongs to a rearrangement invariant space that is compactly supported

in H−1. For vortex methods [LX95, Sch96, LX01], convergence is known when the initial vorticity is a

bounded measure of definite sign, or if the vorticity is in L(logL) without any sign restriction. However,

no rigorous convergence results are available for the case of Delort class initial data. Thus, there has so

far remained a considerable gap between the mathematical existence results and rigorous convergence

results for numerical approximations.

In this chapter, based on the original publication [LM20], we have proposed a spectral viscosity

method to approximate the two-dimensional Euler equations. Based on the spectral viscosity framework

of Tadmor [Tad89] and references therein, our method is a spectral method that discretizes the Euler

equations in Fourier space. Viscosity (damping) is only added in the high wave-number Fourier modes.

Consequently, the method is formally spectrally (superpolynomially) accurate for smooth solutions. Until

now, convergence of this method was only proved for smooth solutions of the incompressible Euler

equations [BT15].

We prove that the spectral viscosity method converges to a weak solution as long as the initial data

belongs to the Delort class. This also closes the gap between available existence results for the underlying

PDE and convergence results for numerical approximation.

The proof relies on the following key ingredients:

• The equivalence of the spectral viscosity method for the velocity-pressure formulation (2.2.1) and

the vorticity formulation (2.2.5). This equivalence holds for any resolution i.e. truncation of the

underlying Fourier expansion.

• A spectral decay estimate for the high wave-number modes.

• A patching up of long-time estimates on the vorticity (obtained by the spectral decay estimate)

and short-time estimates.

• A novel approximation of rough initial data that amounts to resolving the initial singularities.

• Application of the compensated compactness theorems of Delort by controlling the negative part

of the approximated vorticity. In particular, we ensure that the negative part of the vorticity, as

approximated by the spectral viscosity method, cannot concentrate on sets of small measure.

It is unclear if these ingredients, particularly the equivalence between the velocity-pressure and vorti-

city formulations, can be transferred to other numerical methods. Thus, for the time being, the spectral

viscosity method is the only method that can rigorously be proved to converge to weak solutions for the
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incompressible Euler equations with rough initial data. As the results summarized in this chapter are

based on a spectral Fourier expansion, they are inherently limited to the periodic case. It is not clear,

whether the method can be extended to other boundary conditions, and in particular to schemes provid-

ing numerical approximations of flows in the whole plane. Furthermore, due to the lack of theoretical

existence results on domains with boundary, a convergence proof on such domains appears to be out of

reach at present.

We also present representative numerical experiments to test the proposed spectral viscosity method.

We observe from the experiments that the spectral viscosity method performs as well as the pure (stand-

ard) spectral method for smooth initial data. We also computed vortex sheets with the spectral and

vanishing viscosity methods and observed convergence to complicated roll-ups of the sheet, particularly

for small times. However for very high spectral resolutions and for long times, the computed solutions

contained small scale instabilities that amplified (either with time or in resolution or both) and led to the

disintegration of the vortex sheet into a soup of small vortices. We argue that this phenomena is generic

to such rough data and cannot be alleviated at the level of numerical computations, particularly at very

high resolutions. On the other hand, many papers in recent years such as [FMT16, LM15, Leo18] and

references therein, have presented computations of vortex sheets and demonstrated that although each

deterministic simulation can be unstable, yet statistical quantities (ensemble averages) are computed

robustly. This implies that statistical notions of solutions such as dissipative measure-valued solutions

[DM87a, LM15, FMT16] and the more recent statistical solutions [FLM17, FW18, LMPP21b] might be

more appropriate as a solution framework for the incompressible Euler equations, certainly from the

perspective of numerical approximation. The concept of statistical solutions of the incompressible Euler

equations will be discussed in detail in the next chapter.



Chapter 3

Statistical solutions

3.1 Introduction

In the last chapter, we have seen that convergence results for carefully designed numerical schemes such

as the spectral viscosity scheme can be obtained for the two-dimensional incompressible Euler equations,

even for rough initial data such as signed vortex sheets (i.e. with distinguished sign). These convergence

results are a precise analogue of the available analytic existence theory, providing sufficient control on the

numerical approximate solution sequence to ensure that any limit of this sequence is a weak solution of

the incompressible Euler equations, and satisfying all known natural a priori bounds. However, even in

the two-dimensional case, the available existence theory does not include many flows of interest, such as

unsigned vortex sheets, i.e. vortex sheets with varying sign of the vorticity, or even rougher initial data

such as L2-energy admissible u which are only Hölder continuous. Available existence results for rough

solutions also do not extend to the three-dimensional case, since the vorticity equation includes a vortex-

stretching term which cannot be controlled (cf. chapter 1.3.2), and therefore a priori bounds on the

vorticity are no longer available. Furthermore, as seen in the numerical experiments of the last chapter,

even when rigorous convergence (or rather, compensated compactness) results are available, this does

not necessarily mean that strong convergence (in L2) of the numerically computed solutions is observed

upon mesh refinement. In fact, numerical experiments considering irregular initial data have found a

lack of convergence of numerical schemes in any conventional, deterministic sense. Similar results have

also been found for compressible, inviscid models such as the compressible Euler equations and other

hyperbolic conservation laws [FKMT17, FLMW20]. This lack of convergence can be generally attributed

to the appearance of additional small-scale instabilities, which are revealed only upon an increase of the

numerical resolution, and which prevent convergence in the limit. Closely related to this non-convergence

of numerical schemes is the lack of general stability and uniqueness estimates for weak solutions, strongly

indicating that the underlying issues are not only related to numerical discretization errors, but may

represent a more fundamental feature of inviscid, turbulent models such as the incompressible Euler

equations. In the present chapter, we will therefore go beyond the classical paradigm of deterministic

weak solutions, formalizing and investigating a statistical solution concept for the incompressible Euler

equations, following similar work in [FLM17] in the context of hyperbolic conservation laws and a related

formulation [FW18] in the context of the incompressible Euler equations. The present chapter will follow

the original publication [LMPP21b].

47
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3.1.1 Measure-valued and statistical solutions

Given the lack of well-posedness results for weak solutions and the lack of convergent numerical ap-

proximations, there is considerable scope for the design of alternative solution frameworks for (1.1.1).

One such framework is that of measure-valued solutions [DM87b], where the sought for solutions are no

longer functions but space-time parameterized probability measures on state space. The global exist-

ence of measure-valued solutions, even in three space dimensions, was shown in [DM87b] and has been

reviewed in chapter 1.3.3 of the present thesis (cf. Theorem 1.3.10). A convergent numerical method (of

the spectral viscosity type) and an efficient algorithm to compute measure-valued solutions was proposed

in [LM15]. However, measure-valued solutions are generically non-unique. This holds true even for the

much simpler case of the one-dimensional Burgers equation [Sch90]. In [FLM17], the authors implicated

the lack of information about multi-point (spatial) correlations in the non-uniqueness of measure-valued

solutions. Moreover, they also proposed a framework of statistical solutions as an attempt to recover

uniqueness.

In the formulation of [FLM17], statistical solutions are time-parameterized probability measures on

Lp, for 1 ≤ p <∞, that are consistent with the underlying PDE in a weak sense. They were shown to be

equivalent to a family of correlation measures, where the k-th member of this family is a Young measure

representing correlations (or joint probabilities) of the solution at k distinct spatial points. Thus, one can

interpret statistical solutions as measure-valued solutions, augmented with information about all possible

multi-point correlations. The consideration of multi-point statistics is one of the main differences of the

present work with earlier contributions such as [LM15], which focused on the computation of a measure-

valued solution, i.e. single-point statistics. A priori, statistical solutions contain much more information

than measure-valued solutions. Moreover, statistical solutions encode statistical (ensemble averaged)

properties of the solutions of the underlying PDE. Thus, statistical solutions provide a suitable framework

for uncertainty quantification (UQ) [FLM17, AM18]. This is particularly relevant for the incompressible

Euler equations as it is well-known that the flow of fluids, at very high-Reynolds numbers, can be

turbulent and only averaged (or statistical) properties can be inferred from measurements [Fri95].

Statistical solutions for scalar conservation laws were considered in [FLM17], wherein well-posedness

was shown under an entropy condition. In particular, information about infinitely many correlations

was necessary to ensure uniqueness. In [FLM18, FLMW20], a Monte Carlo algorithm, based on the

ensemble averaging algorithm of [FKMT17], was proposed and analyzed for scalar conservation laws

and multi-dimensional hyperbolic systems of conservation laws, respectively. In contrast to [FLMW20]

where multi-dimensional hyperbolic systems of conservation laws were considered, we focus on the case

of incompressible Euler equations in this chapter.

Independent notions of statistical solutions of the incompressible Navier-Stokes equations have been

proposed in [FRT10] and in [VF77]. While the statistical solutions of Foias, Rosa and Temam [FRT10]

are formulated in terms of the evolution equations of integrals of functionals
´
H

Φ(u) dµt(u) on a suitable

Hilbert space H, the statistical solutions in the present work are formulated in terms of an infinite family

of PDEs for the multi-point correlation measures νkt,x1,...,xk
(ξ1, . . . , ξk). These correlation measures

encode the probability of the flow field u(t, x) attaining certain values at points x1, . . . , xk and time

t, i.e. one might informally write

νkt,x1,...,xk
(ξ1, . . . , ξk) = Prob [u(x1, t) = ξ1, . . . ,u(xk, t) = ξk] .

Despite the apparent differences between the current work and [FRT10], the two approaches can be

related to each other, using the correspondence between multi-point correlation measures and infinite-

dimensional measures established in [FLM17].



3.2. TIME-PARAMETERIZED PROBABILITY MEASURES ON L2(D;RD) 49

3.1.2 Overview of this chapter

The main goal of this chapter is to review a statistical solution concept for the incompressible Euler

equations (1.1.1) introduced in [LMPP21b], where a notion of dissipative statistical solutions was pro-

posed. Statistical solutions are formulated as a time-parametrized probability measure on L2(D;Rd)
on the underlying domain D, whose k-point correlations are consistent with the incompressible Euler

equations in a suitable sense. Well-posedness of such dissipative statistical solutions can be proven in

special cases, including short-time well-posedness results and global well-posedness results for sufficiently

regular initial data in two spatial dimensions. This chapter will also review a numerical algorithm, based

on Monte-Carlo ensemble averaging and the spectral viscosity discretization, to approximate statistical

solutions, showing that the approximations converge in an appropriate topology to a statistical solution,

under reasonable and verifiable hypotheses on the numerical method. A selection of numerical experi-

ments will be used to illustrate interesting properties of the computed statistical solutions and to verify

the theory. For further numerical experiments, the interested reader is referred to the original publication

[LMPP21b].

The rest of this chapter is organized as follows: in section 3.2, we present time-parameterized prob-

ability measures on L2(D;Rd) and characterize convergence in a suitable topology on this space of

measures. In section 3.3, we define statistical solutions of (1.1.1) and present partial well-posedness

results. The numerical approximation of statistical solutions and its convergence is presented in section

3.4 and numerical experiments are summarized in section 3.5.

3.2 Time-Parameterized Probability Measures on L2(D;Rd)

As mentioned in the introduction, statistical solutions are time-parameterized probability measures on

L2, where L2 energy bound is enforced by the incompressible Euler equations. In this section, we will

describe time-parameterized probability measures, characterize them and describe a suitable topology on

them. Although different in several details, similar considerations have previously appeared in different

contexts in [FLM17, FLMW20]. To streamline our discussion we will merely state the core results in

this section, and provide the main ideas of the proofs where appropriate. Complete and detailed proofs

of these results can be found in the publication [LMPP21b], on which this chapter is based.

Given a (Borel) probability measure µ ∈ P(L2
x) on L2

x, we define the 2nd order structure function as

the following quantity:

S2(µ; r) :=

(ˆ
L2
x

ˆ
D

 
Br(0)

|u(x+ h)− u(x)|2 dh dx dµ(u)

)1/2

. (3.2.1)

The structure function S2(µ; r) provides a measure of the average two-point correlation of the underlying

functions, a quantity that is natural to consider in the context of turbulent flows [Fri95]. The following

results shows that structure functions are also closely related compactness of probability measures in

P(L2
x):

Theorem 3.2.1. Let F ⊂ P(L2
x) be a family of probability measures on L2

x. Assume that there exists

M > 0, such that µ(BM (0)) = 1 for all µ ∈ F , where BM (0) = {u ∈ L2
x | ‖u‖L2

x
< M}. Then the

following statements are equivalent:

(i) F ⊂ L2
x has compact closure (with respect to the weak topology),

(ii) There exists a modulus of continuity φ, such that we have a uniform bound on the structure function:

S2(µ; r) ≤ φ(r), ∀µ ∈ F .
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The proof of this theorem can be found in [LMPP21b, Appendix A]. Rather than discussing the details

of the proof, we point out that uniform bounds on the structure function are precisely a probabilistic

version of the equicontinuity property of Kolmogorov’s compactness theorem on Lp spaces, and hence

this result may not be unexpected, see also the next remark.

Remark 3.2.2. Theorem 3.2.1 is closely related to Kolmogorov’s characterization of compact subset of

L2
x: Indeed, there is a natural isometric embedding

(L2
x, ‖ · ‖L2

x
) ↪→ (P1(L2

x), W1), u 7→ δu.

Thus, a bounded set K ⊂ L2
x has compact closure if, and only if, its image under this embedding {δu |u ∈

K} ⊂ P(L2
x) has compact closure. Using Theorem 3.2.1, we conclude that a bounded set K ⊂ L2

x

has compact closure if, and only if, satisfies Kolmogorov’s equicontinuity property, which corresponds to

property (2) in Theorem 3.2.1.

3.2.1 Time parameterized probability measures

As mentioned before, statistical solutions are time-parameterized probability measures, in the sense of

the following definition:

Definition 3.2.3. We denote by L1
t (P) = L1([0, T );P) the space of weak-∗ measurable mappings [0, T )→

P(L2
x), namely mappings t 7→ µt such t 7→

´
L2
x
F (u) dµt(u) is measurable for a.e t ∈ [0, T ), for all

F ∈ Cb(L2
x) and with the property that

ˆ T

0

ˆ
L2
x

‖u‖L2
x
dµt(u) dt <∞.

Denoting by δ0 the Dirac measure concentrated on 0 ∈ L2
x, the above condition can equivalently be

written as ˆ T

0

W1(δ0, µt) dt <∞.

This leads us to define a natural metric on L1([0, T );P) by

dT (µt, νt) :=

ˆ T

0

W1(µt, νt) dt. (3.2.2)

We then have the following proposition, whose proof is presented in [LMPP21b, Appendix B], closely

mimicking the proof of completeness of Lp-spaces found in many textbooks on measure-theory.

Proposition 3.2.4. The metric space (L1
t (P), dT ) is a complete metric space.

Our next objective is to find natural sufficient conditions for compactness on L1
t (P). To this end, it

would be natural to extend the compactness Theorem 3.2.1 to time-parameterized probability measures

and find a suitable version of the weak topology. This necessitates formalizing some notion of time-

continuity or time-regularity of underlying functions.

Fix a (time-independent) divergence-free test function ϕ ∈ C∞c (D;Rd). Formally, solutions of the

incompressible Euler equations (1.1.1) satisfy for s, t ∈ [0, T ),

ˆ
D

[u(x, t)− u(x, s)] ·ϕ(x) dx =

ˆ t

s

ˆ
D

u(x, τ)⊗ u(x, τ) : ∇ϕ(x) dx dτ,
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so that ∣∣∣∣ˆ
D

[u(x, t)− u(x, s)] ·ϕ(x) dx

∣∣∣∣ ≤ C‖u‖L∞t L2
x
‖∇ϕ‖L∞x |t− s|.

Furthermore, we have a natural energy bound ‖u‖L∞t L2
x
≤ ‖u‖L2

x
, in terms of the initial data u. If L > 0

is large enough such that by Sobolev embedding HL
x = HL(D;Rd) ↪→ C1(D;Rd), then it follows that∣∣∣∣ˆ

D

[u(x, t)− u(x, s)] ·ϕ(x) dx

∣∣∣∣ ≤ C‖ϕ‖HLx |t− s|,
where the constant C > 0 depends only on the initial data. Taking the supremum over all ϕ ∈ HL

x with

‖ϕ‖HLx ≤ 1, it follows, at least formally, that

‖u(t)− u(s)‖H−Lx ≤ C|t− s|, ∀ s, t ∈ [0, T ). (3.2.3)

Given these considerations, it is natural to assume that statistical solutions of the Euler equations

satisfy some version of this time continuity. A formalization is provided in the following definition,

Definition 3.2.5. A weak-∗ measurable, time-parameterized probability measure t 7→ µt ∈ P(L2
x) is

called time-regular, if there exists a constant L > 0, and a mapping s, t 7→ πs,t ∈ P(L2
x×L2

x), such that

for almost all s, t ∈ [0, T ):

• The measure πs,t is a transport plan from µs to µt,

• There exists a constant C > 0, such that πs,t satisfies the following regularity condition
ˆ
L2
x×L2

x

‖u− v‖H−Lx dπs,t(u,v) ≤ C|t− s|.

A family {µ∆
t }∆>0 of time-parameterized probability measures is uniformly time-regular, provided

that each µ∆
t is time-regular, and the constants L,C > 0 above can be chosen independently of ∆ > 0.

Remark 3.2.6. Note that if µt is of the form

µt =
1

J

J∑
j=1

δuj(t),

with t 7→ u(t) weak solutions of the incompressible Euler equations satisfying (3.2.3), then we can define

suitable transfer plans

πs,t =
1

J

J∑
j=1

δuj(s) ⊗ δuj(t).

The time-regularity property follows from the estimate (3.2.3) for the uj (cp. also the definition of an

approximate solution sequence, Definition 1.3.5 in chapter 1).

We now show that a family µ∆
t , ∆ > 0, of uniformly time-regular probability measures is relatively

compact, provided that they satisfy a time-averaged version of the second property of Theorem 3.2.1.

To this end, we define the time-averaged structure function of (t 7→ µt) ∈ L1
t (P) (weak-∗ measurable) as

the following quantity (where the value ∞ is allowed):

ST2 (µt; r) :=

(ˆ T

0

ˆ
L2
x

ˆ
D

 
Br(0)

|u(x+ h)− u(x)|2 dh dx dµt(u) dt

)1/2

. (3.2.4)

The main result of the present section is the following compactness result:
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Theorem 3.2.7. Let µ∆
t ∈ L1

t (P) be a family of uniformly time-regular probability measures, for ∆ > 0,

for which there exists M > 0, such that µ∆
t (BM (0)) = 1 for all ∆ > 0, a.e. t ∈ [0, T ). Here BM (0) :=

{‖u‖L2
x
< M}. If there exists a modulus of continuity φ(r) such that

ST2 (µ∆
t ; r) ≤ φ(r), ∀∆ > 0,

then µ∆
t is relatively compact in L1

t (P).

The idea behind Theorem 3.2.7 is to use the spatial regularity of the sequence to show that the weak

time-regularity assumption of Definition 3.2.5 implies a similar time-regularity with respect to a stronger

spatial norm, where H−L is replaced by L2. The details of the required technical argument are provided

in [LMPP21b, Appendix C], and utilize ideas of the folklore Aubin-Lions lemma and the characterization

of compact subsets in Bochner spaces of [Sim86]. Rather than repeating the lengthy technical argument

in this thesis, we will illustrate the main ideas at the deterministic level in the next remark:

Remark 3.2.8 (Leveraging time-regularity). Suppose we are given a bounded family of functions u ∈
F ⊂ L2

x,t(D× [0, T ]), which satisfies a uniform Lipschitz bound supu∈F ‖u( · , t)−u( · , s)‖H−Lx ≤ C|s− t|
for some (large) L > 0. Assume, in addition, that there exist M, δ > 0, such that

´ T
0
‖u( · , t)‖2Hδx dt ≤M .

Note that the latter condition is a simple way to ensure uniform control supu∈F S2(u; r) ≤Mrδ, on the

structure functions (here, this stronger condition is assumed to simplify the argument). Then, using the

interpolation inequality between H−Lx and Hδ
x, it follows that

‖u( · , t)− u( · , s)‖L2
x
≤ ‖u( · , t)− u( · , s)‖θ

H−Lx
‖u( · , t)− u( · , s)‖1−θ

Hδx
,

where θ = δ/(L + δ) ∈ (0, 1) is chosen such that −θL + (1− θ)δ = 0. This implies that for any (small)

h > 0, we have

ˆ T−h

0

‖u( · , t+ h)− u( · , t)‖2L2
x
dt

(Interpol.)
↓
≤ (C|h|)θ

ˆ T−h

0

‖u( · , t+ h)− u( · , t)‖1−θ
Hδx

dt

(Hölder)
↓
≤ CθT (1+θ)/2|h|θ

(ˆ T−h

0

‖u( · , t+ h)− u( · , t)‖2Hδx dt

)(1−θ)/2

(Hδ-bound)
↓
≤ CθT (1+θ)/2(2M)(1−θ)/2|h|θ.

In particular, this shows that supu∈F
´ T−h

0
‖u( · , t + h) − u( · , t)‖2L2

x
dt . |h|θ, and hence F satisfies a

temporal equi-integrability condition in L2
t,x, in addition to the spatial equi-integrability ensured by the

Hδ
x-bound. From this, it immediately follows that F ⊂ L2

t,x is relatively compact [Sim86]. The proof of

Theorem 3.2.7 relies on the same basic ideas, but requires several additional technical ingredients, and

an extension to the statistical context. We refer the interested reader to [LMPP21b, Appendix C] for the

details of the required argument.

Let us also remark that a limit µ∆
t → µt of a uniformly time-regular sequence µ∆

t is itself time-regular

(see [LMPP21b, Appendix D] for the straight-forward proof):

Proposition 3.2.9. Let µ∆
t ∈ L1

t (P) be a family of uniformly time-regular probability measures, for

∆ > 0. And such that there exists M > 0 with µ∆
t (BM (0)) = 1 for all ∆ > 0, a.e. t ∈ [0, T ), where

BM (0) := {‖u‖L2
x
< M}. If µ∆

t → µt in L1
t (P), then µt is time-regular in the sense of Definition 3.2.5,

with the same time-regularity constants C,L > 0 as for the family µ∆
t .
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3.2.2 Time-dependent correlation measures and their compactness

It has been shown in [FLM17] that there is a one-to-one correspondence between probability measures on

L2
x and so-called correlation measures. Correlation measures are defined as infinite hierarchies of Young

measures, taking into account spatial correlations, or more precisely,

Definition 3.2.10. A correlation measure is a collection ν = (ν1, ν2, . . . ) of maps νk : Dk → P(Uk),

where U = Rd denotes the state-space, satisfying the following properties:

1. Weak-∗ measurability: Each map νk : Dk → P(Uk) is weak-∗-measurable, in the sense that the

map x 7→ 〈νkx , f〉 from x ∈ Dk into R is Borel measurable for all f ∈ C0(Uk) and k ∈ N. In other

words, νk is a Young measure from Dk to Uk.

2. L2-boundedness: ν is L2-bounded, in the sense that

ˆ
D

〈ν1
x, |ξ|2〉 dx < +∞. (3.2.5)

3. Symmetry: If σ is a permutation of {1, . . . , k} and f ∈ C0(Rk) then 〈νkσ(x), f(σ(ξ))〉 = 〈νkx , f(ξ)〉
for a.e. x ∈ Dk. Here, we denote σ(x) = σ(x1, x2, . . . , xk) = (xσ1 , xσ2 , . . . , xσk). σ(ξ) is denoted

analogously.

4. Consistency: If f ∈ C0(Uk) is of the form f(ξ1, . . . , ξk) = g(ξ1, . . . , ξk−1) for some g ∈ C0(Uk−1),

then 〈νkx1,...,xk
, f〉 = 〈νk−1

x1,...,xk−1
, g〉 for almost every (x1, . . . , xk) ∈ Dk.

5. Diagonal continuity (DC): If Br(x) :=
{
y ∈ D : |x− y| < r

}
then

lim
r→0

ˆ
D

 
Br(x)

〈ν2
x,y, |ξ1 − ξ2|2〉 dy dx = 0. (3.2.6)

Each element νk is called a correlation marginal. We let L2 = L2(D,U) denote the set of all correl-

ation measures from D to U .

It has been shown in [FLM17], that if µ ∈ P(L2
x), then we can associate to it a unique correlation

measure ν, with the interpretation that for A1, . . . , Ak ⊂ U :

µ[u(xi) ∈ Ai, i = 1, . . . , k] = νkx1,...,xk
(A1 × · · · ×Ak).

More precisely, we have the following theorem [FLM17]:

Theorem 3.2.11. For every correlation measure ν ∈ L2(D,U) there exists a unique probability measure

µ ∈ P(L2(D;U)) satisfying ˆ
L2
x

‖u‖2L2
x
dµ(u) <∞, (3.2.7)

such that ˆ
Dk

ˆ
Uk
g(x, ξ) dνkx(ξ) dx =

ˆ
L2
x

ˆ
Dk

g(x,u(x)) dx dµ(u), (3.2.8)

for all g ∈ C0(Dk × Uk) and k ∈ N (where u(x) denotes the vector (u(x1), . . . , u(xk))). Conversely, for

every probability measure µ ∈ P(L2(D;U)) with finite moment (3.2.7), there exists a unique correlation

measure ν ∈ L2(D,U) satisfying (3.2.8). The relation (3.2.8) is also valid for any measurable g : D×U →
R such that |g(x, ξ)| ≤ C|ξ|2 for a.e. x ∈ D.
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Moreover, the moments

mk : Dk 7→ U⊗k, mk(x) = 〈νkx , ξ1 ⊗ ξ2 ⊗ . . .⊗ ξk〉, (3.2.9)

uniquely determine the correlation measure ν and hence the underlying probability measure µ.

Remark 3.2.12. We note that Theorem 3.2.11 effectively expresses a form of Fubini’s theorem, and

abusing notation, (3.2.8) might have been stated as

ˆ
Dk

(ˆ
L2
x

g(x,u(x1), . . . ,u(xk)) dµ(u)

)
dx =

ˆ
L2
x

(ˆ
Dk

g(x,u(x1), . . . ,u(xk)) dx

)
dµ(u).

The central difficulty in deriving Theorem 3.2.11 is that point-wise evaluations are not well-defined on

L2
x, and hence

´
L2
x
g(x,u(x1), . . . ,u(xk)) dµ(u) needs to be interpreted in the appropriate way, leading to

correlation marginals based on Young measures [FLM17].

The following result is obtained as a consequence of Theorem 3.2.7 (for a proof, see [LMPP21b,

Appendix E]):

Theorem 3.2.13. Let {µ∆
t }∆>0 be a family of uniformly time-regular probability measures in L1

t (P),

and assume that there exists M > 0, such that µ∆
t (BM ) = 1 for all ∆ > 0 and t ∈ [0, T ). Let

ν∆
t = (ν∆,1

t , ν∆,2
t , . . . ) denote the corresponding time-parameterized correlation measures. If there ex-

ists a uniform modulus of continuity φ(r), such that

ˆ T

0

ˆ
D

 
Br(x)

〈ν∆,2
t,x,y, |ξ1 − ξ2|2〉 dy dx dt ≤ φ(r), ∀∆ > 0,

then {µ∆
t }∆>0 is relatively compact in L1

t (P), i.e. there exists a subsequence ∆j → 0 (j ∈ N), and a

time-parameterized probability measure µt ∈ L1
t (P), such that

ˆ T

0

W1(µ
∆j

t , µt) dt→ 0, as j →∞.

Furthermore, denoting by νt = (ν1
t , ν

2
t , . . . ) the correlation measure corresponding to the limit µ, we

have

• L2-bound:
´
D
〈ν1
t,x, |ξ|2〉 dx ≤M2, for a.e. t ∈ [0, T ),

• the two-point correlations satisfy

ˆ T

0

ˆ
D

 
Br(x)

〈ν2
t,x,y, |ξ1 − ξ2|2〉 dy dx dt ≤ φ(r),

• We define admissible observables, in terms of test functions g ∈ C([0, T )×Dk×Uk), which satisfy

the following bounds,

|g(t, x, ξ)| ≤ C
k∏
i=1

(
1 + |ξi|2

)
,

|g(t, x, ξ)− g(t, x, ξ′)| ≤ C
k∑
i=1

Πi(ξ, ξ
′)
√

1 + |ξi|2 + |ξ′i|2|ξi − ξ
′
i|,

(3.2.10)
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where C > 0 is a fixed constant, independent of t ∈ [0, T ), x ∈ Dk and ξ, ξ′ ∈ Uk. Here Πi(ξ, ξ
′)

is defined as

Πi(ξ, ξ
′) :=

k∏
j=1
j 6=i

(
1 + |ξj |2 + |ξ′j |2

)
, ξ, ξ′ ∈ Uk. (3.2.11)

Then, these admissible observables converge strongly in L1
t,x, in the sense that

lim
j→∞

ˆ T

0

ˆ
Dk
|〈ν∆j ,k

t,x , g(x, ξ)〉 − 〈νkt,x, g(x, ξ)〉| dx dt = 0,

A particular point of interest in the statement of previous theorem is the characterization of a suitable

set of “admissible observables”, whose convergence is assured by the convergence µ∆
t → µt in L1

t (P).

Remark 3.2.14. We note that the uniform modulus of continuity estimate in Theorem 3.2.13 can

equivalently be expressed as

ST2 (µ∆
t ; r)2 =

ˆ T

0

ˆ
L2
x

ˆ
D

 
Br(0)

|u(x+ h)− u(x)|2 dh dx dµ∆
t (u) dt ≤ φ(r),

for all ∆ > 0.

3.3 Dissipative statistical solutions and their well-posedness

Given the discussion on time-parameterized probability measures in the last section, we can now define

statistical solutions of (1.1.1) as,

Definition 3.3.1. A time-parameterized probability measure µt ∈ L1
t (P) is a statistical solution of

the incompressible Euler equations with initial data µ, if t 7→ µt is time-regular, and the associated

correlation measure νt satisfies:

1. Given ϕ1, . . . ,ϕk ∈ C∞([0, T )×D;Rd) with div(ϕi) = 0 for all i = 1, . . . , k, set

ϕ(t, x) = ϕ1(t, x1)⊗ · · · ⊗ϕk(t, xk), where x = (x1, . . . , xk).

Let us denote F (ξ) := ξ ⊗ ξ and define a contraction by

(ξ1 ⊗ · · · ⊗ F (ξi)⊗ · · · ⊗ ξk) : ∇xiϕ =
[∏

j 6=i (ξj ·ϕj)
]

(ξi · ∇xiϕi) · ξi.

Then νk = νkt,x1,...,xk
satisfies

ˆ T

0

ˆ
Dk

{
〈νk, ξ1 ⊗ · · · ⊗ ξk〉 : ∂tϕ

+
∑
i

〈νk, ξ1 ⊗ · · · ⊗ F (ξi)⊗ · · · ⊗ ξk〉 : ∇xiϕ
}
dx dt

+

ˆ
Dk
〈νk, ξ1 ⊗ · · · ⊗ ξk〉 : ϕ(0, x) dx = 0.

Here ν is the correlation measure corresponding to the initial data µ.
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2. For all ψ ∈ C∞c (D), we haveˆ
D2

〈ν2
t,x1,x2

, ξ1 ⊗ ξ2〉 : (∇ψ(x1)⊗∇ψ(x2)) dx1 dx2 = 0,

for a.e. t ∈ [0, T ).

The above PDEs specify the time-evolution of the moments (3.2.9) for all k and by Theorem 3.2.11,

determine the evolution of the probability measure µt.

Remark 3.3.2. As ν1 above is a standard Young measure, it is straightforward to observe that the

corresponding identity for the evolution of ν1 corresponds to the definition of measure-valued solution

of (1.1.1), in the sense of Definition 1.3.8 in chapter 1, under the further assumption that there is no

concentration. Hence, one can think of statistical solutions as measure-valued solutions coupled with

information about all possible multi-point correlations.

We first show that the second property of Definition 3.3.1 is equivalent to the requirement that µt be

supported on divergence-free vector fields for almost all t.

Lemma 3.3.3. Let µ ∈ P(L2
x), with associated correlation measure ν. Then µ is concentrated on

divergence-free vector fields if, and only if,ˆ
D2

〈ν2
x1,x2

, ξ1 ⊗ ξ2〉 : (∇ψ(x1)⊗∇ψ(x2)) dx1 dx2 = 0,

for all ψ ∈ C∞c (D).

Sketch of proof. Let ψ ∈ C∞c (D). Then we have the following identity

ˆ
L2
x

[ˆ
D

u · ∇ψ dx
]2

dµ(u) =

ˆ
D

〈
ν2
x1,x2

, ξ1 ⊗ ξ2

〉
: (∇ψ(x1)⊗∇ψ(x2)) dx1 dx2. (3.3.1)

Therefore the stated condition in this lemma is equivalent to the claim that for all ψ ∈ C∞c (D), we

have
´
D
u · ∇ψ dx = 0, µ-a.s.. A simple continuity argument based on a countable family of suitable

test functions ψ then implies that this is in fact equivalent to the statement that, for µ-a.e. u, we have´
D
u · ∇ψ dx = 0 for all ψ ∈ C∞c (D).

Note that if ρ, µ ∈ P(L2
x) are probability measures, and if ρ is of the form

ρ =

J∑
j=1

αiδuj ,

where αj > 0,
∑J
j=1 αj = 1, and uj ∈ L2

x, then a transport plan from µ to ρ is necessarily of the form

[FLM17]:

π =

J∑
j=1

αjµj ⊗ δuj ,

where µj ∈ P (L2
x), and

∑J
j=1 αjµj = µ. Therefore, given α = (α1, . . . , αJ) as above, and µ ∈ P(L2

x), we

denote

Λ(α, µ) :=
{

(µ1, . . . , µJ)
∣∣∣µj ∈ P(L2

x),
∑J
j=1 αjµj = µ

}
.

Note that the set Λ(α, µ) is non-empty, since it contains (µ, . . . , µ).

In analogy with work [FLM17, FLMW20] on entropy statistical solutions for hyperbolic systems of

conservation laws, we define
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Definition 3.3.4 (Dissipative statistical solution). A statistical solution µt ∈ L1
t (P) is called dissipative,

if for every choice of coefficients αj > 0 with
∑J
j=1 αi = 1 and for every (µ1, . . . , µJ) ∈ Λ(α, µ), there

exists a function t 7→ (µ1,t, . . . , µJ,t) ∈ Λ(α, µt), such that t 7→ µj,t is weak-∗ measurable, µj,t|t=0 = µj,

such that each µj,t satisfies

ˆ T

0

ˆ
L2
x

ˆ
D

[u · ∂tϕ+ (u⊗ u) : ∇ϕ] dx dµj,t(u) dt = −
ˆ
L2
x

ˆ
D

u ·ϕ(0, x) dx dµj(u),

for all ϕ ∈ C∞c ([0, T )×D), div(ϕ) = 0, and all j = 1, . . . , J . And, in addition, we have for almost every

t ∈ [0, T ): ˆ
L2
x

‖u‖2L2
x
dµj,t(u) ≤

ˆ
L2
x

‖u‖2L2
x
dµj(u), j = 1, . . . , J.

3.3.1 Existence and uniqueness of dissipative solutions

As already pointed out in the introduction, the initial-value problem for the incompressible Euler equa-

tions is ill-posed for general initial data u ∈ L2
x, i.e. there exists an exceptional set of initial data E ⊂ L2

x

for which there either might exist no suitable solutions at all, or for which there exist infinitely many

suitable solutions. In practice, one may nevertheless hope that the “probability of encountering” such

exceptional initial data is 0, so that the subsequent evolution would then be well-defined at least for

initial data encountered in practice. In this section, we provide a formal description of a suitable set of

statistical initial data µ for which this intuition holds true, and show existence and partial uniqueness of

dissipative statistical solutions µt for initial data µ in this class. In particular, the results in this section

imply a weak-strong uniqueness result for statistical solutions. In contrast, an analogous weak-strong

uniqueness result for measure-valued solutions only holds for atomic initial data, i.e. when the initial

data is a function, but fails for non-atomic Young measure-valued initial data (see e.g. Example 1 in

[FKMT17] for an explicit example in the context of conservation laws).

More precisely, we show based on topological arguments, that if the set of C1-regular initial data

admitting classical solutions of (1.1.1), over a given time-interval [0, T ) is dense in L2
x, then there exists

a (topologically) generic set G ⊂ L2
x, containing these regular initial data, with the following property:

For any initial data µ ∈ P(L2
x) which is concentrated on this generic set G ⊂ L2

x, i.e. satisfying µ(G) = 1,

we have existence and uniqueness in the class of dissipative statistical solutions. By a “generic” set G,

we denote a set whose complement E = L2
x \G is a countable union of nowhere dense sets (implying that

E is a meagre set in the topological sense). We say that µ is concentrated on G, if µ(G) = 1.

The construction of such a generic G under the above mentioned assumption has first been carried out

in [Lio96]. Let us first review the construction of G. We let C ⊂ C1(D;U) denote the set of initial data

v admitting a classical solution v(t) on [0, T ), with C(v) := supt∈[0,T ) ‖∇v(t)‖L∞ finite, i.e. C(v) <∞.

For n ∈ N, define the open set Gn, by

Gn :=

{
u ∈ L2

x

∣∣∣∃v ∈ C s.t. ‖u− v‖L2
x
<

1

n
e−C(v)T

}
(3.3.2)

Finally, we let G =
⋂
n∈N Gn.

Remark 3.3.5. If there exists a dense set of initial data v ∈ C, then G is generic in the topological

sense (more precisely a Gδ set), being the countable intersection of the dense open sets Gn. By the Baire

category theorem, the set G is non-empty and dense in this case. In particular, this would hold true

if there is no finite-time blow-up for sufficiently smooth classical solutions of the incompressible Euler

equations (e.g. for C1,α initial data v possessing a Hölder continuous derivative), which is an established

fact in two space dimensions, but an open question in three space dimensions.
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We can now state the main theorem of the present section:

Theorem 3.3.6. Define the generic set G as above (cp. equation (3.3.2)). If µ ∈ P(L2
x) is initial data

such that µ(G) = 1 and there exists M > 0 such that µ(BM (0)) = 1, then there exists a unique dissipative

statistical solution µt of the incompressible Euler equations with initial data µ.

The proof of Theorem 3.3.6 has been provided in detail in [LMPP21b, Appendix F]. We can now

easily derive the following corollaries from Theorem 3.3.6.

Corollary 3.3.7 (Short-time existence and uniqueness). If m > d/2 + 1, and if there exists a C > 0,

such that µ ∈ P(L2
x) is concentrated on

{u ∈ Hm
x | ‖u‖Hmx ≤ C},

then there exists T ∗ > 0 (depending only on C) and a statistical solution µt : [0, T ∗]→ P(L2
x) with initial

data µ. Furthermore, µt is unique in the class of dissipative statistical solutions for t ∈ [0, T ∗].

Proof. Classical short-time existence results for the Euler equations [MB01] show that there exists T ∗ > 0,

such that for initial data u with ‖u‖Hmx ≤ C, there exists a unique solution u(t) such that

sup
t∈[0,T∗]

‖u(t)‖Hmx ≤ C
′‖u‖Hmx .

Since Hm
x ↪→ C1, this implies that µ is concentrated on u ∈ C. In particular, we conclude that µ(G) = 1,

and the result now follows from Theorem 3.3.6.

Corollary 3.3.8 (Weak-Strong uniqueness in 2d). Let d = 2, and let α ∈ (0, 1). If µ is concentrated on

C1,α(D;U) and if there exists M > 0, such that µ(BM (0)) = 1, then there exists a dissipative statistical

solution µt with initial data µ. Furthermore, µt is unique in the class of dissipative statistical solutions

with initial data µ.

Proof. Again, we observe that for any u ∈ C1,α, there exists a unique solution u(t) ∈ C1,α. Hence, we

have u ∈ C for all such u. In particular, it follows that µ is concentrated on G. The claim follows from

Theorem 3.3.6.

3.4 Numerical Approximation of Statistical Solutions

3.4.1 Monte-Carlo algorithm based on the SV method

In this section, we will propose an algorithm for computing statistical solutions of the incompressible

Euler equations (1.1.1). As mentioned before, this algorithm is very similar to the one proposed in

[FLMW20] for computing statistical solutions of hyperbolic systems of conservation laws, which in turn

was inspired by the ensemble averaging algorithms of [FKMT17], also used in [LM15], for computing

measure-valued solutions. This algorithm requires a spatio-temporal discretization and a Monte Carlo

sampling of the underlying probability space. We propose to combine Monte-Carlo sampling with the

spectral viscosity discretization described in detail in chapter 1.4,{
∂tu

∆ + PN (u∆ · ∇u∆) = −εN |∇|2s(QN ∗ u∆),

div(u∆) = 0, u∆|t=0 = PNu.
(3.4.1)

Following [FLMW20], the computation of statistical solutions of (1.1.1) can be accomplished via the

the following Monte Carlo sampling algorithm:
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Algorithm 3.4.1 (Monte Carlo). Given µ ∈ P(L2
x), and a grid scale ∆ = 1/N , we determine an

approximate statistical solution µ∆
t , as follows: For m = m(N),

1 Generate i.i.d. samples u1, . . . ,um ∼ µ,

2 Evolve the samples, using the numerical scheme u∆
i (t) := S ∆

t (ui), where S ∆
t denotes the solution

operator, defined by the scheme (1.4.4).

3 The approximate statistical solution µ∆
t is given by the so-called empirical measure,

µ∆
t :=

1

m

m∑
i=1

δu∆
i (t). (3.4.2)

We remark that in practice, the samples ui for 1 ≤ i ≤ m are random realizations with respect to a

certain underlying probability space.

Remark 3.4.2. The Monte Carlo algorithm 3.4.1, when restricted only to the computation of the first

correlation marginal ν1, reduces to the ensemble averaging algorithm proposed in [LM15] for computing

measure-valued solutions of the incompressible Euler equations.

3.4.2 Convergence to statistical solutions

In this section, we will investigate the convergence of the empirical measure µ∆
t (3.4.2), generated by

the Monte Carlo algorithm 3.4.1, to a statistical solution of (1.1.1). To this end, we seek to apply the

convergence theorem 3.2.7 to these approximations. We start by verifying the temporal regularity of the

empirical measures in the following lemma,

Lemma 3.4.3. There exists L ∈ N and constants C,C ′ > 0, such that if u∆ is obtained from the spectral

hyper-viscosity method (1.4.4), with ∆ = 1/N and initial data u ∈ L2
x, then

∂tu
∆ + div(u∆ ⊗ u∆) +∇p∆ = E∆,

where ‖E∆‖H−Lx ≤ C∆(1 + ‖u∆‖2L2
x
). Furthermore, there exists a constant C ′, such that

‖u∆(t)− u∆(s)‖H−Lx ≤ C ′(1 + ‖u‖2L2
x
)|t− s|.

The detailed proof can be found in [LMPP21b, Lemma 4.1], and will not be repeated here. It is

essentially a repetition of the argument on page 19, showing that the SV scheme produces an approximate

solution sequence in the sense of Diperna and Majda (cp. Definition 1.3.5).

From Lemma 3.4.3, it is now easy to see that if µ∆
t is generated by the Monte-Carlo algorithm 3.4.1,

i.e.

µ∆
t =

1

m

m∑
i=1

δu∆
i (t),

with u∆
i (t) computed by the spectral hyper-viscosity scheme (1.4.4), then the transport plan defined by

π∆
s,t :=

1

m

m∑
i=1

δu∆
i (s) ⊗ δu∆

i (t),

satisfies the properties required by the definition of time-regularity, Definition 3.2.5. This provides the

required temporal regularity required by Theorem 3.2.13.
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Next, we turn our attention to the spatial regularity bounds of Theorem 3.2.7. In particular, we

need to obtain uniform estimates on the structure function (3.2.4). We start with the following simple

observation (cp. [LMPP21b, Lemma 4.2]):

Lemma 3.4.4. For any r ≥ 0, we have

 
Br(0)

∣∣eik·h − 1
∣∣2 dh ≤ C min(|k|2r2, 1) ≤ C|k|2r2,

where C = 4.

The next result is an estimate on the structure function (3.2.4) at the grid scale ∆.

Lemma 3.4.5. If µ∆
t is an approximate statistical solution obtained from the spectral hyper-viscosity

method with ∆ = 1/N , and initial data µ for which there exists M > 0 such that µ(BM (0)) = 1 where

BM (0) = {‖u‖L2
x
< M}, then

ST2 (µ∆
t ; ∆) ≤ CM∆1/(2s),

for some absolute constant C > 0. The same estimate is also true for r ≤ ∆, i.e. we have

ST2 (µ∆
t ; r) ≤ CMr1/(2s), for all r ≤ ∆.

The proof of Lemma 3.4.5 relies on the a priori bound

εN

ˆ T

0

∑
|k|∞≤N

Qk|k|2s|ûk(t)|2 dt ≤ ‖u‖2L2 ,

of solutions of the SV scheme, which is sufficient to ensure control on the approximate solution at small

scales r . ∆. The details of the proof are provided in [LMPP21b, Lemma 4.3].

As in [FLMW20] section 4.2, we have uniform estimates on the structure function at (or below) the

grid scale. Large scale features are in any case independent of the resolution ∆. However, we lack any

information on the intermediate scales, in between the two. To close this information gap, we follow

[FLMW20] and make an assumption on scaling of the structure function (3.2.4) at intermediate scales.

The resulting theorem is:

Theorem 3.4.6. Consider the incompressible Euler equations with initial data µ ∈ P(L2
x), such that

supp(µ) ⊂ BM , with BM the ball of radius M in L2
x, for some M > 0. Define the approximate statistical

solution µ∆
t by the Monte-Carlo algorithm 3.4.1. If the approximate statistical solutions µ∆

t satisfy:

• Approximate scaling: For every ` > 1, there exists a constant 0 < λ` ≤ 1/(2s), fixed C > 0 possibly

depending on the initial data, but independent of ` and the grid size N , such that

ST2 (µ∆
t ; `∆) ≤ C`λ`ST2 (µ∆

t ; ∆), (T > 0).

Then the approximate statistical solutions µ∆
t converge (up to a subsequence still denoted by ∆), as

∆→ 0, to some µt ∈ L1
t (P).

Proof. By Lemma 3.4.5, there exists a constant C > 0, such that

ST2 (µ∆
t ; r) ≤ Cr1/(2s), (3.4.3)
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for all r ≤ ∆. If r > ∆, then by the assumed approximate scaling property, we write r = `∆, with ` > 1,

and obtain

ST2 (µ∆
t ; r) = ST2 (µ∆

t ; `∆) ≤ C`λ`ST2 (µ∆
t ; ∆) ≤ CC`1/2s∆1/(2s) = CCr1/(2s),

for some constant CC > 0. The convergence now follows from Theorem 3.2.13.

Remark 3.4.7. The scaling assumption (3.4.3) can be interpreted as a weaker version of the scaling

assumptions of Kolmogorov (see hypothesis H2, equation 6.3, page 75 of [Fri95]) that was instrumental

in the K41 theory for homogeneous, isotropic turbulence. In contrast to the exact scaling relation pos-

tulated by Kolmogorov, Theorem 3.4.6 only requires an upper bound on the structure functions; we do

not assume (or indeed even conjecture) that the structure functions exhibit any precise scaling. The scal-

ing assumption is fundamentally an assumption about the compactness properties (encoded in two-point

correlations) of the approximate statistical solutions, stating that if we can control the smallest scales by

diffusion, the large scales are expected to be reasonably well-behaved. This intuition is motivated by nu-

merical experiments presented in section 5. We also note that the inequalities in (3.4.3) can accommodate

intermittency in the form of deviations for the standard Kolmogorov determination of the exponent 1/3

for the structure function (3.2.4).

Remark 3.4.8 (Convergence without scaling assumption). Let µ be concentrated on a set of initial data

G ⊂ L2
x, such that for any u ∈ G there exists a strong ( i.e. Lipschitz continuous) solution u(x, t) for t ∈

[0, T ]. Denote by St : G → L2
x the solution operator mapping u 7→ u(x, t) = St(u), and let S ∆

t : G → L2
x,

u 7→ S ∆
t (u) denote the discretized solution operator. The corresponding (exact/approximate) statistical

solution are in this case given by the push-forward µt = St,#µ, µ∆
t = S ∆

t,#µ. From the definition (3.2.2)

of the metric dT on L1
t (P), and the Kantorovich duality formula (cp. (B.0.3) in Appendix B), we readily

obtain the inequality

dT (µt, µ
∆
t ) ≤

ˆ T

0

ˆ
G
‖St(u)−S ∆

t (u)‖L2
x
dµ(u) dt. (3.4.4)

Since St(u) is a strong solution for all u ∈ G, the pointwise convergence S ∆
t (u)→ S ∆

t (u) follows from

Corollary 1.4.3 in chapter 1. Hence, the integrand on the right-hand side of (3.4.4) is uniformly bounded

and converges to zero pointwise, as ∆ → 0. By the dominated convergence theorem, it follows that

µ∆
t → µt in L1

t (P). In particular, the approximate statistical solution µ∆
t computed by algorithm 3.4.1

converges to the unique dissipative statistical solution µt in this case, without any additional assumptions

on the structure functions.1. In three dimensions, this implies the convergence of approximate statistical

solutions to the unique dissipative statistical solution under the assumptions of Corollary 3.3.7 (short-

time existence and uniqueness). In the two-dimensional case, this shows the convergence to the unique

dissipative statistical solution under the assumptions of Corollary 3.3.8 (global existence and uniqueness

for C1,α initial data).

3.4.3 Decay of energy spectrum

In this section, we will provide an alternative criterion to ensure convergence of probability measures

with respect to the metric (3.2.2).

This criterion is motivated from well-known experimental and theoretical concepts in the study of

turbulent flows and is based on the energy spectrum E(u;K) (K ∈ N0) associated to a vector field u,

1In fact, it can be shown that the convergence µ∆
t → µt in turn implies a uniform decay of the structure functions as

∆→ 0 (cp. [LMW21, Prop. A.2])
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defined as

E(u;K) =
1

2

∑
K−1<|k|≤K

|û(k)|2.

Note that the kinetic energy is obtained as a sum

1

2

ˆ
D

|u|2 dx = (2π)d
∞∑
K=1

E(u;K).

Given a probability measure µ ∈ P(L2
x), let us similarly define:

E(µ;K) =

ˆ
L2
x

E(u,K) dµ(u),

so that E(δu;K) = E(u;K), for u ∈ L2
x. Finally, we denote by ET (µt;K) the time-integrated energy

spectrum

ET (µt;K) =

ˆ T

0

E(µt;K) dt.

It is an experimentally observed fact [Fri95] that the typical energy spectrum of turbulent flows with a

sufficiently strong dissipation mechanism at small scales typically takes a shape similar to the one shown

in Figure 3.1: Visible are three parts of the energy spectrum. The left-most part (small K) corresponds

to large-scale features for the flow, the middle part (intermediate K) is referred to as the inertial range,

while the right-most part (large K) may be referred to as the dissipation range. The appearance of these

three parts is heuristically explained as follows. Starting from initial data (with a sufficiently fast decay

of the energy spectrum) initially fixes the large-scale features of the flow. Due to the non-linear nature

of the evolution equation, these large-scale features decay to smaller scales, corresponding to energy

cascading from small values of K to larger values of K. While a satisfactory mathematical treatment of

the precise nature of this energy cascade remains an outstanding challenge, there is evidence by physical

reasoning and as well as from numerical and real-world experiments that typically the energy spectrum

resulting from this cascade process satisfies at least an upper bound of the form E(K) . K−γ , for some

fixed γ that is associated with the non-linearity. In the presence of a dissipative mechanism acting on

small scale features of the flow, this “free” energy cascade to larger values of K due to the non-linearity

is finally interrupted by the dissipation. Thus, energy is dissipated at dissipative scales.

From this heuristic point of view, we would expect the large-scale features to depend mostly on the

initial data, while the decay of the energy spectrum at the largest values of K can be controlled in a

numerical approximation scheme by a suitable choice of the numerical dissipation. On the other hand,

there is no a priori information on the decay of the spectrum in the intermediate, inertial range. Hence,

we make the following, rather natural, assumption:

Assumption 3.4.9. There exist β > 0 and constant C > 0 such that the computed energy spectra with

algorithm 3.4.1 scale as,

ET (µ∆
t ,K) ≤ CK−2β , ∀∆ > 0. (3.4.5)

�

Under this assumption on the energy spectrum, we have the following convergence theorem:

Theorem 3.4.10. If µ∆
t is obtained by the spectral viscosity method through algorithm 3.4.1, and if the

energy spectra ET (µ∆
t ;K) satisfy the inertial range Assumption 3.4.9 with β > 1/2, then there exists a

subsequence (not relabeled) ∆→ 0 and a time-parameterized probability measure µt, such that µ∆
t → µt

in L1
t (P).
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Proof. From Parseval’s identity (A.1.3) and Lemma 3.4.4, we have

ST2 (µt; r)
2 =

ˆ T

0

ˆ
L2
x

 
Br(0)

ˆ
Td
|u(x+ h)− u(x)|2 dx dh dµt(u) dt

.
ˆ T

0

ˆ
L2
x

∑
k

min(|k|2r2, 1)|û(k)|2 dµt(u) dt

∼ r2
∑

K≤1/r

K2ET (µt;K) +
∑

K>1/r

ET (µt;K).

Hence, based on the Assumption 3.4.9, we now obtain the estimate,

ST2 (µ∆
t ; r)2 . r2

∑
K≤1/r

K2K−2β +
∑

K>1/r

K−2β

∼ r2(1 + r2β−3) + r2β−1

∼ rmin(2,2β−1), as r → 0.

Therefore, the scaling assumption on the average energy spectrum leads to the uniform diagonal con-

tinuity:

ET (µ∆
t ,K) . K−2β ⇒ ST2 (µ∆

t ; r) . rβ−1/2, if 1 < 2β < 3. (3.4.6)

From Theorem 3.2.13, we obtain compactness of the sequence µ∆
t .

small K
inertial

range

dissip.

range

∼ K−γ

(a) Energy spectrum E(K)

∼ const.

small K
inertial

range

dissip.

range

(b) Compensated E’spectrum KγE(K)

Figure 3.1: Typical energy spectrum for turbulent flows

Remark 3.4.11. As indicated in Figure 3.1 (B), a convenient way to check the scaling Assumption 3.4.9

in practice is to consider the compensated energy spectrum, which is defined as KγE(K), where γ

is the (proposed) scaling exponent in the inertial range. Proposition 3.4.10 says that if there exists

γ > 1, such that the compensated energy spectrum KγET (µ∆
t ;K) is uniformly bounded by a constant,

and independently of ∆, then {µ∆
t |∆ > 0} is compact in L1(P).

Remark 3.4.12. If d = 3 and p = 2, then Kolmogorov’s theory states that for fully developed turbulence

S2 ∼ r1/3. Based on our estimate, this requires β = 5
6 . So that the (expected) energy spectrum is E(K) ∼
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K−2β ∼ K−5/3. Such an assumed scaling is consistent with many real, as well as numerical, experiments

reported in the literature, and is sufficient for compactness in the space of probability measures L1
t (P)

(cp. Proposition 3.4.10).

3.4.4 Lax-Wendroff type theorem

We have used a compactness argument to show that under some reasonable hypotheses on the approx-

imations, numerical solutions computed by the spectral hyper-viscosity converge to a limiting time-

parameterized probability measure. In this section, we show that such a limit necessarily is a statistical

solution of the incompressible Euler equations in the sense of Definition 3.3.1.

Theorem 3.4.13 (Lax-Wendroff type theorem). Let µ∆
t be computed by the spectral hyper-viscosity

scheme with initial data µ, and assume µ∆
t → µt in L1

t (P), as ∆ → 0. Then µt is a statistical solution

of the incompressible Euler equations with initial data µ.

Proof. Fix k ∈ N. Let ϕ1, . . . ,ϕk ∈ C∞c (D × [0,∞)) be given solenoidal test functions. Set ϕ :=

ϕ1 ⊗ · · · ⊗ ϕk and denote νk = νkx1,...,xk,t
. Let u∆ be obtained from the spectral method, with initial

data u. Let us denote (u,ϕ) :=
´
D
u ·ϕ dx. Then, as a consequence of Lemma 3.4.3, we can write

d

dt
(u∆,ϕi) = (u∆, ∂tϕi) + (u∆ ⊗ u∆,∇ϕi) + (E∆,ϕi),

where there exists L > 0 independent of ∆ and the initial data u, such that the error term E∆ satisfies

‖E∆‖H−L ≤ C∆(1 + ‖u‖2L2
x
). Taking the product over i = 1, . . . , k, we find

d

dt

k∏
i=1

(u∆,ϕi) =

k∑
i=1

∏
j 6=i

(u∆,ϕj)

{(u∆, ∂tϕi) + (F (u∆),∇ϕi) + (E∆,ϕi)
}
,

where F (u) := u⊗u. Recognizing the special structure of the empirical measure µ∆
t (3.4.2) as a convex

combination, denoting by νk,∆ = νk,∆x1,...,xk,t
the k-point correlation measure corresponding to µ∆

t , we

obtain from the above identity that,

ˆ T

0

ˆ
Dk
〈νk,∆, ξ1 ⊗ · · · ⊗ ξk〉 : ∂tϕ

+
∑
i

〈νk,∆, ξ1 ⊗ · · · ⊗ F (ξi)⊗ · · · ⊗ ξk〉 : ∇xiϕ dx dt

+

ˆ
Dk
〈νk,∆, ξ1 ⊗ · · · ⊗ ξk〉 : ϕ(x, 0) dx

=

ˆ T

0

ˆ
L2
x

k∑
i=1

∏
j 6=i

(u∆,ϕj)

 (E∆,ϕi) dµ
∆
t dt.

(3.4.7)

The right-hand side can be bounded by

ˆ T

0

ˆ
L2
x

‖u∆‖k−1
L2
x

k∑
i=1

∏
j 6=i

‖ϕj‖L2
x
‖E∆‖H−Lx ‖ϕi‖HLx dµ

∆
t dt,

which, by Lemma 3.4.3 is further bounded by

≤ C(ϕ, k)∆

ˆ T

0

ˆ
L2
x

(1 + ‖u∆‖2L2
x
)k dµ∆

t (u) dt.
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Note that if µ is supported on BM (0) ⊂ L2
x, then it follows that µ∆

t is supported on BM (0), as well. This

is a consequence of the a priori L2-bound (1.4.8). Hence the error term in equation (3.4.7) is in this case

bounded by C∆, where C = C(ϕ, k,M, T ) is a constant independent of ∆.

Let us also note that the terms on the left-hand side of (3.4.7) converge strongly in L1
t,x as ∆ → 0.

Indeed, it is not difficult to see that all terms on the left -hand side, e.g.

g(t, x, ξ) := (ξ1 ⊗ · · · ⊗ F (ξi)⊗ · · · ⊗ ξk) : ∇xiϕ(x, t),

are admissible observables in the sense of (3.2.10). For such observables, the L1
t,x-convergence of

〈νk,∆t,x , g(t, x, ξ)〉 → 〈νkt,x, g(t, x, ξ)〉, as ∆→ 0,

has been established in Theorem 3.2.13. The same holds true for the other two terms on the left-hand

side.

Passing to the limit µ∆
t → µt, it thus follows that

ˆ T

0

ˆ
Dk
〈νkt,x, ξ1 ⊗ · · · ⊗ ξk〉 : ∂tϕ

+
∑
i

〈νkt,x, ξ1 ⊗ · · · ⊗ F (ξi)⊗ · · · ⊗ ξk〉 : ∇xiϕ dx dt

+

ˆ
Dk
〈νkx, ξ1 ⊗ · · · ⊗ ξk〉 : ϕ(x, 0) dx = 0.

The fact that µt is concentrated on incompressible vector fields follows immediately from the correspond-

ing property of the approximations µ∆
t (cp. Lemma 3.3.3). Furthermore, from Proposition 3.2.9, it also

follows that the limit µt is time-regular. This finishes the proof that µt is a statistical solution of the

incompressible Euler equations with initial data µ.

Remark 3.4.14. It is straightforward to show that if µ∆
t are generated from the spectral hyper-viscosity

scheme (1.4.4), and if they satisfy the assumptions of Theorem 3.4.13, the limit µt is in fact a dissipative

statistical solution in the sense of Definition 3.3.4.

3.5 Numerical Experiments

In this section, we will present a suite of numerical experiments to demonstrate the effectiveness of the

Monte Carlo algorithm 3.4.1 in computing statistical solutions of the incompressible Euler equations.

For our numerical experiments, we use the implementation of the spectral hyper-viscosity scheme (1.4.4)

provided by the SPHINX code, which has been reviewed in chapter 1.4. For the numerical experiments

reported below, we use a spectral viscosity operator of order s = 1 (cp. equation (1.4.4)), with εN = ε/N ,

ε = 1/20 unless otherwise stated. The Fourier multiplier QN is chosen with Fourier coefficients

Q̂k =

{
1−N/|k|2 |k| ≥

√
N,

0, otherwise.

corresponding to mN =
√
N . Although the theory of section 3.4 is valid for both two and three space

dimensions and the SPHINX code is available for both cases, we restrict our focus to two space dimensions

in this section, on account of affordable computational costs.
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3.5.1 Flat vortex sheet

Vortex sheets occur in many models in physics and are an important test bed for numerical experiments

for the Euler equations, [LM15] and references therein. We first consider a randomly perturbed version

of the flat vortex sheet that corresponds to the following initial data also considered in [LM15],

(a) u1-component (b) u2-component

(c) mean: u1-comp. (d) variance: u1-comp.

Figure 3.2: Initial data for the perturbed discontinuous flat vortex sheet (ρ = 0), samples for u1,2, and

mean and variance of u1

Initial data

Given a smoothing parameter ρ > 0, and a parameter δ ≥ 0 (measuring the size of the random perturb-

ation of the interface), this vortex sheet initial data is of the form

uρ,δ(x) = P(Uρ(x1, x2 + σδ(x1))), (3.5.1)

where P denotes the Leray projection, Uρ(x) = (Uρ1 (x), Uρ2 (x)) is the following smoothened flat vortex

sheet initial data:

Uρ1 (x) :=

tanh
(
x2−1/4

ρ

)
, (x2 ≤ 1/2),

tanh
(

3/4−x2

ρ

)
, (x2 > 1/2),

Uρ2 (x) = 0.

and σδ(x) is a random function, which for a given (random) choice of parameters α1, . . . , αq ∈ (0, δ),

β1, . . . , βq ∈ [0, 2π), is defined by

σδ(x1) =

q∑
k=1

αk sin(2πx1 − βk). (3.5.2)
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We will also consider the discontinuous case of initial data that are obtained in the limit ρ→ 0 resulting

in

U0
1 (x) :=

{
+1, (1/4 < x2 ≤ 3/4),

−1, (otherwise),
U0

2 (x) = 0.

For our simulations, we fix q = 10 modes for the perturbations. The coefficients αk are drawn

independently, uniformly in (0, 1), and then multiplied by δ. The coefficients βk are i.i.d., with a uniform

distribution on [0, 2π). The initial data for the statistical solution µδρ ∈ P(L2
x) is defined as the law of these

random perturbations. It depends on the two parameters ρ ≥ 0, δ ≥ 0. While ρ controls the smoothness

of the initial data, δ measures the amplitude of the perturbation. We fix δ = 0.025 in the following and

consider different values of ρ. Note that the choice ρ = 0 corresponds to an initial measure supported

on discontinuous flows with a very sharp transition (see figure 3.2 (A,B) for realizations (samples) of

this initial data). In figure 3.2 (C,D), we present the initial mean and variance that correspond to the

random variations of the initial interface location.

Clearly when ρ > 0, the corresponding initial data for every sample is smooth. Consequently, smooth

solutions of (1.1.1) are well-posed and the spectral viscosity method converges to this solution as N →∞
[BT15]. However for ρ = 0, which corresponds to the case of a discontinuous vortex sheet, there are

no well-posedness results even for weak solutions, as the vorticity corresponding to the initial data (for

each sample) is a sign changing measure and does not belong to the Delort class. In [LM15], the authors

had presented multiple numerical experiments to illustrate the approximate solutions, computed with

a spectral viscosity method, may not converge (or converge too slowly to be of practical interest) for

individual samples (see figures 5 and 6 of [LM15]). Hence, it would be interesting to study if approximate

statistical solutions, generated by algorithm 3.4.1 converge in this case.

Structure functions and Compensated Energy spectra

The convergence theorem 3.4.6, based on the compactness theorem 3.2.7, provides us with verifiable

criteria to check convergence of algorithm 3.4.1. In particular, we need to check certain decay conditions

on the structure function (3.2.4) for small correlation lengths. To this end, we consider the following

instantaneous version of the structure function (3.2.4),

S2,∆
r,t (µt) :=

(ˆ
L2
x

ˆ
T2

 
Br(0)

|u(x+ h)− u(x)|2 dh dx dµ∆
t (u)

)1/2

, (3.5.3)

Note that the above is a formal definition and it can be made rigorous in terms of the time-dependent

correlation measures. It is much simpler to compute the instantaneous quantity (3.5.3) than the time-

averaged version (3.2.4).

Our objective is to check whether the structure function (3.2.4), or rather its instantaneous version

(3.5.3), decays (uniformly in resolution ∆) as r → 0. Such a decay would automatically imply convergence

of the approximations to a statistical solutions by theorems 3.2.7 and 3.4.13.

Clearly if ρ > 0 in (3.5.1), the spectral viscosity method converges to the unique classical solution as

∆ → 0. Moreover, a straightforward calculation shows that the structure function (3.5.3) should scale

as,

S2,∆
r,t (µt) ≈ r, ∀∆, t. (3.5.4)
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(a) ρ = 0.1 (b) ρ = 0.0

Figure 3.3: Instantaneous structure function (3.5.3) vs correlation length r for different resolutions

(N ∼ ∆−1) for different values of smoothness parameter ρ, at t = 0.4

This is indeed verified from figure 3.3 (A) where we plot the structure function (3.5.3) at t = 0.4 and

ρ = 0.1 for different values of the mesh parameter. We see from this figure that S2,∆
r,0.4(µt) ≈ r0.9, at

fine resolutions, which is very close to the expected value of 1 for the scaling exponent of the structure

function.

On the other hand, for ρ = 0, corresponding to the discontinuous flat vortex sheet, the lack of

smoothness inhibits us from inferring a particular form of decay of (3.2.4) (or (3.5.3)) a priori.

Remark 3.5.1. We note that for the discontinuous flat vortex sheet, we have u = (u1(x2), 0), and hence

S2(u; r)2 =

ˆ
T2

 
Br(0)

|u(x+ h)− u(x)|2 dh dx

≤ 1

πr2

ˆ
T2

ˆ
|h1|,|h2|≤r

|u1(x2 + h2)− u1(x2)|2 dh2 dh1 dx

=
4

r

ˆ π

−π

ˆ
|h2|≤r

|u1(x2 + h2)− u1(x2)|2 dh2 dx2.

Furthermore, since |h2| ≤ r, we have that

|u1(x2 + h2)− u1(x2)| =


0, (x2 + h2 > 0, x2 > 0),

2, (x2 + h2 > 0, x2 < 0),

2, (x2 + h2 < 0, x2 > 0),

0, (x2 + h2 < 0, x2 < 0).

 ≤ 2 · 1|x2|≤r,

and hence

S2(u; r) ≤

(
16

r

ˆ
|x2|≤r

ˆ
|h2|≤r

dh2 dx2

)1/2

= 8 r1/2.

At least initially, the calculations of the previous remark imply that S2,∆
r,0 (µ) ∼ r 1

2 , for the discontinu-

ous flat vortex sheet. Surprisingly, we find from figure 3.3 (B) that at fine resolutions, S2,∆
r,t (µt) ≈ r0.52

also at t = 0.4, which agrees with the decay of the structure function of the initial data. Although
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we do not present the results there, we observe that the structure function (3.5.3) scales as rθt , with

θt ≥ 0.5 for all t. This implies an uniform decay of the structure function (3.2.4) and convergence of the

approximations to a statistical solution of the Euler equations (1.1.1), even for this case of discontinuous

vortex sheet data. Note that the computed structure functions (3.5.3) in figure 3.3 clearly satisfy the

approximate scaling hypothesis (3.4.3) and thus imply convergence through Theorem 3.4.6.

(a) ρ = 0.1, γ = 3 (b) ρ = 0.0, γ = 2

Figure 3.4: The instantaneous compensated energy spectrum C∆
γ,t(µt;K) (3.5.5) for the flat vortex sheet,

at time t = 0.4. Note different values of γ for the smooth and discontinuous vortex sheets

An alternative criterion for convergence of statistical solutions is provided by the energy spectrum

decay in the inertial range (3.4.5). To check whether this criterion is satisfied, we follow Theorem 3.4.10

and compute the following instantaneous compensated energy spectrum,

C∆
γ,t(µt;K) := KγE(µt,K). (3.5.5)

Following the arguments in the proof of Theorem 3.4.10, we can relate the decay of the instantaneous

energy spectrum to the corresponding decay of the structure function (3.5.3) by a direct analogue of

(3.4.6).

For ρ = 0.1 in (3.5.1), we plot the compensated energy spectrum C∆
3,0.4(µt;K) for all K and at time

t = 0.4, with compensating factor γ = 3 in figure 3.4 (A). Note that this choice of γ is consistent with a

decay exponent of 1 for the structure function in (3.4.6), i.e. ST2 (µ∆
t ; r) . r. We observe from this figure

that as expected for this case, the compensated energy spectrum is clearly bounded and in fact, decays

faster than the expected rate for the entire range of wave numbers.

On the other hand, we plot the compensated energy spectrum C∆
2,0.4(µt;K) (3.5.5) for the discon-

tinuous flat vortex sheet case, i.e. ρ = 0 in (3.5.1), in figure 3.4 (B). In this case, we expect from

the structure function computations (see figure 3.3(B)) that the instantaneous structure function decays

with an exponent of ≈ 0.5. From (3.4.6), we see that this corresponds to the choice of γ = 2 as the

exponent of compensation in (3.5.5). Moreover, in figure 3.4 (B), we also plot the line corresponding to

wave number mN ≈
√
N , which for the spectral viscosity method (1.4.4) represents the wave number

after which the spectral viscosity is activated and hence, demarcates the separation between inertial and

dissipation ranges. We observe from figure 3.4 (B) that the compensated energy spectrum is clearly

uniformly bounded (in terms of the resolution ∆) for the whole inertial range and for all resolutions ∆

barring the coarsest resolution, and decays fast in the dissipation range, although there is a slight kink

upwards at the very end of the dissipation range, almost at the grid scale. This might be attributed to
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numerical errors, which are dominant at this range. Translating these results to the energy spectrum, we

see that the spectrum decays as K−2 in the inertial range uniformly with respect to resolution. Hence,

according to theorems 3.4.10 and 3.4.13, the sequence of approximations will converge to a statistical

solution of (1.1.1).

Convergence in Wasserstein Metrics

Given the computational results on the structure function and the compensated energy spectra, results in

section 3.4 clearly imply convergence of the approximations µ∆
t , generated by the Monte Carlo algorithm

3.4.1 to a statistical solution of the incompressible Euler equations. Moreover from the discussion in

section 3.2, we should observe with respect to the following Cauchy rates:

dT (µ∆
t , µ

∆/2
t ) =

ˆ T

0

W1(µ∆
t , µ

∆/2
t ) dt. (3.5.6)

Unfortunately, the calculation of the Wasserstein distance between probability measures defined on high-

dimensional (or indeed ∞-dimensional) spaces is a highly non-trivial issue, which we cannot tackle with

present computational resources.

On the other hand, one can compute finite-dimensional marginals of (3.5.6) by utilizing the com-

plete characterization of L1
t (P) in terms of correlation measures as given in Theorem 3.2.11. Following

[FLMW20, Thm. 5.7], one can prove that,

ˆ
Dk

W1(ν∆,k
t,x , ν

∆/2,k
t,x ) dx ≤ CkW1(µ∆

t , µ
∆/2
t ), a.e. t (3.5.7)

Here, k ≥ 1 and ν∆,k
t,x is the k-th correlation marginal corresponding to the approximate statistical

solution µ∆
t . Note that we consider instantaneous versions of the Wasserstein metric (3.5.6) for reasons

of computational convenience.

(a) k = 1 (b) k = 2 (c) k = 3

Figure 3.5: The Wasserstein distances between correlation marginals
´
Dk

W1(ν∆,k
t,x , ν

∆/2,k
t,x ) dx for k =

1, 2, 3, at time t = 0.4 with respect to resolution

We remark that computing the Wasserstein distances W1(ν∆,k
t,x , ν

∆/2,k
t,x ) for small k is much more

tractable. We have computed these Wasserstein distances using the algorithm of [BvdPPH11] (as im-

plemented in [FC17]) and the corresponding results for k = 1, 2, 3, at time t = 0.4 for the discontinuous

flat vortex sheet, i.e. ρ = 0 in (3.5.1) are presented in figure 3.5. As seen from this figure, we observe

a clear convergence of these Wasserstein distances (in the Cauchy sense as in (3.5.7)) for the one-point,

two-point and three-point correlation measures, albeit at a slow rate for the second and third correlation

marginals. This, together with the results on the structure function and compensated energy spectra,
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provides considerable evidence that the approximate statistical solutions, generated by algorithm 3.4.1,

converge to a statistical solution of (1.1.1). Moreover, given Theorem 3.2.13, results shown in figure 3.5

establish convergence with respect to any admissible observable in the sense of (3.2.10), corresponding

of one-point, two-point and three-point statistical quantities of interest. These include mean, variance,

structure functions, energy spectra as well as three-point correlation functions.

3.5.2 Sinusoidal vortex sheet

In this section, we will consider a random perturbation of the so-called sinusoidal vortex sheet, i.e.

the initial vorticity is concentrated on a sine curve. This test case was extensively studied in a recent

paper [LM20] in the context of the numerical approximation of weak solutions (in Delort class) of the two-

dimensional incompressible Euler equations. Whereas [LM20] considered the deterministic problem with

fixed initial data, we will here follow a statistical approach, considering an initial measure µ supported

on small random perturbations of the sinusoidal vortex sheet. As discussed in [LM20], due to inherent

Kelvin-Helmholtz instabilities the computed numerical approximations for sinusoidal vortex sheet initial

data experience vortex sheet roll-up at ever smaller length-scales at increasing resolution ∆→ 0 (and at

low diffusivity). These small-scale Kelvin-Helmholtz instabilities slow down, and at even smaller values of

∆ ultimately prevent the strong convergence of the numerical approximants to a limiting solution. In this

section, we will compare the convergence properties of the deterministic problem with the corresponding

perturbed statistical approach. In contrast to the deterministic problem, the quantities of interest in

the statistical setting, such as the mean, variance (as well as higher-order correlations), appear to retain

some smoothness even after the complex vortex sheet roll-up. This makes them amenable to numerical

approximation, even though the deterministic evolution cannot be stably resolved.

Initial Data

We fix a sinusoidally perturbed vortex sheet, where the initial vorticity is a Borel measure of the form

ω0 = δ(x− Γ)−
ˆ
T2

dΓ,

such that
´
T2 ω0 dx = 0, and up to a constant, ω0 is uniformly distributed along a curve Γ, which is

defined as the graph:

Γ = {(x, y) | y = d sin(2πx), x ∈ [0, 1]}.

We chose d = 0.2 for our simulations.

(a) Sample (b) Mean (c) Variance

Figure 3.6: Initial conditions for the horizontal velocity u1 for the sinusoidal vortex sheet.
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The numerical initial data is obtained from the mollification of this initial data with a parameter

ρ > 0. As a mollifier, we consider the third-order B-spline

ψ(r) :=
80

7π

[
(r + 1)3

+ − 4(r + 1/2)3
+ + 6r3

+ − 4(r − 1/2)3
+ + (r − 1)3

+

]
.

Next, we define ψρ(x) = ρ−2ψ(|x|/ρ). The numerical approximation of the perturbed vortex sheet is

now defined by setting

ωρ0(x) :=

ˆ
Γ

ψρ(x− y)ω0(y) dy

where ρ determines the thickness (smoothness) of the approximate vortex sheet. The convolution at

x = (x1, x2) ∈ T2 is evaluated via numerical quadrature:

(ω0 ∗ ψρ)(x) ≈ ρ

Q

∑
i

ψρ(x− (ξi, g(ξi)))
√

1 + |g′(ξi)|2,

with ξi = x1 + iρ/Q equidistant quadrature points in x1, and g(ξ) the function whose graph is Γ, i.e.

g(ξ) = d sin(2πξ). We choose Q = 400 quadrature points. We denote by Uρ(x1, x2) the velocity field

such that div(Uρ) = 0 and curl(Uρ) = ωρ0 .

Similar to the case of the flat vortex sheet, we carry out random perturbations of the sinusoidal vortex

sheet as follows:

uρ,δ(x) := P(Uρ(x1, x2 + σδ(x1)).

Here, P : L2
x → L2

x denotes the Leray projection onto divergence-free vector fields, and we again fix a

random function σδ(x),

σδ(x1) =

q∑
k=1

αk sin(2πx1 − βk),

depending on a parameter δ ≥ 0 and a choice of (random) coefficients α1, . . . , αq ∈ (0, δ), β1, . . . , βq ∈
[0, 2π). For our simulations, we fix q = 10 modes for the perturbations. In practice, the coefficients

αk are first drawn independently, uniformly in (0, 1), and then multiplied by δ. The coefficients βk are

i.i.d., with a uniform distribution on [0, 2π). The initial data for the statistical solution µδρ ∈ P(L2
x)

is defined as the law of these random perturbations. It depends on the two parameters ρ ≥ 0, δ ≥ 0.

While ρ controls the smoothness of the initial data, δ measures the amplitude of the perturbation. We

fix δ = 0.003125 in the following and vary ρ as a function of the grid size N . To approximate vortex

sheet initial data, we must scale ρ = ρ(N) with N , such that ρ → 0 as N → ∞. We use ρ = 5/N for

our simulations. The additional diffusion parameter ε of the spectral viscosity scheme is set to ε = 0.01.

With this choice of parameters, we will drop the sub- and superscripts and denote the initial data at a

given resolution simply by µ ∈ P(L2
x).

Computation of individual samples

For any single realization of the random perturbation σδ(x), the resulting vorticity of the initial data

(sample) is a positive measure, concentrated on a sine curve (see figure 3.6 (A) for horizontal component

of velocity u1). Hence, any single sample of the initial data in the Delort class. Therefore, by the results

of [LM20], the approximate solutions generated by the spectral viscosity method (1.4.4) will converge, on

increasing resolution, to a weak solution of (1.1.1). However, as noted in [LM20], this convergence can

be very slow as the flow breaks down into smaller and smaller vortices. In fact, this phenomenon is also

seen from figure 3.7 (Top row), where we plot the horizontal component of velocity u1 at time t = 1.2

and different resolutions. At this time, the initial vortex sheet has rolled over and broken down into a
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(a) N = 128 (b) N = 256 (c) N = 512 (d) N = 1024

Figure 3.7: Results at time T = 1.2 for the horizontal velocity u1 of the sinusoidal vortex sheet, at

different resolutions. Top Row: Sample; Middle Row: Mean; Bottom Row: Variance.

(a) Sample (b) Mean and Variance

Figure 3.8: Cauchy rates for the norm of the velocity field (
√
u2

1 + u2
2) for the sinusoidal vortex sheet.

Slope λ is determined by a best fit. Left: Sample convergence rates at three different times t = 0, 0.6, 1.2.

Right: Convergence of mean and variance at T = 1.2
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succession of small vortices, whose location and amplitude are different for different resolutions. This very

slow convergence is also displayed in figure 3.8 (A), where we plot the Cauchy rates ‖u∆(t)−u∆/2(t)‖L2
x
,

with u∆ denoting the approximate solution computed with the spectral viscosity method (1.4.4), for

three different times t = 0, 0.6, 1.2. As seen from this figure, the rate of convergence decreases very

rapidly and at time t = 1.2, it appears as if there is no convergence on mesh refinement.

(a) Instant. structure function (3.5.3) (b) Compensated energy spectrum (3.5.5)

with γ = 2.2

Figure 3.9: The structure function and compensated energy spectrum for the sinusoidal vortex sheet at

time T = 1.2

Structure functions and Compensated energy spectra

Given this apparent non-convergence of individual samples, it is pertinent to investigate if computing the

statistics will be more convergent. To this end, we consider the initial data to be the initial probability

measure µ. The mean and variance (of the horizontal component u1) are plotted in figure 3.6 (B,C). From

this figure, we observe that the initial probability measure is concentrated on very small perturbations

of the underlying sinusoidal vertex sheet, as reflected in the initial variance.

In order to investigate the convergence of approximations to the statistical solution, generated by

the algorithm 3.4.1, we follow the template of the previous numerical experiment and compute the

(instantaneous) structure function (3.5.3) and the compensated energy spectrum (3.5.5) in figure 3.9.

From this figure, we observe that the structure function at time t = 1.2 scales with an exponent of

≈ 0.7 at the finest resolutions. From (3.4.6), this implies roughly a γ = 2.4 in the scaling of the energy

spectrum (3.5.5). A better fit to the scaling of the energy spectrum is found with γ = 2.2. We plot

the compensated energy spectrum with the latter value of γ in figure 3.9 (B). From this figure, we see

that for the inertial range, the energy spectrum clearly decays (faster than) a rate of 2.2. Thus, the

assumptions of theorems 3.2.7, 3.4.10 are satisfied and the approximations will converge to a statistical

solution of (1.1.1).

Convergence of observables and Wasserstein Distances

Given the results on the computed structure functions and energy spectra, the approximations will

converge. But is this convergence at a better rate than that of single samples? To investigate this issue,

we consider two different sets of computations. First, we compute the mean and the variance of the

velocity field at different resolutions and plot them (for the horizontal velocity at time t = 1.2) in figure
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3.7 (Middle and Bottom rows). Clearly, the one-point statistics appear much more convergent than the

single sample results. The mean flow consists of a coherent set of large vortices, which is in stark contrast

to the large number of vortices formed in the single sample simulations. Moreover, we also plot Cauchy

rates for the mean and the variance, corresponding to the norm
√
u2

1 + u2
2 at time t = 1.2, and different

resolutions in figure 3.8 (B).

(a) k = 1 (b) k = 2

Figure 3.10: The metrics
´
Dk

W1(ν∆,k
t,x , ν

∆/2,k
t,x )dx for the one- and two-point correlation marginals for

the sinusoidal vortex sheet at time t = 1.2

Again, we observe that these one-point statistics converge at a significantly faster rate than the single

sample. These results indicate that one can expect significantly better convergence of approximations for

statistics than for individual realizations of fluid flows, even if the initial probability measure is a small

perturbation of the underlying deterministic data and further reinforces the results of Refs. [FKMT17,

LM15, FLMW20] in this direction.

Finally, we plot the Wasserstein distances (3.5.7) for k = 1, 2, corresponding to the one- and two-

point correlation marginals, at time t = 1.2, in figure 3.10. The results clearly show convergence in these

metrics at a significantly faster rate than for individual samples and indicate possible convergence in the

metric (3.2.2) on probability measures on L2.

3.5.3 Fractional Brownian motion

The study of the evolution of initial ensembles corresponding to (fractional) Brownian motion stems from

Refs. [SAF92, Sin92], where the authors model interesting aspects of Burgers turbulence by evolving

Brownian motion initial data for the (scalar) Burgers’ equation, see [FLM18] for a more recent numerical

study. Similarly in [FLMW20], the authors consider the compressible Euler equations with (fractional)

Brownian motion initial data. Following these articles, we will consider the two-dimensional Euler

equations (1.1.1) with initial data corresponding to fractional Brownian motion, i.e. the following initial

data:

ux,H0 (ω;x) := BH1 (ω;x), wy,H0 (ω;x) := BH2 (ω;x). for ω ∈ Ω, x ∈ D (3.5.8)

where BH1 and BH2 are two independent two-dimensional fractional Brownian motions with the Hurst

index H ∈ (0, 1). Standard Brownian motion corresponds to a Hurst index of H = 1/2. The initial

probability measure µ is the law of the above random field.
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(a) H = 0.15 (b) H = 0.5 (c) H = 0.75

Figure 3.11: A single sample of initial horizontal velocity u1 for the fractional Brownian motion initial

data (3.5.8) for three different Hurst indices

To generate fractional Brownian motion, we use the random midpoint displacement method originally

introduced by Lévy [Lév92] for Brownian motion, and later adapted for fractional Brownian motion, see

[FLMW20] section 6.6.1.

Considering fractional Brownian motion initial data (3.5.8) is a significant deviation from the vortex

sheet initial data in the following respects,

• For the vortex sheet initial data, the initial measure µ ∈ P(L2
x) was concentrated on a 20-

dimensional subset of L2
x (corresponding to the choice of 20 free parameters αk, βk). On the

other hand, in the limit of infinite resolution (∆→ 0), the fractional Brownian motion initial data

corresponds to a measure concentrated on an infinite dimensional subset of L2
x.

• For any 0 < H < 1, and for any sample ω ∈ Ω, the initial vorticity for (3.5.8) is not a Radon

measure. Consequently, the initial data does not belong to the Delort class and there are no

existence results for the corresponding samples. Hence, fractional Brownian motion does not fall

within the ambit of any of the available well-posedness theories for two-dimensional Euler equations.

• The Hurst index H in (3.5.8) controls the regularity (and also roughness) of the initial data (path-

wise). Roughly speaking, each sample is Hölder continuous with exponent H. Hence, we can

consider a very wide range of scenarios in terms of roughness of the initial data by varying the

Hurst-index H, see figure 3.11 for realizations of the horizontal velocity field for three different

Hurst indices. In particular, one can observe from this figure that lowering the value of H leads to

oscillations of both higher amplitude and frequency in the initial velocity field.

Structure functions and Compensated energy spectra

In order to verify convergence of the approximations, generated by algorithm 3.4.1, for the fractional

Brownian motion initial data (3.5.8), we will check if the computed structure functions (3.5.3) decay

uniformly with respect to resolution, on decreasing correlation lengths. In figure 3.12 (Top Row), we plot

the structure function at time T = 1 for three different Hurst indices of H = 0.75, 0.5, 0.15 and observe

that the structure functions indeed decay to zero at a certain exponent (independent of resolution).

These exponents are approximately 0.8 for initial H = 0.75, 0.6 for the standard Brownian motion initial

data (H = 0.5) and 0.55 for the initially rough H = 0.15. These results indicate that the conditions of

the compactness theorem 3.2.7 are fulfilled and the approximations converge to a statistical solution of

(1.1.1).
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(a) H = 0.15 (b) H = 0.5 (c) H = 0.75

Figure 3.12: Instantaneous structure function (3.5.3) (Top Row) and Compensated energy spectrum

(3.5.5) (Bottom Row) for Fractional Brownian motion initial data with three different Hurst indices at

time T = 1. The compensated energy spectrum (3.5.5) is computed with γ = 1.3 (H = 0.15), γ = 2.0

(H = 0.5) and γ = 2.5 (H = 0.75)

This convergence is further reinforced by the computed compensated energy spectra (3.5.5), at time

T = 1, for the three different Hurst indices shown in figure 3.12 (Bottom Row). Based on the value of

the Hurst index, we choose the compensating index γ = 2.5, 2, 1.3 for the H = 0.75,H = 0.5,H = 0.15,

respectively. These values of γ are chosen to provide the correct scaling of the energy spectra at the

initial time t = 0. As seen from figure 3.12, the compensated energy spectra remain bounded up to the

final time t = T , independent of the spectral resolution. Hence, the energy spectrum decays at least at

the rate of K−γ for increasing wave number K, in the inertial range. Consequently, we can readily apply

Proposition 3.4.10 and conclude that the approximations, generated by the algorithm 3.4.1, converge to

a statistical solution, for all three values of the Hurst index H in (3.5.8).

Convergence in Wasserstein distance

Next, we seek to verify convergence of observables (statistical quantities of interest). To this ends, we

follow the previous section and compute the Wasserstein distances
´
Dk

W1(ν∆,k
t,x , ν

∆/2,k
t,x )dx, corresponding

to the k-point correlation marginals for the three different Hurst indices of H = 0.75, 0.5, 0.15. In figure

3.13, these metrics are computed at time T = 1, for k = 1, 2, corresponding to one-point and two-point

statistical quantities of interest. As observed from the figure, the approximations clearly converge in this

metric for both one- and two-point statistics, at rates which are independent of the underlying initial

Hurst index. The two-point correlation marginals appear to converge at a slower rate than the one-point

Young measures. These results validate convergence of all one- and two-point statistical quantities of

interest. Taken together with the results for the structure function, compensated energy spectra and

Theorem 3.2.7, they strongly suggest convergence in metric dT (3.2.2) on L1
T (P).
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(a) H = 0.15 (b) H = 0.5 (c) H = 0.75

Figure 3.13: Wasserstein distances
´
Dk

W1(ν∆,k
t,x , ν

∆/2,k
t,x )dx for k = 1 (Top Row) and k = 2 (Bottom

Row) for Fractional Brownian motion initial data with three different Hurst indices at time t = 1.

3.6 Discussion

We have considered the numerical approximation of solutions of the incompressible Euler equations

(1.1.1) in this chapter. The existence of classical (or weak) solutions is an outstanding open question in

three space dimensions. Although weak solutions are known to exist in two space dimensions, even for

very rough initial data, they may not be unique. Similarly, numerical experiments reveal that standard

numerical methods may not converge, or converge very slowly, to weak solutions on increasing resolution.

Given these inadequacies of traditional notions of solutions, it is imperative to find solution concepts

for (1.1.1) that are well-posed and amenable to efficient numerical approximation. In this context, we

consider the solution framework of statistical solutions. Statistical solutions are time-parameterized

probability measures on L2(D;Rd). Given the characterization of probability measures on Lp spaces

in [FLM17], these measures are equivalent to so-called correlation measures, i.e. Young measures on

tensor-products of the underlying domain and phase space that represent multi-point spatial correlations.

Furthermore, we require statistical solutions to satisfy an infinite number of PDEs (see Definition 3.3.1)

for the moments of the underlying correlation measure. Hence, a statistical solution can be interpreted

as a measure-valued solution (cp. Definition 1.3.8), augmented with information about the evolution of

all possible multi-point spatial correlations.

Our aim in this chapter was to study the well-posedness and efficient numerical approximation of

statistical solutions. To this end, first, we had to characterize convergence on a weak topology on

the space L1
t ([0, T ];P(L2(D;Rd))), under an assumption of time-regularity on the underlying measures.

Convergence in this topology amounted to convergence of a very large class of observables (or statistical

quantities of interest). We then proposed a notion of dissipative statistical solutions and also proved

partial well-posedness results for them in a generic sense, namely when the initial measure is concentrated

on functions sufficiently near initial data for which smooth solutions exist. This led to short-time well-

posedness if the initial probability measure is concentrated on smooth functions. In two space dimensions,

we proved global well-posedness for statistical solutions when the initial data is concentrated on smooth
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functions. Moreover, we also proved a suitable variant of weak-strong uniqueness.

The main contribution of the work summarized in this chapter is the proposal of an algorithm 3.4.1

to approximate statistical solutions of the Euler equations. This Monte Carlo type algorithm is a variant

of the algorithms proposed recently [FKMT17, LM15, FLMW20] and is based on an underlying spectral

hyper-viscosity spatial discretization. Under verifiable hypotheses, we prove that the approximations

converge in our proposed topology to a statistical solution. These hypotheses either rely on a suitable

scaling (or uniform decay) for the structure function, or equivalently, on finding an inertial range (of

wave numbers) on which the energy spectrum decays (uniformly in resolution). These hypotheses are

very common in the extensive literature on turbulence (see [Fri95] and references therein). A key novelty

in the work summarized in the present chapter is the rigorous proof of the fact that easily verifiable

conditions on the structure functions or energy spectrum imply a rather strong form of convergence for

(multi-point) statistical quantities of interest. For instance, we observe a surprising fact that a bound

on the compensated energy spectrum (3.5.5) implies that k-point statistics of interest, even for large

k, converge. The convergence results also provide a conditional global existence result for statistical

solutions in both two and three space dimensions.

We present results of several numerical experiments for the two-dimensional Euler equations. From

the numerical experiments, we observe that:

• Our convergence theory is validated by all the numerical experiments. The assumptions on the

structure functions and energy spectra appear to be very clearly fulfilled in practice. Moreover,

the computed solutions converge to a statistical solution in suitable Wasserstein metrics on multi-

point correlation marginals. In particular, all admissible observables of interest such as mean,

variance, higher moments, structure functions, spectra, multi-point correlation functions, converge

on increasing resolution and sample augmentation.

• In clear contrast to the deterministic case where computed solutions may converge very slowly

even if one can prove convergence of the underlying numerical method (see [LM20] and figure 3.8),

statistical quantities of interest seem to be better behaved and converge faster.

• For our numerical examples, we observe convergence of approximations even when the initial data

was quite rough such as when the initial vorticity may not have definite sign (as in the flat vortex

sheet) or may not even be a Radon measure (as in the fractional Brownian motion with any Hurst

index H ∈ (0, 1)). For such initial data, the samples are not in the Delort class and the convergence

(and existence) theory for two-dimensional Euler equations is no longer valid. On the other hand,

we find neat convergence to a statistical solution.

Based on the above discussion, we conclude that statistical solutions are a promising solution framework

for the incompressible Euler equations. In particular, there is some scope for proving well-posedness

results within this class, possibly with further admissibility criteria. Moreover, numerical approximation

of statistical solutions is feasible with ensemble averaging algorithms. Statistical solutions can be a

suitable framework for uncertainty quantification and Bayesian inversion for the Euler equations and to

encode and explain numerous computational and experimental results for turbulent fluid flows.

There are several limitations of the work summarized in the current chapter, which provide directions

for future work. At the theoretical level, we seek to either relax the criteria on scaling of structure

functions or prove it. This will pave the way for global existence results. Similarly, the weak-strong

uniqueness results of this paper could be improved.

In terms of numerical approximation, the main issue with the Monte Carlo type algorithm 3.4.1 is

the slow convergence (in terms of number of samples). This necessitates a very high computational
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cost, particularly in three space dimensions. Future work could consider efficient variants such as multi-

level Monte Carlo [FLM18, MSŠ12, LMS16], Quasi-Monte Carlo and deep learning algorithms [LMR20],

for computing statistical solutions of the incompressible Euler equations in three space dimensions. A

rationale for the potentially improved efficiency of approximations of statistical solutions deep learning

algorithms, leveraging neural network based surrogate models, will be discussed in chapter 7 of the

present thesis.



Chapter 4

Physically realizable solutions and

energy conservation

In the last chapter, we have established a theoretical framework for statistical solutions of the incom-

pressible Euler equations. A central quantity in the study of the convergence of numerical schemes to

a limiting statistical solution was given by the (2nd-order) structure function ST2 (µ∆
t ; r), measuring the

average two-point correlations in the flow. Numerical experiments indicate that these (statistical) struc-

ture functions are very well-behaved in practical computations, exhibiting a uniform decay at increasing

numerical resolution for a wide range of initial data. In the present chapter we aim to further study

the role of these structure functions in relation to one of the core questions of turbulence, namely the

question of anomalous energy dissipation in the zero-viscosity limit. We will consider this question in

both a deterministic and a statistical setting, and we will restrict our discussion to the two-dimensional

case. The present chapter summarizes the results of [LMPP21a].

4.1 Introduction

Turbulence is a defining feature of fluid flows at high Reynolds numbers [Fri95]. It is characterized by

the dynamic generation of structures (eddies) at small scales and by the cascade of energy from large

scale features of the flow to ever smaller scales.

Arguably, the famous K41 theory of Kolmogorov provides the most coherent explanation for fully-

developed turbulence. As presented in [Fri95], it is based on the incompressible Navier-Stokes equations

with initial data u, given by (cp. (1.2.3) in chapter 1),{
∂tu

ν + uν · ∇uν +∇pν = ν∆uν ,

div(uν) = 0, uν |t=0 = u,
(4.1.1)

Here, the velocity field is denoted by uν ∈ Rd (for d = 2, 3), and the pressure is denoted by pν ∈ R. For

any given viscosity ν > 0, it is straightforward to see that the incompressible Navier-Stokes equations

formally satisfy an energy balance equation of the form

d

dt

1

2

ˆ
D

|uν |2 dx = −ν
ˆ
D

|∇uν |2 dx.

Here, the left-hand side describes the time evolution of the kinetic energy E(t) = 1
2‖u

ν(t)‖2L2
x
, while the

right-hand side term describes the energy dissipation at small scales by viscosity. It is clear from this

81
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equation that we should expect E(t) to be non-increasing in time, E(t) ≤ E(0) for all t ≥ 0; in fact, we

should at least expect that suitable solutions of (4.1.1) satisfy

E(0)− E(t) ∼ ν
ˆ t

0

‖∇uν‖2L2
x
dx (4.1.2)

Given that turbulence appears at high Reynolds number (low viscosity), the behavior of the energy

dissipation (the right hand side of the energy balance (4.1.2)) is of great interest. In fact, one of the

fundamental postulates of Kolmogorov’s K41 physical theory of fully developed homogeneous isotropic

turbulence is that 〈ν‖∇uν‖2L2
x
〉 → ε0 > 0, as ν → 0 [Kol91, KLH+91]. Here, 〈. . .〉 refers to a suitable

ensemble average (or long time average under an ergodicity hypothesis). In other words, a cornerstone

of Kolmogorov’s theory is the assumption of anomalous, i.e. finite, non-zero energy dissipation in the

infinite Reynolds number limit.

Formally, taking the infinite Reynolds number limit (ν → 0) in the Navier-Stokes equations and

assuming that uν → u, implies that u satisfies the incompressible Euler equations:{
∂tu+ u · ∇u+∇p = 0,

div(u) = 0, u|t=0 = u.
(4.1.3)

We recall from chapter 1.3.5, that the issue of anomalous dissipation in turbulent flows was cast in terms

of solutions of the incompressible Euler equations by Onsager in [Ons49], who observed that Hölder

continuous solutions of the incompressible Euler equations u ∈ Cα should conserve energy provided that

α > 1/3, but might exhibit anomalous dissipation if α < 1/3, even in the zero viscosity limit. The

existence of energy-dissipative solutions u ∈ Cα for α < 1/3, so-called wild solutions, has been recently

shown in [Ise18, BdLSV19] for the three-dimensional case, based on pioneering work of DeLellis and

Szekelyhidi in [DLS09] where convex integration techniques were adapted to the study of fluid flows.

However, there is an essential caveat in the construction of these wild solutions: At the outset, it is

unclear if these wild solutions can be realized as vanishing viscosity limits of the Navier-Stokes equations

(4.1.1). If not, their link to the questions of anomalous dissipation in turbulent flows is rather tenuous.

It is widely known that vanishing viscosity limits might exhibit additional structures that could well

constrain the formation of energy dissipative solutions. This is especially true in two space dimensions, as

there is a critical role played by the vorticity ω = curl(u) of the flow. In fact, in a recent paper [CFLS16],

the authors prove that if a weak solution of the incompressible Euler equations u with initial data having

vorticity ω ∈ Lp, p > 1, is obtained as the limit uν → u of solutions uν of the ν-Navier-Stokes equations

(4.1.1) with the same initial data, then u is energy conservative. On the other hand, ω ∈ Lp, p > 1 does

not imply that u ∈ Cα for α > 1/3.

A critical assessment of the results of the paper [CFLS16] motivate us to ask the following questions:

first, can one extend the energy conservation results of [CFLS16] to even rougher initial data? In two space

dimensions, Delort [Del91] (see also [VW93]) proved existence of weak solutions of the incompressible

Euler equations, even when the initial vorticity ω ∈ H−1 ∩M and ω can be written as the sum of a

bounded measure of distinguished sign and a function in Lp, 1 ≤ p ≤ ∞. Hence, we are interested

in investigating if weak solutions of the Euler equations (realized as a vanishing viscosity limit of the

Navier-Stokes equations), with measure-valued initial vorticity, are energy conservative. Such initial data

correspond to interesting physical scenarios such as vortex sheets. In two dimensions, the vorticity of

vortex sheet initial data is initially distributed along a (smooth) curve γ0. Classically, the dynamics of

such vortex sheets has been studied by considering the evolution equation for γt, known as the Birkhoff-

Rott equation. From the results presented in [Shv09] (pertaining to both two and higher dimensions), it

follows in particular that classical vortex sheet solutions conserve energy as long as the evolving curve γt
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remains sufficiently smooth [Shv09, Corollary 11]. Short-time existence and regularity results for γt are

known for a suitable class of analytic initial data [SSBF81, Caf88], but in general, numerical evidence

[Kra86b] indicates that global existence is precluded by the occurrence of a roll-up singularity. The energy

conservation results for classical vortex sheets could thus suggest that an energy conservation result holds

also in the zero-viscosity limit, at least before the occurrence of vortex sheet roll-up. Through careful

numerical experiments, we will investigate the evolution of vortex sheets even well beyond the time of

roll-up singularity.

In addition to the question of energy conservation in the zero-viscosity limit, we are interested in

investigating if limits of other interesting approximations of the two-dimensional Euler equations, for

instance numerical approximations such as the spectral viscosity method [Tad04, BT15], are energy

conservative.

Another aspect of the results of [Ise18, BdLSV19, CFLS16] is the fact that they pertain only to

deterministic solutions. On the other hand, most descriptions of turbulence, including the K41 theory,

are probabilistic in nature, with the anomalous dissipation hypothesis being considered for ensemble

averages [Fri95]. It is natural to ask if the analogous energy conservation results hold for a probabilistic

description of turbulent flows.

Given these questions, the main goals and results summarized in the current chapter are:

• We prove that any weak solution u of the two-dimensional incompressible Euler equations (4.1.3),

which can be obtained as a strong limit uν → u in L1
t ([0, T ];L2

x) in the zero viscosity limit of the

incompressible Navier-Stokes equations (4.1.1), ν → 0, must be energy conservative. This implies in

particular energy conservation for the large class of initial data for which strong L2-convergence (in

C([0, T ];L2
x)) has been proven in [FLT00], and extends the results of [CFLS16] to initial vorticity

beyond Lp, p > 1.

• We consider the probabilistic framework of statistical solutions, proposed for the Navier-Stokes

equations in [FMRT08] and references therein, and more recently for the Euler equations in [FLM17,

FW18, LMPP21b] and prove analogous energy conservation results for statistical solutions of Euler

equations, in particular, those that arise as limits of a spectral viscosity-Monte Carlo numerical

approximation of [LMPP21b].

• For both sets of results, we express the strong compactness of approximating sequences in terms of

uniform decay of the so-called structure function (4.2.2). The structure function appears repeatedly

in the turbulence literature [Fri95] and references therein, as well as in the more recent mathematical

discussions of [CG12, CV18, DN19], and it can be computed in numerical approximations and

measured in experiments. Thus, characterizing energy conservation (and anomalous dissipation)

in terms of the structure function is very convenient.

• The validity of the proposed theory is illustrated in terms of different numerical experiments. In

particular, we consider initial data that don’t necessarily belong to the class considered by Delort in

[Del91] and for which no compactness/existence results are available. Numerical experiments reveal

that the approximate solutions possess the desired decay of the structure function and computed

energy is conserved in time.

The rest of this chapter is organized as follows: in section 4.2, we characterize energy conservation for

the vanishing viscosity limit. Energy conservation for numerical approximations to statistical solutions

of (4.1.3) is considered in section 4.3 and numerical experiments to illustrate and complement the theory

are presented in section 4.4.
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4.2 Energy conservation of vanishing viscosity limits

Our goal in this section will be to characterize the conservation of energy in weak solutions of the two-

dimensional Euler equations (4.1.3), that arise as vanishing viscosity limits of the Navier-Stokes equations

(4.1.1). For the convenience of the reader, we here recall the definition of approximate solutions sequences

introduced in chapter 1 (cp. Definition 1.3.5):

Definition 4.2.1. Let {uk}, k ∈ N, be a uniformly bounded sequence in L∞([0, T ];L2(T2;R2)). The

sequence {uk} is an approximate solution sequence for the incompressible Euler equations, if the

following properties are satisfied:

1. The sequence {uk} is uniformly bounded in Lip([0, T );H−L(T2;R2)), for some (possibly large)

L > 1.

2. For any test vector field ϕ ∈ C∞c ([0, T )× T2;R2) with div(ϕ) = 0, we have:

lim
k→∞

ˆ T

0

ˆ
T2

ϕt · uk + (∇ϕ) : (uk ⊗ uk) dx dt+

ˆ
T2

ϕ(x, 0) · uk(x, 0) dx = 0.

3. div(uk) = 0 in D′([0, T ]× T2).

We shall often denote (spatial) Lp spaces, such as Lp(D;R2) in the abbreviated form Lpx in the

following, provided that the domain and co-domain are clear from the context. Similar notation will be

used to denote time-dependent Bochner spaces LptL
2
x := Lp([0, T ];L2

x), where it is understood that the

temporal domain is [0, T ] for some fixed T > 0.

Our interest is in particular approximating sequences that stem from the weak solutions of the Navier-

Stokes equations. Hence, following [CFLS16], we define,

Definition 4.2.2. A weak solution u ∈ L∞([0, T ];L2
x) of the incompressible Euler equations with initial

data u ∈ L2
x is physically realizable, if there exists a sequence uνk , such that each uνk ∈ C([0, T ];L2

x)

1. is a solution of (4.1.1) with viscosity νk → 0 (k →∞),

2. uνk(t = 0)→ u strongly in L2
x, (k →∞),

3. and uνk ⇀ u weakly in L2
t (L

2
x).

In this case, we will refer to the sequence uνk ⇀ u as a physical realisation of u.

As mentioned in the introduction, we seek to characterize compactness of approximating sequences

and energy conservation in terms of the structure function. We recall the definition of the structure

function. Given u ∈ L2
x, the structure function S2(u; r) for r ≥ 0 is defined as follows:

S2(u; r) :=

(ˆ
D

 
Br(0)

|u(x+ h)− u(x)|2 dh dx

)1/2

. (4.2.1)

Similarly, the time-integrated structure function ST2 (u; r) for u ∈ L2
tL

2
x, is defined by setting

ST2 (u; r) :=

(ˆ T

0

S2(u(t); r)2 dt

)1/2

. (4.2.2)
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Remark 4.2.3. As pointed out in [DN19, eq. (21), (22)], the structure function ST2 (uν ; r) for solutions

uν of the Navier-Stokes equations at diffusive length scales r ∈ [0, ν1/(2−2α)] satisfies an a priori algebraic

decay of order α ∈ (0, 1) (see also [LMPP21b, Lemma 4.5] for a corresponding statement for the spectral-

viscosity scheme). Indeed, from the L2([0, T ];H1
x)-bound, it is immediate that ST2 (uν ; r) ≤ Cr/

√
ν, where

C depends only on ‖uν(t = 0)‖L2
x
. So if r ≤ ν1/(2−2α), then r/

√
ν ≤ rα and consequently, the algebraic

decay ST2 (uν ; r) ≤ Crα is satisfied in this range. In particular, to numerically verify an algebraic decay

assumption ST2 (uν ; r) ≤ Crα, it suffices to consider only a finite range, e.g. r ∈ [ν1/(2−2α), 1].

Remark 4.2.4. A measure of regularity very similar to the structure function (4.2.1) has previously been

employed in [CG12, CV18, DN19] to study the convergence of solutions of the Navier-Stokes equations to

solutions of the Euler equations in the zero-viscosity limit, notably on bounded domains D ⊂ Rd, d = 2, 3,

with regular boundary. In this context, it has been shown [DN19] for both no-slip and Navier friction or

slip boundary conditions, that the validity of a uniform algebraic upper bound,

lim sup
νk→0

ˆ
A

|uνk(x+ h)− uνk(x)|2 dx ≤ C|h|ζ ,

for all A b D (here C = C(A) > 0, ζ = ζ(A) ∈ (0, 2)), is a sufficient condition to conclude that the weak

limit uνk ⇀ u is a weak solution of the Euler equations on D.

In the present work, we will relate uniform (and not necessarily algebraic) decay of the structure

functions to compactness properties and energy conservation of approximating sequences in the two-

dimensional case. To this end, we need the following technical results: The first one follows from a

simple calculation.

Lemma 4.2.5 ([LMPP21a, Lemma 2.5]). We have for any u ∈ H1
x:

ˆ
D

 
Br(0)

|h · ∇u(x)|2 dh dx =
r2

4

ˆ
D

|∇u(x)|2 dx.

The second technical inequality we will need is given in the following Lemma.

Lemma 4.2.6. There exists an absolute constant C > 0, such that for any u ∈ H2
x and any r > 0, we

have the following inequality

‖ω‖L2
x
≤ Cr‖∇ω‖L2

x
+

2S2(u; r)

r
, (4.2.3)

where ω = curl(u).

Before proving Lemma 4.2.6, we remark on its significance in the present context.

Remark 4.2.7. Note that if u is in Hα
x for some 0 < α < 1, then S2(u; r) . ‖u‖Hαx r

α and the estimate

(4.2.3) implies that

‖u‖H1
x
. r‖u‖H2

x
+ rα−1‖u‖Hαx .

This estimate can also be obtained from the following interpolation inequality

‖u‖H1
x
≤ ‖u‖1−θH2

x
‖u‖θHαx ≤ r‖u‖H2

x
+ r(θ−1)/θ‖u‖Hαx

for r > 0, where θ is chosen such that 1 = 2(1 − θ) + αθ, i.e. θ = 1/(2 − α); implying once again an

estimate of the form

‖u‖H1
x
. r‖u‖H2

x
+ rα−1‖u‖Hαx ,



86 CHAPTER 4. PHYS. REALIZABLE SOL’S AND ENERGY CONSERVATION

for any r > 0. Note also that with a suitable choice of r, the original interpolation estimate for ‖u‖H1
x

in terms of ‖u‖H2
x
, ‖u‖Hαx can be re-obtained from the latter estimate.

In this sense, Lemma 4.2.6 can be thought to generalize such Hα-type interpolation estimates to

situations where one only has uniform bounds on the structure functions, instead of an explicit Hα

estimate.

Proof of Lemma 4.2.6. By an approximation argument, it is sufficient to prove the claimed inequality

for u ∈ C∞ ∩H2
x. In this case, it follows from Taylor expansion that for any x, h, we have the following

equality

u(x+ h)− u(x) = h · ∇u(x) +

ˆ 1

0

(1− t)(h⊗ h) : ∇2u(x+ th) dt.

Let now D(x, h) := u(x+ h)− u(x), G(x, h) := h · ∇u(x) and

R(x, h) :=

ˆ 1

0

(1− t)(h⊗ h) : ∇2u(x+ th) dt.

Fix r > 0. Define a measure m on D ×D by

ˆ
D×D

f(x, h) dm(x, h) =

ˆ
D

 
Br(0)

f(x, h) dh dx.

It follows from the equality G(x, h) = D(x, h)−R(x, h) that

‖G(x, h)‖L2
x,h(dm) ≤ ‖D(x, h)‖L2

x,h(dm) + ‖R(x, h)‖L2
x,h(dm).

We note that by Lemma 4.2.5, we have

‖G(x, h)‖L2
x,h(dm) =

r

2

(ˆ
D

|∇u(x)|2 dx
)1/2

=
r

2
‖ω‖L2

x(dx).

Furthermore, we note that – by definition – ‖D(x, h)‖L2
x,h(dm) = S2(u; r). Finally, it is easy to see that

there exists a constant C such that

‖R(x, h)‖L2
x,h(dm) ≤ Cr2‖∇2u‖L2

x(dx) ≤ Cr2‖∇ω‖L2
x(dx).

Combining these expressions (and possibly enlarging the constant C), the claimed estimate follows.

As mentioned in the introduction, the energy conservation results of [CFLS16] are a starting point

for this work. In [CFLS16], the authors characterize energy conservation in terms of uniform a priori

estimates on the vorticity ω of the approximating sequences. In order to introduce the reader to our

generalizations of the results of [CFLS16], we begin with the following theorem that recasts the energy

conservation results of [CFLS16] in terms of the structure function.

Theorem 4.2.8. Let u be a weak solution of the incompressible Euler equations which is the physical

realisation in the zero-viscosity limit of a sequence uνk ⇀ u, as νk → 0. If there exist constants C,α > 0,

such that S2(uνk(t); r) ≤ Crα for all t ∈ [0, T ], k ∈ N, then u is energy-conservative.

As the proof closely follows the arguments of [CFLS16], we provide a sketch below.

Sketch of proof. Under the assumption of algebraic decay of the structure function at each t ∈ [0, T ],

we have strong compactness of uνk in C([0, T ];L2
x). In particular, it follows from the weak convergence



4.2. ENERGY CONSERVATION OF VANISHING VISCOSITY LIMITS 87

uνk ⇀ u that in fact uνk → u in C([0, T ];L2
x). Thus, for any t ∈ [0, T ], we have (cp. equation (1.3.15)

in chapter 1)

‖u(t)‖2L2
x
− ‖u‖2L2

x
= lim
k→∞

(
‖uνk(t)‖2L2

x
− ‖uνk(0)‖2L2

x

)
= lim
k→∞

2νk

ˆ t

0

‖ωνk(s)‖2L2
x
ds.

The central point of the argument is to show that under the present assumptions

νk

ˆ T

0

‖ωνk(t)‖2L2
x
dt→ 0, (νk → 0).

The vorticity equation implies the following enstrophy equation

d

dt
‖ωνk(t)‖2L2

x
= −2νk‖∇ωνk(t)‖2L2

x
. (4.2.4)

We remark that ‖ωνk(t)‖L2
x
< ∞ for t > 0 (cp. Theorem 1.3.15). By assumption and the last lemma,

we can now estimate

‖ωνk‖L2
x
≤ Cr‖∇ωνk‖L2

x
+ Crα−1, (4.2.5)

where C,α > 0 are absolute constants and r > 0 is arbitrary. Balancing terms, we choose r =

‖∇ωνk‖−1/(2−α)
L2
x

. We obtain

‖ωνk‖L2
x
≤ C‖∇ωνk‖(1−α)/(2−α)

L2
x

, (4.2.6)

implying (together with equation (4.2.4)) that there is a constant c > 0 such that

d

dt
‖ωνk(t)‖2L2

x
≤ −cνk‖ωνk(t)‖2(2−α)/(1−α)

L2
x

= −cνk‖ωνk(t)‖2(2+δ)
L2
x

,

where δ > 0 is chosen so that 2(2 + δ) = 2(2− α)/(1− α), i.e.

δ =
α

1− α
. (4.2.7)

If we now write yνk = ‖ωνk‖2L2
x
, then we have obtained the following inequality

d

dt
yνk ≤ −cνky2+δ

νk
. (4.2.8)

This differential inequality is of the same form as the one that has been used in [CFLS16] to prove

energy conservation provided ω ∈ Lpx (p > 1). Following the argument in [CFLS16], one shows that

(4.2.8) implies that

yνk(t) = ‖ωνk(t)‖2L2
x
≤ C(α)

(νkt)1−α . (4.2.9)

Note that since α > 0, this last estimate is an improvement over the straightforward estimate from

Navier-Stokes equations (see Theorem 1.3.15), which would instead have only provided an upper bound

‖ωνk(t)‖2L2
x
≤ C

νkt
,
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which formally corresponds to setting α = 0 in (4.2.9). This improved estimate is crucial to prove energy

conservation, since we now find that

νk

ˆ T

0

‖ωνk(t)‖2L2
x
dt ≤ C(α)νk

1−(1−α)

ˆ T

0

dt

t1−α
=

(
C(α)Tα

α

)
νk
α → 0,

as νk → 0. This shows that the energy dissipation vanishes at a rate . ναk as νk → 0. Evidently, based

on this estimate, the energy dissipation is expected to be larger for rough flows (corresponding to smaller

values of α > 0). Finally, in the limit α→ 0, in which case we have no uniform control on the structure

functions, nothing can be said about energy conservation.

The central point of the proof of Theorem 4.2.8, as outlined above, is that uniform control on the struc-

ture functions implies an improved estimate for ‖ωνk(t)‖2L2
x

over the straightforward estimate provided

by Theorem 1.3.15. Based on this improved enstrophy estimate, it can then be shown that the energy

dissipation

νk

ˆ T

0

‖ωνk(t)‖2L2
x
dt→ 0, (νk → 0),

converges to 0, hence implying energy conservation in the zero-viscosity limit.

More precisely, an algebraic decay of the structure functions

S2(uνk ; r) ≤ Crα,

implies a similar bound on the energy dissipation

νk

ˆ T

0

‖ωνk(t)‖2L2
x
dt ≤ Cνkα. (4.2.10)

Remark 4.2.9. Recently, Drivas and Eyink [DE19] have obtained a similar upper bound on the energy

dissipation of Leray solutions in the higher dimensional case, but under stronger assumptions on the

sequence uνk . In particular, it is shown in [DE19, Lemma 1], that if uνk ∈ L3([0, T ];Bσ,∞3 (Td)), σ ∈ (0, 1]

are uniformly bounded as νk → 0, then the energy dissipation is bounded for some νk-independent constant

C by: ˆ T

0

ˆ
Td
ε[uνk ] dx dt ≤ Cν

3σ−1
σ+1

k .

Here, the energy dissipation measure ε[uνk ] satisfies ε[uν ] ≥ ν|∇uν |2 for d > 2, and ε[uν ] = ν|∇uν |2 in

the two-dimensional case, d = 2. Above, Bσ,∞3 (Td) denotes the corresponding Besov space.

Based on the bound (4.2.10) in the two-dimensional case, it is now natural to ask whether a uniform

(but not necessarily algebraic) decay such as,

S2(uνk ; r) ≤ φ(r),

with φ(r) being a modulus of continuity, i.e. the function φ : [0,∞)→ [0,∞), such that φ(r) ≥ 0 for all

r ≥ 0 and φ(r)→ 0, as r → 0, will imply an estimate of the form,

νk

ˆ T

0

‖ωνk(t)‖2L2
x
dt = oνk(1)→ 0, (νk → 0)?

Here, we would clearly expect the decay of oνk(1) → 0 to depend on the properties of the modulus of

continuity φ(r), as r → 0.
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As we will prove below, the answer to this question is positive, and the energy dissipation term

can be shown to converge to zero as νk → 0, provided that the structure functions decay uniformly,

though not necessarily algebraically. However, it turns out that a more natural way to measure the

uniform decay of the sequence uνk is in terms of the time-integrated structure function ST2 (uνk ; r) (4.2.2),

instead of S2(uνk ; r) (4.2.1). In particular, uniform decay of this structure function allows us to precisely

characterize compactness of sequences in Lp([0, T ];L2
x), for 1 ≤ p < ∞, as stated in the proposition

below.

Proposition 4.2.10. Fix 1 ≤ p <∞. Let {uνk}k∈N be an approximate solution sequence of the incom-

pressible Euler equations. Then uνk is strongly relatively compact in Lpt ([0, T ];L2
x) if, and only if, there

exists a uniform modulus of continuity φ(r), such that

ST2 (uνk ; r) ≤ φ(r), ∀ r > 0, ∀ k ∈ N.

The proof of this technical proposition is provided in [LMPP21a, Appendix B]. Now, we are ready to

state the main result of this section about characterizing energy conservation of approximating sequences

to the Euler equations (4.1.3), in terms of the structure function. We have the following theorem:

Theorem 4.2.11. Let u ∈ L2
x be initial data for the incompressible Euler equations. Let u ∈ L∞t ([0, T ];L2

x)

be a physically realizable solution of the incompressible Euler equations with initial data u. Let uνk ⇀ u

be a physical realisation of u. Then the following are equivalent:

1. uνk → u strongly in Lp([0, T ];L2
x) for some 1 ≤ p <∞,

2. There exists a bounded modulus of continuity φ(r), such that (uniformly in k)

ST2 (uνk ; r) ≤ φ(r), ∀ r ≥ 0, ∀ k ∈ N.

3. u is a energy conservative weak solution.

Sketch of proof. For the full details of the proof, we refer to [LMPP21a, Theorem 2.11]. Here, we will

restrict attention to the core observation of the main implication (2)⇒ (3): We assume that there exists

a modulus of continuity φ(r), and a physical realisation uνk ⇀ u of u, such that we have a uniform

bound

ST2 (uνk ; r) ≤ φ(r), ∀r ≥ 0, ∀k ∈ N.

We want to show that u is energy conservative. The main ingredient is to show that for fixed δ > 0, the

energy dissipation term vanishes in the zero-viscosity limit:

νk

ˆ T

δ

‖ωνk(t)‖2L2
x
dt→ 0, as νk → 0. (4.2.11)

To simplify the notation, we will drop the subscript k in the following, and denote the sequence

νk → 0 instead by ν → 0. To prove (4.2.11), we observe from the vorticity transport equation that,

‖ων(t)‖2L2
x

= ‖ων(δ)‖2L2
x
− 2ν

ˆ t

δ

‖∇ων(s)‖2L2
x
ds. (4.2.12)

From the structure function estimate (4.2.3) it follows that we have a bound

ˆ t

δ

‖ων(s)‖2L2
x
ds ≤ Cr2

ˆ t

δ

‖∇ων(s)‖2L2
x
ds+ C

φ(r)2

r2
. (4.2.13)
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for all r > 0. Choosing r to balance terms on the right-hand side, we make the particular choice

r =
φ(r)1/2(´ t

δ
‖∇ων(s)‖2L2

x
ds
)1/4

, where r :=
φ

1/2(´ t
δ
‖∇ων(s)‖2L2

x
ds
)1/4

,

Here, φ > 0 provides an upper bound φ(r) ≤ φ. The first term of (4.2.13) is given by

Cr2

ˆ t

δ

‖∇ων(s)‖2L2
x
ds = Cφ(r)

(ˆ t

δ

‖∇ων(s)‖2L2
x
ds

)1/2

.

To estimate the second term, we note that r ≤ r implies1 φ(r) ≤ φ(r), and hence

C
φ(r)2

r2
≤ Cφ(r)

(ˆ t

δ

‖∇ων(s)‖2L2
x
ds

)1/2

.

Estimating the right-hand side terms of (4.2.13) in this manner and taking the square of both sides, we

deduce that (ˆ t

δ

‖ων(s)‖2L2
x
ds

)2

≤ Cφ(r)2

ˆ t

δ

‖∇ων(s)‖2L2
x
ds. (4.2.14)

Let us denote yν(t) := ν
´ t
δ
‖ων(s)‖2L2

x
ds, and zν(t) :=

´ t
δ
‖∇ων(s)‖2L2

x
ds. Equation (4.2.14) can be

re-written in the form

(yν/ν)2 ≤ Cφ
(
βz−1/4

ν

)
zν , β := φ

1/2
. (4.2.15)

Consider now the function f : [0,∞)→ [0,∞), z 7→ f(z) := Cφ(βz−1/4)z for z > 0, and f(0) := 0. Since

φ(r) is a bounded modulus of continuity, we have

sup
z∈(0,∞)

f(z)/z = sup
r∈(0,∞)

Cφ(r) <∞. (P1)

Furthermore, we note that

lim sup
z→∞

f(z)/z = lim
z→∞

Cφ(βz−1/4) = lim
r→0

Cφ(r) = 0, (P2)

i.e. f(z) � z has sub-linear growth. Intuitively, we would therefore expect the inverse of f(z) to grow

super-linearly, f−1(y)� y, as y →∞. Unfortunately, there is no guarantee that z 7→ f(z) is invertible.

This technical point is handled by the following lemma:

Lemma 4.2.12 (see [LMPP21a, Lemma C.1]). Let f : [0,∞) → [0,∞), z 7→ f(z) be a non-negative

function with the following two properties:

(P1) supz∈(0,∞) f(z)/z <∞, f(0) = 0,

(P2) f(z) grows sub-linearly at infinity: f(z)� z, as z →∞, i.e. lim supz→∞ f(z)/z = 0.

Then there exists a continuous, strictly monotonically increasing function F : [0,∞)→ [0,∞), z 7→ F (z),

such that F (z) ≥ f(z) for all z ∈ [0,∞). Furthermore, the inverse F−1 : [0,∞) → [0,∞), y 7→ F−1(y),

can be represented in the form F−1(y) = σ(
√
y)y, where (i) σ : [0,∞) → [0,∞) is a continuous,

monotonically increasing function, and (ii) σ(
√
y)→∞ as y →∞.

1By replacing φ(r) by Φ(r) := sups≤r φ(s), if necessary, we may wlog assume that r 7→ φ(r) is monotonically increasing.
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Since f(z) satisfies (P1) and (P2), we can construct a function F (z) ≥ f(z) with the properties of the

last Lemma. In particular, the inverse of F (z), F−1 : [0,∞) → [0,∞), y 7→ F−1(y) is a monotonically

increasing function which can be represented in the form

F−1(y) = yσ(
√
y). (4.2.16)

By (4.2.15), the definition of f(z) and the fact that f(z) ≤ F (z), we have (yν/ν)2 ≤ f(zν) ≤ F (zν),

uniformly for all ν. By the monotonicity of F−1(y), this implies that F−1((yν/ν)2) ≤ zν for all ν and

further implies that,
1

ν2
yν(t)2σ

(
yν(t)

ν

)
≤ zν(t),

by our representation (4.2.16) of F−1. Recalling that zν(t) :=
´ t
δ
‖∇ων(s)‖2L2

x
ds, we can equivalently

write this estimate in the form

− ν2

ˆ t

δ

‖∇ων(s)‖2L2
x
ds = −ν2zν(t) ≤ −yν(t)2σ

(
yν(t)

ν

)
, (4.2.17)

and we note that yν(t) = ν
´ t
δ
‖ων(s)‖2L2

x
ds, by definition. Making use also of the apriori inequality

ν‖ων(δ)‖2L2
x
≤ ‖u‖2L2

x
/δ (cp. Theorem 1.3.15), it follows from estimate (4.2.17) and the enstrophy equa-

tion (4.2.12) that

d

dt
yν(t) ≤

‖u‖2L2
x

δ
− yν(t)2σ

(
yν(t)

ν

)
. (4.2.18)

As a consequence of the last inequality (4.2.18), we now claim that for any ε > 0, there exists a ν0(ε) > 0

such that yν(t) ≤ ε for all ν ≤ ν0(ε). Indeed, if yν(t) ≥ ε, then the differential inequality (4.2.18) above

implies that

d

dt
yν(t) ≤

‖u‖2L2
x

δ
− ε2σ

( ε
ν

)
.

We recall that by construction σ is a monotonically increasing function, and σ(y) → ∞ as y → ∞.

Therefore, choosing ν0 = ν0(ε, σ, δ, ‖u‖L2
x
) sufficiently small, we can ensure that for all ν ≤ ν0 we have

σ
(
ε
ν

)
≥ ‖u‖2L2

x
/(ε2δ), or equivalently

‖u‖2L2
x

δ
− ε2σ

( ε
ν

)
≤ 0.

This implies that dyν/dt ≤ 0 whenever yν(t) ≥ ε and ν ≤ ν0. Since t 7→ yν(t) ≥ 0 is continuously

differentiable for any ν > 0 and since yν(δ) = 0, independently of ν, this implies that yν(t) cannot leave

the set {y ∈ R | 0 ≤ y ≤ ε} for any t ∈ [δ, T ], provided that ν ≤ ν0. In particular, we conclude that for

t = T :

lim sup
ν→0

ν

ˆ T

δ

‖ων(t)‖2L2
x
dt = lim sup

ν→0
yν(T ) ≤ sup

ν≤ν0

yν(T ) ≤ ε.

As ε > 0 was arbitrary, this is only possible if

lim
ν→0

ν

ˆ T

δ

‖ων(t)‖2L2
x
dt = 0. (4.2.19)

To summarize: Assuming that ST2 (uν ; r) ≤ φ(r) is uniformly bounded by a modulus of continuity φ(r),

we have shown that for any δ > 0, the expression ν
´ T
δ
‖ων(t)‖2L2

x
dt converges to zero as ν → 0. An

additional technical argument, provided in detail in [LMPP21a, Proof of Theorem 2.11], then allows us

to conclude that ‖u(t)‖L2
x

= ‖u‖L2
x
, for a.e. t ∈ [0, T ], i.e. u is energy conservative.
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Clearly Theorem 4.2.8 is a special case of the above Theorem 4.2.11. Moreover in [CFLS16], the

authors have shown that physically realizable weak solutions of the two-dimensional incompressible Euler

equations are energy conservative, provided that the initial vorticity ων = curl(uν) ∈ Lpx are uniformly

bounded, for some p > 1. This result readily follows from the characterisation provided by Theorem

4.2.11: If uν is the solution of (4.1.1) with viscosity ν > 0, and uniformly bounded initial vorticity

‖ων‖Lpx ≤ C, then the vorticities ων = curl(uν) are bounded in C([0, T ];Lpx), uniformly as ν → 0. In

particular, this implies that {uν} is precompact in C([0, T ];L2
x) ↪→ L2

t ([0, T ];L2
x). Hence any such limit

uνk → u must be energy conservative according to Theorem 4.2.11.

Next, we aim to use the characterization of energy conservation in Theorem 4.2.11 and generalize the

results of [CFLS16]. To state the next lemma, we denote by (ων)∗ the decreasing rearrangement of ων

[Lio96]. We recall that the Lorentz space L(1,2) is defined by

L(1,2) =

{
ω ∈ L1(T2)

∣∣∣ ˆ |T2|

0

(ˆ s

0

ω∗(r) dr

)2
ds

s
<∞

}
.

It is well-known that L(1,2) embeds continuously into H−1 [Lio96]. We now recall the following Lemma

from [Lio96, Lemma 4.1]:

Lemma 4.2.13. A family {ων} ⊂ L(1,2) is precompact, if the following conditions hold:

1. There exists C > 0, such that ‖ων‖L(1,2) ≤ C uniformly in ν,

2.
´ δ

0
(
´ s

0
(ων)∗(r)dr)2 ds

s → 0 as δ → 0, uniformly in ν.

Extending the result of [CFLS16] somewhat, we note in particular the following corollary of Theorem

4.2.11:

Corollary 4.2.14. Let u be a physically realizable weak solution of the incompressible Euler equations

with initial data u ∈ L2
x, obtained in the zero-viscosity limit uνk ⇀ u (νk → 0), uνk(t = 0) = uνk . If the

initial vorticities ωνk = curl(uνk) satisfy the conditions of Lemma 4.2.13, then u is energy conservative.

In particular, the limit is energy conservative, provided that the initial vorticities ωνk belong to a bounded

subset of a rearrangement invariant space with compact embedding into H−1
x .

Proof. The conditions of Lemma 4.2.13 are preserved by the solution operator of the Navier-Stokes

equations. Thus, if {ωνk | k ∈ N} satisfy the conditions of Lemma 4.2.13 and hence are precompact

in L(1,2), then also {ωνk(t) | t ∈ [0, T ], k ∈ N} belongs to a compact subset of L(1,2) ⊂ H−1
x , again by

Lemma 4.2.13. In particular, it follows that {uνk(t) | t ∈ [0, T ], k ∈ N} is precompact in L2
x, and thus

there exists a uniform modulus of continuity φ(r), such that S2(uνk(t); r) ≤ φ(r), for all νk (uniformly

in time). By Theorem 4.2.11, it now follows that the limit uνk ⇀ u is a strong limit uνk → u in L2
tL

2
x,

and hence u is energy conservative.

Remark 4.2.15. Examples of rearrangement invariant spaces to which Corollary 4.2.14 applies have

been discussed in [FLT00], and include the following: Lp (p > 1), Orlicz spaces contained in L(logL)α

(α > 1/2), Lorentz spaces L(1,q) (1 ≤ q < 2). The result also holds, provided that e.g. the initial data

for the Navier-Stokes approximations are chosen to be uνk(t = 0) = u for all k ∈ N, and provided that

ω = curl(u) ∈ L(1,2).

In another direction, the following corollary is also immediate from Theorem 4.2.11:

Corollary 4.2.16. If u is a physically realizable solution with initial data u, and if u is not energy

conservative, then any physical realisation uνk ⇀ u develops either oscillations or concentrations in the
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limit νk → 0. Furthermore, if there exists a constant C > 0, such that the corresponding sequence of vor-

ticities ωνk are uniformly bounded as measures, ‖ωνk(t)‖M ≤ C, then uνk only develops concentrations,

i.e. (up to a subsequence) the measure |uνk(x, t)|2 dx dt has a weak-∗ limit of the form

|uνk(x, t)|2 dx dt ∗
⇀ |u(x, t)|2 dx dt+ λt(dx) dt,

where λt ≥ 0 is a non-trivial time-parametrized, bounded measure, supported on a set of Lebesgue measure

zero.

4.3 Energy conservation for numerical approximations of stat-

istical solutions

Our aim in this section is to generalize Theorem 4.2.11 in two directions, i.e. first by considering

other mechanisms of generating approximating sequences of the Euler equations (4.1.3). In particular,

we are interested in numerical approximations of the two-dimensional Euler equations. We consider

approximating the Euler equations with the following spectral viscosity method.

4.3.1 Spectral vanishing viscosity method

We again consider the spectral vanishing viscosity (SV) scheme introduced in chapter 1.4 for the incom-

pressible Euler equations: Given N ∈ N, we set ∆ = 1/N , and consider the following approximation of

the incompressible Euler equations{
∂tu

∆ + PN (u∆ · ∇u∆) = εN∆(QN ∗ u∆),

div(u∆) = 0, u∆|t=0 = PNu,
(4.3.1)

with periodic boundary conditions and PN is the truncated Leray projection. We will consider εN = ε/N ,

for some fixed constant ε > 0, and mN is to be chosen, so that εNmN → 0, as N →∞.

Integration of the spectral vanishing viscosity method over the time-interval [0, t] yields the equality

‖u∆(t)‖2L2 = ‖u∆(0)‖2L2 − 2εN

ˆ t

0

‖
√
QNω

∆(s)‖2L2 ds, (4.3.2)

for any t ∈ [0, T ]. The corresponding vorticity equation for ω∆ = curl(u∆) (cp. [LM20, eq. (2.9)]), yields

d

dt
‖ω∆(t)‖2L2 = −2εN‖∇

√
QNω

∆(s)‖2L2

Then

‖∇
√
QNω

∆(s)‖2L2 = (2π)2
N∑
k=1

Q̂k|k|2|ω̂k|2 ≥ (2π)2
N∑

k=2mN+1

|k|2|ω̂k|2 = ‖∇ω∆(s)‖2L2 − ‖∇P2mNω
∆(s)‖2L2 .

Employing the estimate ‖∇P2mNω
∆‖2L2 ≤ 4m2

N‖ω∆‖2L2 , it now follows that

d

dt
‖ω∆(t)‖2L2 ≤ −2εN‖∇ω∆(t)‖2L2 + 8εNm

2
N‖ω∆(t)‖2L2 . (4.3.3)

This inequality will be used to analyse the energy conservation of limits obtained by the SV method,

and essentially serves as the analogue of (4.2.12), which was used in the Navier-Stokes case.

Our objective will be to characterize energy conservation for the limit of solutions generated by the

spectral viscosity (SV) method. Moreover, we will consider this question within the context of a more

generalized, probabilistic framework of solutions of (4.1.3) that we describe below.
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4.3.2 Statistical solutions

Originally introduced by Foias and Prodi in the context of Navier-Stokes equations, see [FMRT08] and

references therein, statistical solutions are time-parameterized probability measures that extend weak

solutions from a single function (in space-time) to a probability measure on functions. They might arise

in the context of uncertainty quantification of fluid flows [FLM17, FLMW20] or to enable a probabilistic

description of the dynamics of fluids. We follow the definition of statistical solutions in chapter 3, briefly

recalled below:

Definition 4.3.1. A time-dependent probability measure t 7→ µt ∈ P(L2
x) is a statistical solution of

the incompressible Euler equations with initial data µ ∈ P(L2
x), if [0, T ] 7→ P(L2

x), t 7→ µt is a weak-

∗ measurable mapping, µt is concentrated on solenoidal (divergence-free) vector fields for almost every

t ∈ [0, T ], and if the following averaged version of the Euler equations is satisfied for any k ∈ N: Given

any solenoidal vector fields ϕ1, . . . ,ϕk ∈ C∞c (T2 × [0, T );R2), we have

ˆ T

0

ˆ
L2
x

 d

dt

k∏
i=1

〈u,ϕi〉+

k∑
i=1

∏
j 6=i

〈u,ϕj〉

 〈(u · ∇)ϕi,u〉

 dµt(u) dt

+

ˆ
L2
x

k∏
i=1

〈u,ϕi〉 dµ(u) = 0.

Here 〈 · , · 〉 denotes the following inner product between two vector fields in L2
x:

〈u,v〉 :=

ˆ
T2

u(x) · v(x) dx.

Note that setting µt = δu(t) for some u(t) ∈ L2
x, for almost every t, yields the definition of weak

solutions of (4.1.3). Thus, statistical solutions can be thought of a probabilistic generalization of weak

solutions, particularly when the initial data is a probability measure.

In chapter 3, an efficient numerical algorithm has been proposed to approximate statistical solutions of

the incompressible Euler equations, using a combination of Monte-Carlo sampling of the initial measure

µ = µt|t=0, yielding

µ∆ =
1

M

M∑
i=1

δv∆
i
, v∆

i ∈ L2, i = 1, . . . ,M,

and then evolving the probability measure µ∆ via the push-forward of the numerical solution operator

µ∆
t := (S ∆

t )#µ
∆, where S ∆

t : L2
x → L2

x, v 7→ S ∆
t (v) is defined as the solution of spectral viscosity

scheme with initial data v computed at resolution ∆ = 1/N , and evaluated at time t ∈ [0, T ]. Since µ∆

is a convex combination of Dirac measures, this push-forward can be more concretely expressed in the

form

µ∆
t =

1

M

M∑
i=1

δv∆
i (t),

where ∆ = 1/N and v∆
i (t) is the solution obtained from the spectral viscosity scheme (4.3.1). We recall

that it has been proven in chapter 3 that µ∆
t converges in a suitable topology to a statistical solution µt,

if µ is supported on a ball BM = {u ∈ L2 | ‖u‖L2 ≤M} for some M > 0, and provided that there exists

a uniform modulus of continuity φ(r), such that the (time averaged) structure function ST2 (µ∆
t ; r), given

by

ST2 (µ∆
t ; r) :=

(ˆ T

0

ˆ
L2

ˆ
D

 
Br(0)

|u(x+ h)− u(x)|2 dh dx dµ∆
t (u) dt

)1/2

,
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remains uniformly bounded ST2 (µ∆; r) ≤ φ(r), as ∆ → 0, for all r > 0. Under these conditions, there

exists a subsequence ∆k → 0 and µt ∈ P(L2), such that that

ˆ T

0

W1(µ∆k
t , µt) dt→ 0, (∆k → 0). (4.3.4)

Here W1 is the 1-Wasserstein metric defined for probability measures P(L2
x) on L2

x. For further details,

we refer to chapter 3.

Our goal in this section is to prove the following theorem:

Theorem 4.3.2. Let µ ∈ P(L2
x) be initial data for the incompressible Euler equations, such that there

exists M > 0, s.t. µ(BM (0)) = 1, where BM (0) = {u ∈ L2
x | ‖u‖L2

x
< M}. Let µ∆

t be obtained from SV

+ MC sampling, ∆ > 0. If there exist constants C > 0 and 0 < α < 1, such that

sup
t∈[0,T ]

S2(µ∆
t ; r) ≤ Crα, ∀∆ > 0, r > 0, (4.3.5)

then, up to a subsequence, µ∆
t → µt in L1

t (P), (in the sense of (4.3.4)), and µt is energy-conservative,

in the sense that

t 7→
ˆ
L2
x

‖u‖2L2
x
dµt(u),

is constant.

Remark 4.3.3. Note that the conventional (deterministic) SV scheme is a special case of the MC+SV

scheme, when the initial data is given by a Dirac measure δu, concentrated on the initial data u ∈ L2
x.

Therefore, 4.3.2 implies in particular the corresponding result for the conventional SV scheme.

Remark 4.3.4. Note that in Theorem 4.3.2, we have assumed a stronger bound of the form

sup
t∈[0,T ]

S2(µ∆
t ; r) ≤ Crα,

for given C,α > 0, rather than ST2 (µ∆
t ; r) ≤ φ(r) for a fixed modulus of continuity, as was done in

the characterisation of physically realizable energy conservative solutions of the incompressible Euler

equations (cp. Theorem 4.2.11). This is done for two reasons: firstly it avoids certain technical difficulties

in the proof, and secondly, as explained below in section 4.4, this stronger bound appears to correspond

to what is observed numerically for a wide range of initial data. A slight generalization of the energy

conservation statement of Theorem 4.3.2 under the assumption of a uniform decay of the time-integrated

structure function ST2 (µ∆; r) ≤ Crα is straightforward.

Proof of Theorem 4.3.2. We will denote by E∆
t [. . .] :=

´
L2(. . .) dµ∆

t the expected value of a quantity at

time t with respect to the probability measure µ∆
t . Similar notation Et[. . .] is used to denote the expected

value of a quantity with respect to the limiting measure µt. To prove energy conservation, we make use

of the fact that µ∆ is a convex combination of atomic Dirac measures δv∆
i (t) supported on solutions of

the spectral viscosity scheme at grid size ∆ = 1/N . This allows us directly to take expected values, by

summing equation (4.3.3) over all samples v∆
1 , . . . ,v

∆
N , to obtain

d

dt
E∆
t

[
‖ω∆‖2L2

x

]
≤ −2εNE∆

t

[
‖∇ω∆‖2L2

x

]
+ 8(εNm

2
N )E∆

t

[
‖ω∆‖2L2

x

]
. (4.3.6)

The expected value of the ”interpolation” inequality (4.2.3) yields

E∆
s

[
‖ω∆‖2L2

x

]
≤ Cr2E∆

s

[
‖∇ω∆‖2L2

x

]
+ Cr−2S2(µ∆

s ; r)2,
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where C > 0 is an absolute constant, independent of N . By the assumed uniform bound (4.3.5),

E∆
s

[
‖ω∆‖2L2

x

]
≤ Cr2E∆

s

[
‖∇ωn‖2L2

x

]
+ Cr2(α−1).

where C = C(C) depends on the structure function estimate (4.3.5), but is independent of N . Choosing

r to balance the two terms on the right-hand side, we set

r2 = E∆
s

[
‖∇ω∆‖2L2

x

]−1/(2−α)

.

This choice of r yields the estimate

E∆
s

[
‖ω∆‖2L2

x

]
≤ CE∆

s

[
‖∇ω∆‖2L2

x

](1−α)/(2−α)

, (4.3.7)

with C = C(C). Define δ = δ(α), by (2 + δ) = (2− α)/(1− α), i.e.

δ =
α

1− α
. (4.3.8)

Then (4.3.7) implies that for an absolute constant c = c(C,α) > 0 (depending only on C, α in (4.3.5)):

cE∆
s

[
‖ω∆‖2L2

x

]2+δ

≤ E∆
s

[
‖∇ω∆‖2L2

x

]
. (4.3.9)

The differential inequality (4.3.6) combined with the estimate (4.3.9) yields

d

dt
E∆
s

[
‖ω∆‖2L2

x

]
≤ −cεNE∆

s

[
‖ω∆‖2L2

x

]2+δ

+ 8(εNm
2
N )E∆

s

[
‖ω∆‖2L2

x

]
. (4.3.10)

A short calculation, detailed in [LMPP21a], then shows that E∆
t [‖ω∆‖2L2

x
] ≤ C(εN t)

α−1. In particular,

this implies that

εN

ˆ T

0

E∆
t

[
‖ω∆‖2L2

x

]
dt ≤ C(εNT )α

α
→ 0, (as N →∞). (4.3.11)

Taking the expected value of (4.3.2) for a given ∆ > 0, we obtain∣∣∣E∆
0 [‖u‖2L2

x
]− E∆

t [‖u‖2L2
x
]
∣∣∣ ≤ 2εN

ˆ T

0

E∆
t

[
‖
√
QNω

∆‖2L2
x

]
dt ≤ 2εN

ˆ T

0

E∆
t

[
‖ω∆‖2L2

x

]
dt.

Employing (4.3.11), we find

lim sup
∆→0

sup
t∈[0,T ]

∣∣∣E∆
0 [‖u‖2L2

x
]− E∆

t [‖u‖2L2
x
]
∣∣∣ ≤ lim sup

N→∞
2εN

ˆ T

0

E∆
t

[
‖ω∆‖2L2

x

]
dt = 0, (4.3.12)

i.e. lim∆→0 E∆
t [‖u‖2L2

x
] = lim∆→0 E∆

0 [‖u‖2L2
x
], uniformly for t ∈ [0, T ]. Since µ∆

0 = µ∆ converges weakly

to µ at the initial time, and since this sequence is uniformly bounded on BM (0), we also have

lim
∆→0

E∆
0 [‖u‖2L2

x
] = lim

∆→0

ˆ
L2

‖u‖2L2
x
dµ∆(u) =

ˆ
L2

‖u‖2L2
x
dµ(u). (4.3.13)

We thus conclude that for any t ∈ [0, T ]:

lim
∆→0

ˆ
L2

‖u‖2L2
x
dµ∆

t (u)

(4.3.12)
↓
= lim

∆→0

ˆ
L2

‖u‖2L2
x
dµ∆(u)

(4.3.13)
↓
=

ˆ
L2

‖u‖2L2
x
dµ(u).
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On the other hand, it has been proved in Theorem 3.2.13 in chapter 3, that ‖u‖2L2
x

is an “admissible

observable”, so that the convergence µ∆
t → µt in L1

t (P) implies

lim
∆→0

ˆ T

0

∣∣∣E∆
t [‖u‖2L2

x
]− Et[‖u‖2L2

x
]
∣∣∣ dt = 0.

In particular, this allows us to extract a subsequence ∆′ → 0 such that

lim
∆′→0

E∆′
t [‖u‖2L2

x
] = Et[‖u‖2L2

x
],

for almost every t ∈ [0, T ]. Hence, we finally find that for almost all t ∈ [0, T ], we haveˆ
L2

‖u‖2L2
x
dµt(u) = lim

∆′→0

ˆ
L2

‖u‖2L2
x
dµ∆′

t (u) = lim
∆′→0

ˆ
L2

‖u‖2L2
x
dµ∆′(u) =

ˆ
L2

‖u‖2L2
x
dµ(u).

This concludes our proof that the limiting statistical solution µt is energy conservative.

4.4 Numerical experiments

In this section, we will present numerical experiments to illustrate and validate our theory about the

precise relationship between energy conservation and uniform decay of structure functions (spectra). We

start with a short summary of the numerical method and the choice of parameters for the numerical

experiments.

4.4.1 Numerical method

The numerical experiments will be based on the SV method. The discretization and its implementation

in SPHINX have been explained in detail in chapter 1.4. Unless otherwise indicated, for the numerical

experiments reported below, we use the spectral viscosity scheme, with εN = ε/N , ε = 1/20. Our choice

for the Fourier multipliers QN is

Q̂k =

{
1−mN/|k|2, (|k| ≥ mN ),

0, (otherwise),

where normally mN =
√
N , except in the special case, where the added numerical viscosity mimics the

form of the viscous term in the Navier-Stokes equations (4.1.1), in which we set mN = 0 and QN = I is

the identity.

Given an initial probability measure µ ∈ P(L2
x), a resolution ∆ = 1/N and number of samples

M = M(N), an approximate statistical solution is obtained by the following Monte-Carlo algorithm

(MC+SV):

1. Generate M i.i.d. samples u1, . . . ,uM ∼ µ,

2. Evolve each sample ui(t) = S ∆
t (ui), where S ∆

t is the numerical solution operator obtained from

the SV-scheme,

3. The approximate statistical solution at time t ∈ [0, T ] is defined as

µ∆
t :=

1

M

M∑
i=1

δui(t).

Clearly, for convergence of the MC+SV scheme it is necessary that M = M(N) → ∞ as N → ∞. For

our numerical experiments we have made the choice M = N .
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4.4.2 Structure function evaluation

As indicated by the theoretical results presented in the previous sections, our main tool to determine

the energy conservation of weak solutions obtained in the limit from our numerical method, will be the

structure function

S2(µt; r) =

(ˆ
L2
x

ˆ
D

 
Br(x)

|u(y)− u(x)|2 dy dx dµt(u)

)1/2

,

defined for all µt ∈ P(L2
x) and for a.e. t ∈ [0, T ]. We identify u ∈ L2

x with the Dirac probabil-

ity measure δu ∈ P(L2
x), and set S2(u; r) := S2(δu; r). Note that with this definition: S2(µt; r)

2 =´
L2
x
S2(u; r)2 dµt(u).

As shown in [LMPP21a, Appendix D], there is an explicit formula for S2(u; r)2 in terms of the Fourier

coefficients û(k) of u: Namely, we have

S2(u; r) =

(∑
k∈Z2

Ik(r)|û(k)|2
)1/2

,

where Ik(r) := 2 − 4J1(|k|r)/(|k|r) is expressed in terms of the Bessel function of the first kind J1(x).

As discussed in [LMPP21a, Appendix D], a computationally more efficient-to-evaluate alternative to this

exact expression for S2(µt; r) is given by

S̃2(u; r) :=

(∑
k∈Z2

Ĩk(r)|û(k)|2
)1/2

, Ĩk(r) := min(|k|r/2,
√

2)2. (4.4.1)

Again, we define the corresponding statistical quantity by

S̃2(µt, r) :=

(ˆ
L2
x

S̃2(u; r)2 dµt(u)

)1/2

,

and we recall that S̃2(µt; r) is equivalent to S2(µt; r), in the sense that there exists a constant C > 0,

such that
1

C
S̃2(µt; r) ≤ S2(µt; r) ≤ CS̃2(µt; r), ∀ r ≥ 0, ∀µt ∈ P(L2

x).

For the analysis of our numerical experiments we will use this equivalent numerical structure function

instead of the exact structure function.

A second tool in our analysis will be the use of compensated energy spectra. As discussed in detail

in chapter 3.4.3, an upper bound on the structure function is provided by a uniform decay of the energy

spectrum. To this end, we define the numerical energy spectrum of a vector field u ∈ L2
x as

E(u;K) :=
1

2

∑
|k|∞=K

|û(k)|2, ∀K ∈ N0, (4.4.2)

where |k|∞ = max(|k1|, |k2|) is the maximum norm of k ∈ Z2. We extend this definition to arbitrary

µt ∈ P(L2
x) by setting

E(µt;K) :=

ˆ
L2
x

E(u;K) dµt(u).
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Note again that E(u;K) = E(δu;K). It can be shown (cp. (3.4.6) on page 63) that for any 1 < λ < 3:

KγE(µ∆
t ;K) ≤ C, ∀K ⇒ S2(µ∆

t ; r) ≤ C ′rα, ∀r ≥ 0, ∀∆ > 0, (4.4.3)

where α = (λ − 1)/2, and C,C ′ > 0 are constants. Given λ ∈ (1, 3), we will refer to the function

K 7→ KγE(µ∆
t ;K) as the compensated energy spectrum with exponent γ, in the following.

Owing to Theorem 4.3.2, a uniform algebraic bound on the structure function implies that the limiting

solution generated by our numerical method is energy conservative. Thus, the evolution of the numerical

structure function S̃2(r) and the compensated energy spectra will be our main tools to investigate the

energy conservation of the limits of our numerical approximations. A convenient measure for the uniform

algebraic decay of the structure functions S2(µ∆
t ; r) is the best-decay-constant C∆

max(α, t), which we define

C∆
max(α; t) := sup

r>0
r−αS̃2(µ∆

t ; r), (4.4.4)

i.e. the best constant C, such that S̃2(µt; r) ≤ Crα for all r > 0. Note that for any given resolution

∆ > 0, the structure function S̃2(µt; r) decays like ∼ r on the subgrid scale, i.e. for r � ∆. Therefore,

given 0 < α < 1, the best-decay-constant C∆
max(α; t) is well-defined and finite, for any fixed numerical

resolution ∆. Furthermore, if there exists α, for which C∆
max(α; t) remains uniformly bounded in time,

and with increasing resolution, then this is sufficient to ensure (strong) compactness, and hence energy

conservation in the limit ∆→ 0, by Theorem 4.3.2.

Similarly, we define a constant D∆
max(λ; t) as the best upper bound on the compensated energy

spectrum with exponent λ:

D∆
max(λ; t) := sup

K>0
KλE(µ∆

t ;K). (4.4.5)

Finally, we will also compute the evolution of energy directly, i.e.

t 7→
ˆ
L2
x

‖u‖2L2
x
dµt(u),

for each numerical experiment. For the latter, it is important to keep in mind that there are several

sources of errors for each numerical approximation, which may affect the results obtained from this

direct computation of the energy evolution: Firstly, each approximate statistical solution is obtained by

Monte-Carlo sampling (with N samples). As is well-known, the evaluation of the dissipated energy by

Monte-Carlo sampling is associated with a sampling error that scales like ∼ 1/
√
N . Secondly, in addition

to the statistical error, the initial data has also to be approximated, for instance by mollification, and

subsequent truncation of the Fourier spectrum. These procedures induce numerical error that propagates

into the solution. Finally, there are errors on account of the space-time discretization. All of these sources

of numerical errors should be taken into account, when directly evaluating the energy dissipation.

4.4.3 A Sinusoidal vortex sheet

Deterministic case

The first case we consider is the case of initial data for the incompressible Euler equations which is a Dirac

measure, concentrated on a vortex sheet, i.e. µ = δu, where u is a sinusoidal vortex sheet initial data.

This initial data has previously been studied in [LM20, LMPP21b]. Let us first recall the construction.
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(a) N = 1024, t = 0.0 (b) N = 4096, t = 0.0

(c) N = 1024, t = 1.0 (d) N = 4096, t = 1.0

Figure 4.1: Deterministic evolution of sinusoidal vortex sheet with Navier-Stokes-like diffusion (viscosity

parameter ε = 0.01). Horizontal x-component of velocity at initial time and final time, for resolutions

N = 1024 and N = 4096.

We consider a vorticity distributed uniformly along the graph

Γ =
{
x = (x1, x2) ∈ T 2 |x2 = 0.2 sin(2πx1)

}
,

and we recall that in the numerical implementation in SPHINX, the torus T 2 is identified with [0, 1]2.

The vorticity is given by

ω(x) = δ(x− Γ)−
ˆ
T 2

dΓ.

The second term in the definition of ω is a constant which serves to ensure that
´
T 2 ω dx = 0, i.e. it

enforces the vanishing of the 0-th Fourier coefficient. The initial velocity field u ∈ L2
x is chosen so that

div(u) = 0, curl(u) = ω. Given a grid size N , our numerical approximation u∆ ≈ u is obtained by

mollification u∆ = ψρN ∗u against a mollifier ψρN (x) := ρ−2
N ψ(x/ρN ), with ψ(x) a third-order B-spline.

The smoothing parameter ρN is chosen of the form ρN = ρ/N for a fixed constant ρ > 0. For the present

simulation, we have set ρ = 10. Further details on the construction of this initial data can be found in

chapter 3.5.2, on page 71.

We point out that this initial data belongs to the so-called Delort class [Del91]. It was recently shown

in [LM20] that the numerical approximations, generated by the spectral viscosity method, converge

on increasing the resolution and up to a subsequence, to a weak solution of the incompressible Euler
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equations. Given this context, we have computed the numerical solution up to final time T = 1, and

for resolutions N ∈ {128, 256, . . . , 8192}. The numerical diffusion operator was chosen so as to mimic

the form of the diffusion term in the underlying Navier-Stokes equations (4.1.1) by setting mN = 0 and

consequently, QN = I in (4.3.1). For these computations, we set εN = ε/N , ε = 0.01. A representative

illustration of the initial data and evolution of the computed approximate solutions at different resolutions

N = 1024, N = 4096 can be found in Figure 4.1. From this figure, we observe that the initial vortex

sheet breaks up into smaller and smaller vortices, on increasing resolution.

Our objective is to validate our theory on the connection between the uniform decay of the structure

function and the conservation of energy. To this end, we first consider the temporal evolution of the

numerical structure function (4.4.1) (cp. Figure 4.2). Indicated in Figure 4.2 are representative plots of

the numerical structure functions evaluated at different times t = 0.0, 0.4, 1.0 during the evolution of the

vortex sheet, and at the various resolutions considered. In addition, we indicate as a black dashed line

the graph of r 7→ C∆
maxr

1/2, where C∆
max = C∆

max(α = 1/2; t = 0) is determined from (4.4.4), at resolution

∆ = 1/8192. At the initial time t = 0, the expected scaling S2(r) ∼ r1/2 of the structure function of the

vortex sheet at resolved scales is clearly visible. For a fixed resolution ∆ = 1/N , it is straightforward

to observe that the resulting numerical approximation cannot represent non-smooth features on scales

r . ∆ and the structure function scales as S2(r) ∼ r, for r . ∆ in Figure 4.2.

(a) t = 0.0 (b) t = 0.4 (c) t = 1.0

Figure 4.2: Temporal evolution of structure function for deterministic sinusoidal vortex sheet initial

data, for different resolutions ∆ = 1/N . The black dashed line indicates the best upper bound C∆
maxr

α

computed at t = 0, with exponent α = 1/2, and at the finest resolution considered, ∆ = 1/8192.

Figures 4.2 (A)-(C) clearly indicate a uniform decay of the structure function over time, and uniformly

in N , with a decay exponent that is the same as the decay exponent of the structure function initially.

This uniform decay of the structure functions is further confirmed by considering the evolution of

the compensated energy spectra K 7→ KλE(K), where we choose the exponent λ = 2. This choice is

consistent with a S2(r) ≤ Crα, where α = (λ− 1)/2 = 1/2, decay of the structure function.
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(a) t = 0.0 (b) t = 0.4 (c) t = 1.0

Figure 4.3: Temporal evolution of compensated energy spectra KλE(K) for deterministic sinusoidal

vortex sheet initial data, with λ = 2.

As can be seen from Figure 4.3 (A), the initial data follow the expected scaling E(K) ∼ K−2. This

scaling appears to be mostly preserved at later times, cp. Figure 4.3 (B), (C), with only some small

fluctuations in the compensated spectra. These fluctuations might imply E(K) ≤ CK−2+ε for a small

ε > 0, incorporating intermittent corrections to the structure function. Nevertheless, this form of the

energy spectrum clearly implies the compactness required for energy conservation.

Since the above numerical results strongly suggest a decay of the structure function as S2(r) ≤ Crα,

with α = 1/2, we consider the temporal evolution of the best-decay constant C∆
max(α = 1/2; t) (cp.

(4.4.4)), which is displayed in Figure 4.4, as well as its energy spectral counterpart D∆
max(λ = 2; t),

evaluated according to (4.4.5).

(a) C∆
max(α = 1/2; t) (b) D∆

max(λ = 2; t)

Figure 4.4: Temporal evolution of C∆
max (eq. (4.4.4)) and D∆

max (eq. (4.4.5)) for deterministic sinusoidal

vortex sheet.

Figure 4.4 strongly indicates that C∆
max(α = 1/2; t) remains uniformly bounded in time t ∈ [0, T ], as

∆→ 0. Thus, from the above figures, we clearly infer that the structure functions (and spectra) converge

on increasing resolution. This saturation of structure functions, with increasing resolution, is reminiscent

of similar observations of convergence of structure functions, but with increasing Reynolds number, for

homogeneous isotropic 3D turbulent flows, reported for instance in the recent paper [ISY20].

Finally, we consider directly the evolution of the energy. Here, we are faced with the difficulty that

the initial values of the numerical approximations converge at the same time as the viscosity parameter
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εN → 0. Keeping this in mind, we consider the relative energy dissipation,

∆E

E
:=

E∆
t − E0

E0

,

which depends on ∆ and the time t, as well as a reference value E0 for the initial energy in the limit

∆→ 0. We obtain this reference value by extrapolation of the initial energy E∆
0 for the resolutions ∆ ∈

{1/8192, 1/4096, . . . , 1/128}, considered. We have chosen the second-order (Richardson-)extrapolation

ansatz

E∆
0 = E0 + c1∆ + c2∆2 +O(∆3),

where the constants E0, c1 and c2 can be estimated from the values of E∆
0 , for the highest resolutions

∆ = 1/8192, 1/4096, 1/2048 considered. Other, higher-order choices for the extrapolation have been

checked to lead to very similar results.

The temporal evolution of ∆E/E is shown in Figure 4.5 (A), for these ∆ = 1/N . Figure 4.5 (B)

compares ∆E/E at time t = 0 and t = T , at the final time T = 1, as a function of the resolution ∆. In

this figure, we plot both the numerical error in the approximation of the initial data (represented by the

blue curve), as well as the numerical energy dissipation (difference between the blue and the red curves).

As ∆→ 0, there is a clear indication that ∆E/E, evaluated at both the initial and final times, converges

to 0. Extrapolation of the red curve to ∆ = 0 yields a very small value of ∆E/E ≈ −0.00035, consistent

with a true limiting value of ∆E/E = 0 at ∆ = 0. The direct evaluation of the energy is thus consistent

with the uniform decay of the structure functions, and a uniform bound on the energy spectra observed

above.

Thus, in this particular case, the theoretical predictions of energy conservation resulting from uniform

decay of structure function (spectra) is completely validated. It is worth pointing out that the theory

of Delort in [Del91] (and its numerical analogue in [LMPP21b]) only indicate weak compactness of the

approximating sequences. On the other hand, all the numerical evidence points to a strong compactness

of the limit solution, hinting at more regularity of the limit.

(a) rel. energy dissipation vs t (b) rel. E’diss. vs ∆

Figure 4.5: Deterministic sinusoidal vortex sheet with Navier-Stokes-like diffusion: Relative energy dis-

sipation as a function of t (left), and as a function of ∆ = 1/N at the final time t = 1 (right).
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Statistical initial data

Next, we consider an example of the initial data µ ∈ P(L2
x), with µ not being a Dirac measure. To this

end, we take the numerical initial data u∆(x) ∈ L2
x of the previous section (with smoothing parameter

ρN = ρ/N , ρ = 5), and define a random perturbation as

u∆(x;ω) := P(u∆(x1, x2 + σα(x1;ω)),

where P denotes the Leray projection onto divergence-free vector fields, followed by a projection onto the

first N Fourier modes, and σα(x, ω) is a random function which is used to randomly perturb the vortex

sheet: Fix q ∈ N and a perturbation size α > 0. Given ω = (α1, . . . , αq, β1, . . . , βq), we define

σα(x1;ω) :=

q∑
k=1

αk sin(k2πx1 − βi),

where α1, . . . , αq ∈ [0, α], and β1, . . . , βq ∈ [0, 2π] are i.i.d., uniformly distributed random variables.

The initial data µ∆ ∈ P(L2
x) is defined as the law of the random fields u∆(x;ω). For our numerical

experiment, we have chosen q = 10, and α = 1/320. The numerical diffusion parameter is εN = ε/N ,

with ε = 0.01. Figure 4.6 shows the x-component of the velocity of a typical individual random sample

u∆, as well as the mean and variance of this component at the initial time t = 0.0. The mean and

variance at the final time t = 1.0 are shown in Figure 4.7.

(a) mean (b) variance

Figure 4.6: Perturbed sinusoidal vortex sheet: Mean (A) and variance (B) at the initial t = 0.0, N = 1024.

(a) mean (b) variance

Figure 4.7: Perturbed sinusoidal vortex sheet: Mean (A) and variance (B) at the final time t = 1.0,

N = 1024.
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We consider the temporal evolution of the structure functions computed from the approximate statist-

ical solution obtained at various resolutions N ∈ {128, 256, 512, 1024}. Plots for the numerical structure

function (4.4.1) at t = 0, 0.5, 1 are shown in Figure 4.8 (A)-(C). Again, we indicate by a black dashed

line the best upper bound of the form C∆
maxr

1/2, with C∆
max given by (4.4.4) fixed at time t = 0, and for

the highest considered resolution of ∆ = 1/1024.

(a) t = 0.0 (b) t = 0.5 (c) t = 1.0

Figure 4.8: Temporal evolution of structure function for randomly perturbed sinusoidal vortex sheet

initial data, for different resolutions ∆ = 1/N . The black dashed line indicates the best upper bound

C∆
maxr

α computed at t = 0, with exponent α = 1/2, and at the finest resolution considered, ∆ = 1/1024.

Similarly to Figure 4.2 in the last section, these plots of the structure function at different t and N

indicate a uniform bound S2(µ∆
t ; r) ≤ Cr1/2. To complement these plots of the structure function, we

again analyse the (compensated) energy spectra (4.4.2), with exponent λ = 2. Again, the choice of this

value for λ is motivated by the relation (4.4.3), according to which a value of α = 1/2 is expected to

correspond to λ = 2. The resulting energy spectra are shown in Figure 4.3.

(a) t = 0.0 (b) t = 0.5 (c) t = 1.0

Figure 4.9: Temporal evolution of compensated energy spectra KλE(K) for randomly perturbed sinus-

oidal vortex sheet initial data, with λ = 2.

Again, we observe an exact scaling of the compensated energy spectra for µ∆
t at t = 0 (cp. Figure

4.9 (A)). Also at later times, this scaling is approximately preserved, as shown in Figure 4.9 (B),(C),

indicated a uniform bound on compensated energy spectra.

A more quantitative evaluation of the uniform boundedness of the structure function is obtained by

tracking the temporal evolution of the best-upper-bound constants C∆
max(α; t) for the structure func-

tion (4.4.4) with exponent α = 1/2, and D∆
max(λ; t) for the compensated energy spectra (4.4.5), with

corresponding exponent λ = 2. This is shown in Figure 4.10.
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(a) C∆
max(α = 1/2; t) (b) D∆

max(λ = 2; t)

Figure 4.10: Temporal evolution of C∆
max (eq. (4.4.4)) and D∆

max (eq. (4.4.5)) for randomly perturbed

sinusoidal vortex sheet.

Figure 4.10 strongly indicates that the structure function does indeed exhibit a uniform scaling

S2(µ∆
t ; r) ≤ Cr1/2, implying energy conservation of the limiting statistical solution.

We finally consider the direct evaluation of the energy evolution of the approximate statistical solu-

tions. In addition to the sources of error in the energy evolution for the deterministic initial data, we also

have to consider another source of error in the Monte-Carlo approximation of the approximate statistical

solution µ∆
t . Our Monte-Carlo sampling at resolution N is based on N samples. As is well-known, the

typical Monte-Carlo error is ∣∣∣∣∣E [∆E/E]− 1

N

N∑
i=1

∆Ei
Ei

∣∣∣∣∣ . Std [∆E/E]√
N

, (4.4.6)

where Std [∆E/E] is the standard deviation computed based on theN MC-samples (∆E/E)1, . . . , (∆E/E)N .

For the statistical solutions considered, we will display this MC error by error bars and a shaded region.

(a) rel. energy dissipation vs t (b) rel. E’diss. vs ∆ = 1/N

Figure 4.11: Randomly perturbed sinusoidal vortex sheet: Relative energy dissipation E[∆E/E] as a

function of t (left), and as a function of ∆ = 1/N at the final time t = 1 (right).



4.4. NUMERICAL EXPERIMENTS 107

It turns out that for the current initial data, the MC error in the energy is very small, so that the

shaded regions are almost invisible. In this case, the numerical error in the approximation of the initial

data dominates. We plot the computed ∆E/E in Figure 4.11. As in the last section, the reference

value E0 is determined by a second-order Richardson-extrapolation of the computed initial energy E∆
0

to ∆ = 0.

Figure 4.11 clearly indicates that the energy dissipation is very small for this case, for all resolutions

considered, and ∆E/E appears to converge to 0, as N →∞, again indicating energy conservation in the

limit. We have also indicated the value of ∆E/E at the final time t = T , and (second-order) extrapolated

to ∆ = 0, based on the available values of E∆
T for ∆ = 1/1024, 1/512 and 1/256. This extrapolation

suggests that ∆E/E ≈ 0.00032, which is orders of magnitude smaller than the error of ∆E/E at the

initial time (whose limit ∆ → 0 is exactly 0), which is also visible in Figure 4.11 (B). Thus, also for

the randomly perturbed sinusoidal vortex sheet, the limiting statistical solution is expected to be energy

conservative.

Finally, comparing figures 4.11 for the SV scheme and 4.5 for Navier-Stokes-like diffusion clearly shows

that the Navier-Stokes-like diffusion is much more diffusive. This highlights the better approximation

properties of the (formally) spectrally accurate SV scheme, as opposed to a similar scheme with diffusion

applied to all Fourier modes.

4.4.4 Vortex sheet without distinguished sign

The previous numerical experiment considered a vortex sheet of (essentially) distinguished sign. For this

type of initial data, the existence of solutions has been proven rigorously by compensated compactness

methods, in the celebrated work of Delort [Del91]. When the vortex sheet initial data is not necessarily

of distinguished sign, then no existence results for weak solutions are known. Based on numerical

experiments by Krasny [Kra87], which have shown that vortex sheets develop a much more complex roll-

up without a sign-restriction, it has in fact been conjectured [Maj88], [MB01, p.447] that approximate

solution sequences for initial data without distinguished sign might not converge to a weak solution, and

instead exhibit the phenomenon of concentrations in the limit, thus necessitating a more general concept

of measure-valued solutions. Our next numerical experiment therefore considers the case of a vortex

sheet without distinguished sign.

We start with unperturbed vorticity ω ∈M a bounded measure, given by

ω(x) = s(t)δ(x− γ(t))−
ˆ 2π

0

s(t) dγ(t),

where γ(t) = (t, 0.2 sin(Kt)) ∈ T 2 defines the curve along which the vorticity is distributed, with K = 10,

and the vortex strength s(t) along γ(t) is given by s(t) = sin(Kt). The numerical approximation ω∆ is

obtained as the convolution ω∆(x) := ω ∗ψρN , where ρN = ρ/N , ρ = 5, and ψρN is the B-spline mollifier

already considered in section 4.4.3. We let u∆ denote the corresponding divergence-free velocity field.

Finally, we define the perturbed initial data for given α > 0, by setting

u∆(x;ω) := P(u∆(x1, x2 + σα(x1;ω))),

where x1 7→ σα(x1, ω) is the random perturbation already introduced in section 4.4.3. We have chosen

α = 0.025 for our numerical simulation. Again, we let µ∆ ∈ P(L2
x) be the law of the random field u∆.

Figure 4.12 shows the x-component of the velocity of a typical individual random sample u∆, as well

as the mean and variance of this component at the initial time t = 0.0. For comparison, the mean and

variance at the final time t = 2.0 are shown in Figure 4.13. The viscosity parameter in the SV scheme

was chosen as εN = ε/N , for ε = 0.05.
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(a) sample (b) mean (c) variance

Figure 4.12: Perturbed vortex sheet without distinguished sign: Individual sample (A), mean (B) and

variance (C) at the initial t = 0.0, N = 1024.

(a) sample (b) mean (c) variance

Figure 4.13: Perturbed vortex sheet without distinguished sign: Individual sample (A), mean (B) and

variance (C) at the final time t = 2.0, N = 1024.

We start by considering the temporal evolution of the structure functions computed from the approx-

imate statistical solution obtained at various resolutions N ∈ {128, 256, 512, 1024}.

(a) t = 0.0 (b) t = 0.5 (c) t = 1.0

Figure 4.14: Temporal evolution of structure function for randomly perturbed vortex sheet initial data

without distinguished sign, for different resolutions ∆ = 1/N . The black dashed line indicates the best

upper bound C∆
maxr

α computed at t = 0, with exponent α = 1/2, and at the finest resolution considered,

∆ = 1/1024.

Perhaps unexpectedly, the structure functions shown in Figure 4.14 exhibit a uniform bound for
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t = 0, 1, 2, also without the sign restriction on the vorticity; similar to the bound on the structure

function observed for the distinguished vortex sheet case in section 4.4.3. Again, the bound on the

structure function indicates that S2(µ∆
t ; r) ≤ Cr1/2, for some constant C > 0.

We next consider the evolution of the compensated energy spectra K 7→ KλE(µ∆
t ;K) with exponent

λ = 2 (which corresponds to the exponent α = 1/2 of the structure function), in Figure 4.15.

(a) t = 0.0 (b) t = 1.0 (c) t = 2.0

Figure 4.15: Temporal evolution of compensated energy spectra KλE(K) for randomly perturbed sinus-

oidal vortex sheet initial data, with λ = 2.

The compensated energy spectra confirm the observed uniform bound on the structure function,

indicating that E(µ∆
t ;K) ≤ DK−2, for some constant D > 0. To analyse this qualitative observation at

a more quantitative level, we track the best-upper-bounds C∆
max (4.4.4) and D∆

max (4.4.5) in Figure 4.16.

(a) C∆
max(α = 1/2; t) (b) D∆

max(λ = 2; t)

Figure 4.16: Temporal evolution of C∆
max (eq. (4.4.4)) and D∆

max (eq. (4.4.5)) for randomly perturbed

vortex sheet without distinguished sign.

Figure 4.16 clearly indicates that the structure function remains uniformly bounded over time and

with respect to resolution also for this signed vortex sheet case.

Finally, we consider the evolution of the numerically obtained energy dissipation, directly. Again, we

consider the temporal evolution of the quantity

∆E

E
=
E∆(t)− E0

E0

,
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where E∆(t) =
´
L2
x
‖u‖2L2

x
dµ∆

t (u). The estimate for the Monte-Carlo error of this quantity is indic-

ated by the shaded regions. The reference value E0 has been determined by second-order Richardson-

extrapolation of the given data E∆(0) for ∆ ∈ {1/1024, 1/512, 1/256} to ∆ = 0.

(a) rel. energy dissipation vs t (b) rel. E’diss. vs ∆ = 1/N

Figure 4.17: Vortex sheet without distinguished sign: Relative energy dissipation as a function of t (left),

and as a function of ∆ = 1/N at the final time t = 1 (right).

Unexpectedly, also for this initial data, where the individual random realisations of the initial data

have vorticity ω∆ ∈M , i.e. a bounded measure, without a distinguished sign, our numerical experiments

indicate that the energy dissipation converges to zero as ∆→ 0 (at least over the time interval [0, T ] with

T = 2 considered), implying that the limiting statistical solution is energy conservative, and confirming

our observed bounds on the structure function.

4.5 Discussion

A characteristic feature of fluids described by the incompressible Euler equations is turbulence, marked

by the appearance of energy containing eddies at ever smaller scales. Energy conservation and anomalous

dissipation are very interesting elements of physical theories of turbulence such as those of Kolmogorov

and Onsager.

In this chapter, we consider the questions of energy conservation and dissipation of solutions of the

incompressible Euler equations in two space dimensions, following the original publication [LMPP21a].

We prove in Theorem 4.2.11 that weak solutions of the incompressible Euler equations, realized as strong

(in the topology of L1([0, T ];L2
x)) vanishing viscosity limits of the underlying Navier-Stokes equations

conserve energy (in time). This result allows us to extend the results of [CFLS16] on energy conservation

to a larger class of admissible initial data, for which strong compactness of approximate solutions is

known. The proof relies on control of the underlying vorticity and an essential role is played by uniform

decay of the so-called structure function (4.2.2).

Next, we also investigate the question of energy conservation for statistical solutions of the incompress-

ible Euler equations. As discussed in chapter 3, statistical solutions are time-parameterized probability

measures on L2
x, whose time evolution is constrained in terms of moment equations, consistent with

and derived from the incompressible Euler equations. They were proposed as a suitable probabilistic

solution framework for the Euler equations in order to describe unstable and turbulent fluid flows in
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[LMPP21b, FW18]. We prove in Theorem 4.3.2 that statistical solutions of the Euler equations, gener-

ated as limits of numerical approximations with a Monte Carlo (MC)- Spectral viscosity (SV) method of

[LMPP21b], conserve energy as long as the structure function decays uniformly (in numerical resolution).

This result is of great practical utility as these statistical solutions can be computed [LMPP21b] and the

assertions of the theory validated in numerical experiments.

To this end, we presented a suite of numerical experiments with both deterministic and stochastic

initial data, focusing on vortex sheets. From the numerical experiments, we observed that the structure

functions (and the energy spectra) were indeed uniformly decaying and energy conservation of the limit

solutions was clearly demonstrated.

This chapter only considered two-dimensional flows. Future work could aim to carry out a sim-

ilar programme for examining the questions of conservation/anomalous dissipation of energy for three-

dimensional incompressible flows.
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Chapter 5

Limitations of the approach

In the previous chapters, we have presented numerical evidence which demonstrates that approxim-

ate solutions of the incompressible Euler equations computed by state-of-the-art numerical methods,

such as spectral methods, may not converge deterministically to a unique limit, if the underlying solu-

tion has low regularity. This is consistent with available theoretical results, which only guarantee the

uniqueness of solutions under more restrictive (Lipschitz) regularity assumptions (cp. the weak-strong

uniqueness theorem 1.3.11). In our numerical experiments a marked contrast was observed between the

non-convergence in any “traditional” deterministic sense, versus the apparent stability and convergence

of statistical quantities at increasing numerical resolution. These observations are in line with similar

results in the context of hyperbolic conservation laws [FMT16, FKMT17, FLMW20], which partially mo-

tivated the present work. We furthermore expect that similar conclusions will apply more generally to

PDEs exhibiting features of “turbulence”. These results clearly indicate the practical need to efficiently

approximate apparently more stable and robustly computable statistical solutions for high to very high

Reynolds number flows.

The difficulties in predicting the behaviour of turbulent or chaotic dynamical systems is particularly

well-known for numerical weather forecasting, where the high sensitivity to perturbations in the initial

data [Lor63] is sometimes referred to as the “butterfly effect”. Despite this high sensitivity, weather

forecasts have seen a steady increase of forecast skill over the last decades [BTB15]. This is in some part

due to improvements in computational resources, but to a large extent reflects the increased availability

of measurement data and the increased sophistication of methods to combine this data with the under-

lying mathematical model to increase prediction accuracy [MH12, LSZ15, RC15]. In the formulation

of statistical solutions of the preceding chapters, it is not clear how such measurement data should be

incorporated in the model. We thus identify our first main limitation:

• The first limitation of the statistical solutions discussed in the previous chapters of the present

thesis is that available measurement data, which is crucial in practical applications, is not explicitly

reflected by this solution concept.

Statistical solutions as described in chapter 3 are also natural to consider in the context of uncer-

tainty quantification: In practice, the initial state of the system has to be inferred from measurements.

These measurements are usually noisy and incomplete, and therefore do not allow the initial state to

be reconstructed to arbitrary accuracy. Since the equations of fluid dynamics are very sensitive to per-

turbations, small errors in the initial data are strongly amplified by the non-linear dynamics. Thus, in

large-scale applications including weather forecasting and climate science, predictions based on a single

forward solve, relying on the most likely initial state cannot be expected to be reliable. Instead, the
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uncertainty in our knowledge of the initial data and the corresponding predictions has to be explicitly

taken into account. Such uncertainty is naturally represented by a probability measure µ on the (infinite-

dimensional) state space. The prediction of the future state, including an estimate of the uncertainties

in this prediction, thus requires the computation of the corresponding statistical solution, allowing for

principled uncertainty quantification. While the need for such systematic uncertainty quantification is

widely appreciated, a major obstacle for it’s implementation in large-scale applications is the fact that the

computation of the relevant statistical quantities via Monte-Carlo or Markov-chain Monte-Carlo methods

can require up to O(105) forward model evaluations of the underlying PDE [Gey11]. The computational

cost of a single solve is typically very high for relevant applications, e.g. requiring millions of node

hours of computation time on HPC facilities, for a single forward solve of the Navier-Stokes equations

in realistic engineering geometries [Alf11]. Hence, systematic uncertainty quantification based on fully

resolved simulations cannot be carried out routinely, at present. This leads to the second main limitation

of statistical solutions discussed so far:

• The second limitation of the approach to statistical solutions, and in particular their computa-

tion via Monte-Carlo and Markov chain Monte-Carlo sampling, is their high computational cost,

requiring many (costly) forward solves of the underlying forward model.

It has been observed in many numerical experiments (cp. chapters 3, 4), that, while individual

solutions (samples) can exhibit features on very fine scales, statistics computed by taking an average

over many such individual realizations are much smoother. Even though the precise mechanism behind

this “statistical smoothing” remains poorly understood from the theoretical perspective at present, this

empirical observation might nevertheless point to alternative representations of statistical solutions, which

might take advantage of such statistical smoothness properties.

In the remaining two chapters 6 and 7 of the present thesis, we will propose two approaches to

overcoming the limitations identified above, based on the recent works [LMW21, LMK21, KLM21]: In

chapter 6, we consider approximate statistical solutions obtained by blending available measurement

data with numerical approximations of an underlying mathematical model, following a Bayesian point

of view. In particular, we will be interested in the stability and compactness properties of approximate

solutions computed from a numerical discretization for ill-posed problems, for which the convergence

to a unique limit cannot be guaranteed, in the limit of infinite resolution ∆ → 0. Then, in chapter

7, we analyse the approximation of operators by neural networks-based surrogate models, and propose

an alternative representation of approximate statistical solutions relying on these methods. In contrast

to the (expensive) evaluation of the forward operator by traditional numerical methods, such surrogate

models are orders of magnitude faster to evaluate. While surrogate models are not necessarily expected to

achieve the (machine) accuracy of traditional methods, they are ideally suited for tasks in which the fast

evaluation of the underlying operator is of central importance, and a reasonable accuracy (e.g. less than

1% relative error) is sufficient. This makes neural network-based surrogate models ideal candidates to

complement more traditional numerical methods in many-query problems, such as (Bayesian) uncertainty

quantification.



Chapter 6

Bayesian inversion for fluid flows

6.1 Introduction

Many problems in engineering and the natural sciences seek to identify the underlying (unseen) state

of a physical system. Such a reconstruction is usually based on two ingredients: The first ingredient is

the information encoded in our knowledge of the underlying physical laws, resulting in a mathematical

model of the system. The second ingredient consists of observational data gathered from physical meas-

urements. The problem of determining the state of the underlying system by combining measurements

with a mathematical model of the system is referred to as an inverse problem. The present chapter

connects the statistical solutions introduced in chapter 3, with a Bayesian approach to inverse problems

in Banach spaces, thus providing a first step towards overcoming one of the limitations of the statistical

solutions approach pointed out in the last chapter: We will show how available measurement data can be

combined with statistical solutions in a principled manner and will study the convergence of numerical

approximations in the presence of data, with applications to the incompressible Euler and Navier-Stokes

equations. The present chapter is based on the recent work [LMW21].

6.1.1 Inverse problems

Inverse problems arise in a variety of areas of technological, engineering and scientific interest: examples

include fields such as the atmospheric sciences, geophysics, oceanography, hydrology, materials science,

chemistry and biochemistry, image processing and signal processing [Stu10]. Inverse problems generally

seek to determine the underlying unknown state of a system, or certain parameters characterizing that

system, by combining a mathematical model with available measurement data. The measurements may

be noisy and often provide only partial information on the underlying state. In the presence of such partial

observations, the deterministic problem of finding the state from measurements is generally ill-posed.

While a common approach for solving the resulting ill-posed deterministic inverse problem proceeds

by regularization, a statistical approach based on Bayesian inference has gained increased attention in

recent years [Tar05, KS06, Stu10]. Following the Bayesian approach, prior (domain) knowledge of the

system state, in the absence of measurements, is encoded by a prior probability measure. The additional

information provided by the measurements is used to improve this prior estimate by Bayes’ rule; the

solution of the Bayesian inverse problem, the posterior measure, is the conditional prior probability of the

underlying state given the measurements. The Bayesian inverse problem thus can be seen as a mapping

from measurements to the posterior measure, the latter providing the sought-after (probabilistic) estimate

of the underlying system state. In contrast to the generic situation for deterministic inverse problems, it
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has been shown that the corresponding Bayesian inverse problem is often well-posed in suitable metrics

[Stu10, Lat20, Spr20]. Furthermore, Bayesian inverse problems provide a different point of view on the

deterministic formulation of regularized ill-posed inverse problems: As shown in [Stu10], the latter can

often be viewed as the maximum a posteriori (MAP) estimator of a Bayesian inverse problem with a

suitable choice of prior.

The mapping from system state u to the corresponding measurement y is usually referred to as

the forward problem. Previous discussions of the well-posedness of Bayesian inverse problems have fo-

cused on mathematical models defining a well-posed (Lipschitz continuous) forward problem, establishing

stability results for the posterior with respect to measurements with respect to the Hellinger distance

under suitable assumptions [Stu10]. More recently, the assumptions on the forward mapping have been

considerably relaxed [Lat20, Spr20]. In [Lat20, Spr20], the well-posedness of abstract Bayesian inverse

problems has been investigated in a variety of metrics (total variation, Wasserstein, Kullback-Leibler).

As observed in [Lat20], under suitable assumptions on the measurement noise, the Bayesian inverse prob-

lem is well-posed (continuity with respect to measurements) even if the the forward mapping is merely

a measurable map. The general continuity properties of the posteriors with respect to perturbations in

the prior and the log-likelihood have been considered in [Spr20]. A main conclusion that can be drawn

from [Lat20, Spr20] is a remarkable stability of the measurement-to-posterior mapping with only minimal

regularity assumptions on the forward problem.

6.1.2 Ill-posed forward problems

For many problems of physical interest, in particular in the context of fluid dynamics, we are confron-

ted with forward problems which are not known to be well-posed in a mathematical sense (existence,

uniqueness, continuous dependence on initial data). Indeed, there are many fundamental open ques-

tions surrounding the mathematical theory of well-posedness for partial differential equations (PDEs)

of physical interest, such as the incompressible or compressible Euler equations. From the numerical

practitioner’s point of view, it is well-known that solutions to such PDEs may depend very sensitively on

small perturbations in the initial data and that, even upon mesh refinement, numerical approximations

may either not converge at all or converge only very slowly [FKMT17, FLMW20, LM20, LMPP21b].

Hence, we pose that many of the equations of fluid dynamics may safely be considered as ill-posed, in

any practical sense of the word. In general, we are thus faced with the following situation: For a given

discretization with “grid spacing” ∆ > 0, we have a well-defined discretized forward model possessing a

unique solution operator S ∆
t mapping initial data u to the solution u(t) = S ∆

t (u) at time t ≥ 0. Fur-

thermore, this solution operator S ∆
t defines a continuous mapping u 7→ S ∆

t (u), albeit with a modulus

of continuity that depends on ∆, and may deteriorate as ∆→ 0. It is not known whether there exists a

well-defined limiting solution operator St, such that St(u) = lim∆→0 S ∆
t (u) for all initial data u. For

many models, the only available a priori estimates provide control on the physical energy, or entropy, of

the solution, in the form of an a priori estimate of the form ‖S ∆
t (u)‖ ≤ C‖u‖ for a suitable norm ‖ · ‖

and some constant C > 0. This is the general setting we shall consider in the present chapter.

6.1.3 Contributions and outline

We can summarize the main contributions of the work presented in this chapter as follows:

• We investigate the well-posedness of Bayesian inversion for problems for which the forward mapping

may be ill-posed; in particular our discussion applies to equations obtained in singular limits (e.g.

zero-viscosity limit).
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• As a main contribution of this work, we show that under very general conditions, the existence of

a suitable notion of limiting posterior, of e.g. numerical approximations of the Bayesian inverse

problem, can be proven a priori.

• While uniqueness of such a limiting posterior is not guaranteed in general, this existence result opens

up the possibility of finding/defining suitable selection criteria, which may identify the physically

correct posterior solution of the Bayesian inverse problem among a set of candidate solutions.

• In addition, we discuss the implications of these compactness and stability results for the data as-

similation/filtering problem associated with measurements of time-dependent (infinite dimensional)

dynamical systems.

• Applications to the incompressible Navier-Stokes and Euler equations are presented.

The rest of the chapter is organized as follows, we start with some notation and preliminaries in

Section 7.2. The Bayesian inverse problem, with an ill-posed forward map is considered in Section 6.2

and the corresponding data assimilation (filtering) problem is presented in Section 6.3. We apply the

abstract results of sections 6.2 and 6.3 to the fundamental equations of fluid dynamics in Section 6.4.

Some relevant background on measure theory, including basic results on the Wasserstein distance, are

briefly summarized in Appendix B.

6.2 Bayesian inverse problem

6.2.1 Problem setting

The goal of the present section is to investigate the general stability, compactness and consistency of the

Bayesian inverse problem (BIP) for PDEs for which the forward problem is potentially ill-posed. The

setting is as follows: We are given a sequence of observables L∆(u), as ∆→ 0. We assume that for each

∆ > 0, the mapping

L∆ : X → Rd, u 7→ L∆(u), (6.2.1)

is well-defined and measurable. We think of L∆(u) as either a discretized observable arising from a

numerical discretization of an underlying PDE model, or from a regularization – e.g. by adding a small

amount of viscosity – of such a PDE model. We consider the Bayesian inverse problem of finding the

probability distribution Prob[u|y] for the underlying data u, given a finite-dimensional measurement

y ∈ Rd of the form

y = L∆(u) + η, η ∼ ρ(y) dy. (6.2.2)

The noise η ∈ Rd is here assumed to have a distribution ρ(y) which is absolutely continuous with respect

to Lebesgue measure dy on Rd,
´
Rd ρ(y) dy = 1, and ρ(y) > 0 for all y ∈ Rd. As shown in [Lat20, Thm.

2.5], under these conditions on ρ(y), the measurability of L∆(u) is sufficient to guarantee the existence

of a solution to the BIP to (6.2.2) given an arbitrary prior µ ∈ P(X). This solution is given by the

posterior

dµ∆,y(u) =
1

Z∆(y)
exp

(
−Φ∆,y(u)

)
dµ(u), (6.2.3)

where

Φ∆,y(u) := − log ρ
(
y − L∆(u)

)
(6.2.4)
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denotes the log-likelihood function, and

Z∆(y) =

ˆ
X

exp
(
−Φ∆,y(u)

)
dµ(u), (6.2.5)

is the required normalization constant. We note that the condition that ρ(y) > 0 implies that the

log-likelihood Φ∆,y is finite, i.e., Φ∆,y(u) <∞ for all u ∈ X.

As is customary, we will denote the Radon-Nikodym derivative of µ∆,y with respect to µ by dµ∆,y/dµ,

i.e.

dµ∆,y

dµ
(u) =

1

Z∆(u)
exp

(
−Φ∆,y(u)

)
. (6.2.6)

The solution of the BIP (6.2.3) can be characterized as the unique minimizer µ∆,y = argminν∈P(X) J
∆,y(ν)

of the following functional J∆,y : P(X)→ R (cp. e.g. [DE11, Prop. 1.4.2]):

J∆,y(ν) := DKL(ν||µ) +

ˆ
X

Φ∆,y(u) dν(u), (6.2.7)

where DKL(ν||µ) denotes the Kullback-Leibler divergence (B.0.6). Furthermore, the minimum of J∆,y is

explicitly given by [DE11, eq. (1.15)],

− log

(ˆ
X

e−Φ∆,y(u) dµ(u)

)
= inf
ν∈P(X)

J∆,y(ν). (6.2.8)

Taking into account (6.2.5), we can write the last equation equivalently as follows:

Z∆(y) = exp

(
− inf
ν∈P(X)

J∆,y(ν)

)
. (6.2.9)

While the existence of a solution to the BIP is ensured by the non-negativity of the noise distribution

ρ(y), the stability and compactness results of the present work will be based on following additional

assumptions on the noise:

Assumption 6.2.1. Fix a symmetric, positive definite matrix Γ ∈ Rd×d, and denote by | · |Γ the corres-

ponding norm on Rd given by

|y|Γ =
√
〈y, y〉Γ, 〈y, y′〉Γ = 〈Γ−1/2y,Γ−1/2y′〉 = 〈y,Γ−1y′〉, (6.2.10)

with 〈 · , · 〉 the standard Euclidean inner product on Rd. We assume that the noise η ∼ ρ(y) dy in (6.2.2)

possesses a distribution that is absolutely continuous with respect to Lebesgue measure dy on Rd with

probability density ρ(y), satisfying the following conditions:

• [regularity] y 7→ ρ(y) is Lipschitz continuous with respect to | · |Γ,1,

• [boundedness] y 7→ ρ(y) is bounded from above,

• [tail-condition] there exists a constant C > 0, such that

ρ(y) ≥
exp

(
− 1

2 |y|
2
Γ

)
C

, ∀ y ∈ Rd. (6.2.11)

1Although all norms on the finite-dimensional space Rd are equivalent, measurement noise such as Gaussian noise is
naturally associated with the norm | · |Γ induced by the covariance matrix Γ.
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Remark 6.2.2. Note that if, instead of (6.2.11), ρ(y) satisfies a tail-condition of the form ρ(y) ≥
exp(−C|y|2Γ)/C, then upon simply rescaling Γ̃ :=

√
2/C Γ, we have ρ(y) ≥ exp(− 1

2 |y|
2
Γ̃
)/C. Hence ρ(y)

satisfies assumption 6.2.1 with a rescaled matrix Γ → Γ̃ in this case. Therefore, the precise constant 1
2

in the tail-condition (6.2.11) can be assumed without loss of generality. The factor of 1/2 turns out to

be particularly convenient.

Assumption (6.2.1) is clearly fulfilled for normally distributed measurement noise η. This is the main

application we have in mind. However, it is worth pointing out that the assumption is satisfied for a much

wider class of measurement noise: In particular, since the tail-condition requires only a lower bound, our

results apply to situations in which one encounters noise with a heavy tail.

Remark 6.2.3 (Gaussian noise). If the noise η ∼ N (0,Γ) is normally distributed (Gaussian), then (up

to an unimportant additive constant)

Φ∆,y(u) =
1

2
|y − L∆(u)|2Γ,

where the natural Γ-norm is given by (6.2.10). In this case, we have

dµ∆,y

dµ
(u) =

1

Z∆(y)
exp

(
−1

2

∣∣y − L∆(u)
∣∣2
Γ

)
. (6.2.12)

Let us note the following immediate observations from assumption 6.2.1:

Lemma 6.2.4. If the noise η ∼ ρ(y) dy satisfies assumption 6.2.1, then there exists a constant L > 0,

such that for all y, y′ ∈ Rd, and ∆,∆′ > 0∣∣∣e−Φ∆,y(u) − e−Φ∆,y′ (u)
∣∣∣ ≤ L|y − y′|Γ, (6.2.13)

and ∣∣∣e−Φ∆,y(u) − e−Φ∆′,y(u)
∣∣∣ ≤ L|L∆(u)− L∆′(u)|Γ. (6.2.14)

The log-likelihood Φ∆,y is bounded from below, uniformly in ∆ > 0 and y ∈ Rd: there exists a constant

C ≥ 0 depending only on supy∈Rd ρ(y) <∞, such that

ess inf
u∈X

Φ∆,y(u) ≥ −C, ∀∆ > 0, y ∈ Rd. (6.2.15)

There exists a constant C ′ ≥ 0, such that

Φ∆,y(u) ≤ C ′ + 1

2
|y − L∆(u)|2Γ. (6.2.16)

In particular, we have

Φ∆,y(u) ≤ C ′ + |y|2Γ + |L∆(u)|2Γ. (6.2.17)

Given a sequence of observables L∆(u) (∆→ 0) arising for example from numerical discretizations at

grid scale ∆, it is now natural to ask what can be said about the limiting behaviour of the corresponding

sequence of posteriors µ∆,y. For many problems arising in the context of fluid dynamics very limited

information is available on the stability and convergence of the observables L∆(u) → L(u) to a well-

defined limit. Indeed, even the existence of a limiting observable L(u) is often not guaranteed, due to
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the (potential) ill-posedness of the forward model. It is thus important to study the behaviour of the

sequence µ∆,y under minimal assumptions on the observables L∆(u). We pose that these assumption

should either be rigorously provable for models of practical interest, or at least numerically verifiable

and routinely observed in numerical experiments. In the remainder of this section, we will follow this

programme for abstract Bayesian inverse problems. We will in particular consider

• the stability of the posteriors µ∆,y with respect to the measurements y with respect to the Wasser-

stein distance, obtaining estimates which hold uniformly as ∆→ 0,

• the general compactness properties of the sequence µ∆,y in the Wasserstein distance, and

• the consistency of µ∆,y with the posterior µy corresponding to the limiting measurement L∆(u)→
L(u), provided that the latter exists.

In particular, as a consequence of our discussion, we will prove the existence of a set of candidate solutions

of the BIP in the limit ∆ → 0, under mild boundedness assumptions on the observables L∆(u). While

of some independent interest, the present section on the abstract Bayesian inverse problem can also be

viewed as preparing the stage our subsequent discussion of the data assimilation or filtering problem in

section 6.3. In particular, we will prove several crucial lemmas below, on which we will build in section

6.3. In the applications presented in section 6.4, we will show that the assumed bounds in the abstract

results of the present section can be established by a priori estimates for models of practical importance.

6.2.2 Stability with respect to measurements

We first discuss the stability of the posterior µ∆,y with respect to the measurement y. As a natural

measure of the distance between two posteriors µ∆,y, µ∆,y′ , we consider the 1-Wasserstein distance

W1(µ∆,y, µ∆,y′). Our goal is to prove an explicit upper bound on W1(µ∆,y, µ∆,y′) in terms of |y − y′|Γ.

We note that our discussion of stability for the BIP overlaps in part with a similar discussion contained

in [Lat20, Spr20]. In particular, [Spr20] contains a general discussion of the stability of posteriors with

respect to both the log-likelihood and priors, and with respect to a number of distance metrics between

probability measures. Since some needed estimates have not appeared in [Lat20, Spr20], at least in the

precise form needed for our purposes, we have decided to include detailed proofs in this manuscript.

We begin our discussion of the stability properties of the BIP with the following lemma, proving that

the sequence of densities dµ∆,y/dµ is uniformly bounded in L∞(µ), provided that sup∆>0 ‖L∆(u)‖L2(µ) <

∞; here we define the L2(µ)-norm of the observables L∆(u) as follows

Remark 6.2.5. The L2(µ)-norm of L∆(u) is defined by

‖L∆(u)‖L2(µ) :=

(ˆ
X

|L∆(u)|2Γ dµ(u),

)1/2

where Γ is the covariance matrix of the additive noise η.

We now state the following

Lemma 6.2.6. Let dµ∆,y/dµ be given by (6.2.6), and Z∆(y) be defined as in (6.2.5). Then

Z∆(y) ≥ exp

(
−
ˆ
X

Φ∆,y(u) dµ(u)

)
, (6.2.18)

and

dµ∆,y

dµ
(u) ≤ exp

(ˆ
X

Φ∆,y(u) dµ(u)− ess inf
u∈X

Φ∆,y(u)

)
, ∀u ∈ X, (6.2.19)
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In particular, if the noise η ∼ ρ(y)dy satisfies the standing assumption 6.2.1, then there exists a constant

C > 0 depending only on the noise distribution ρ(y), such that

Z∆(y) ≥ 1

C
exp

(
−|y|2Γ − ‖L∆‖2L2(µ)

)
, (6.2.20)

and

dµ∆,y

dµ
(u) ≤ C exp

(
|y|2Γ + ‖L∆‖2L2(µ)

)
, ∀u ∈ X. (6.2.21)

Proof. Since the exponential (Gaussian-like) factor in the definition of dµ∆,y/dµ, eq. (6.2.6), is bounded

from above by exp(− ess infu∈X Φ∆,y(u)), it suffices to prove the lower bound on Z∆(y). We recall that

by (6.2.9), we can write

Z∆(y) = exp

(
− inf
ν∈P(X)

J∆,y(ν)

)
,

where J∆,y(ν) = DKL(ν||µ) +
´
X

Φ∆,y(u) dν(u). In particular, it follows that

inf
ν∈P(X)

J∆,y(ν) ≤ J∆,y(µ) =

ˆ
X

Φ∆,y(u) dµ(u).

Thus, we conclude that

Z∆(y) ≥ exp

(
−
ˆ
X

Φ∆,y(u) dµ(u)

)
.

This implies the first two estimates (6.2.18) and (6.2.19) of this lemma.

Under the noise assumption 6.2.1, by (6.2.17), there exists C ′ > 0 depending only on the noise

distribution ρ(y), such the last term can be bounded from below, yielding

Z∆(y) ≥ exp

(
−C ′ − |y|2Γ −

ˆ
X

|L∆(u)|2Γ dµ(u)

)
,

and thus the claimed inequality (6.2.20) for Z∆(y) with C = exp(C ′). Furthermore, by (6.2.15), there

exists C ′′, such that

ess inf
u∈X

Φ∆,y(u) ≥ −C ′′.

Thus the claimed inequality (6.2.21) holds with C = exp(C ′ + C ′′).

We next discuss the stability of dµ∆,y/dµ with respect to y. The following Lemma shows that the

map y 7→ dµ∆,y/dµ is locally Lipschitz continuous with respect to the L∞-norm.

Lemma 6.2.7. Under assumption 6.2.1. Let L∆(u) ∈ L2(µ). There exists a constant C > 0 (depending

only on the noise distribution), such that∥∥∥∥∥dµ∆,y

dµ
− dµ∆,y′

dµ

∥∥∥∥∥
L∞(µ)

≤ C|y − y′|Γ exp
(
|y|2Γ + |y′|2Γ + 2‖L∆‖2L2(µ)

)
. (6.2.22)

Proof. Fix u ∈ X for the moment. Denote e(y) := e(y;u) = exp(−Φ∆,y(u)), so that

dµ∆,y

dµ
− dµ∆,y′

dµ
=

e(y)

Z∆(y)
− e(y′)

Z∆(y′)

=
e(y)− e(y′)
Z∆(y)

+
e(y′)

Z∆(y′)

(Z∆(y′)− Z∆(y))

Z∆(y)
.
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By (6.2.13), we can estimate |e(y) − e(y′)| ≤ C|y − y′|Γ. Next, we note that this bound for e(y) also

implies that

|Z∆(y)− Z∆(y′)| ≤
ˆ
X

|e(y;u)− e(y′;u)| dµ(u) ≤ C|y − y′|Γ
ˆ
X

1 dµ(u)︸ ︷︷ ︸
=1

.

Hence, ∣∣∣∣∣dµydµ − dµy
′

dµ

∣∣∣∣∣ ≤ C|y − y′|Γ
Z∆(y)

+
e(y′)

Z∆(y′)

C|y − y′|Γ
Z∆(y)

.

Finally, from Lemma 6.2.6, we can estimate

1

Z∆(y)
≤ Ce|y|

2
Γ+‖L∆‖2

L2(µ) ≤ Ce|y|
2
Γ+|y′|2Γ+2‖L∆‖2

L2(µ) ,

and
e(y′)

Z∆(y′)

1

Z∆(y)
≤ Ce|y|

2
Γ+|y′|2Γ+2‖L∆‖2

L2(µ) .

Combining these estimates, we conclude that∣∣∣∣∣dµydµ − dµy
′

dµ

∣∣∣∣∣ ≤ 2C|y − y′|Γ exp
(
|y|2Γ + |y′|2Γ + 2‖L∆‖2L2(µ)

)
.

Since u ∈ X was arbitrary, the claimed inequality follows by taking the supremum over u ∈ X on the

left.

Let us also remark in passing the following Lemma, whose proof is analogous to the proof of Lemma

6.2.7.

Lemma 6.2.8. Under assumption 6.2.1. Let L∆(u),L(u) ∈ L2(µ), and y ∈ Rd. There exists a constant

C > 0 (depending only on the noise distribution), such that for any p ∈ [1,∞], we have∥∥∥∥dµ∆,y

dµ
− dµy

dµ

∥∥∥∥
Lp(µ)

≤ C
∥∥L∆(u)− L(u)

∥∥
Lp(µ)

exp
(

2|y|2Γ + ‖L∆‖2L2(µ) + ‖L‖2L2(µ)

)
,

for all u for which L∆(u), L(u) is defined.

Proof. The proof is an almost verbatim repetition of the proof of Lemma 6.2.7, with the roles of y, y′

and L∆(u),L(u) interchanged.

Using Lemma 6.2.7, we can now state the following theorem on the stability of the measurement-to-

posteriors map:

Theorem 6.2.9. We make the assumption 6.2.1 on the noise η ∼ ρ(y) dy. Fix a prior µ ∈ P1(X). Given

a measurement y ∈ Rd, ∆ > 0 with observable L∆(u) and prior µ, let µ∆,y denote the corresponding

posterior (6.2.3). Assume that

M := sup
∆>0

∥∥L∆
∥∥
L2(µ)

<∞.

Then the family of posteriors {µ∆,y} is uniformly bounded in Liploc(Rd;P1(X)) and hence locally equicon-

tinuous: There exists a constant C = C(ρ,Γ,M, µ), independent of ∆ > 0 and y, y′, such that

W1(µ∆,y, µ∆,y′) ≤ C|y − y′|Γe|y|
2
Γ+|y′|2Γ . (6.2.23)
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Proof. Fix Φ ∈ Lip(X) with semi-norm ‖Φ‖Lip ≤ 1. Then

ˆ
X

Φ(u)(dµ∆,y(u)− dµ∆,y′(u)) =

ˆ
X

[Φ(u)− Φ(0)](dµ∆,y(u)− dµ∆,y′(u))

≤
ˆ
X

‖u‖X

∣∣∣∣∣dµ∆,y

dµ
− dµ∆,y′

dµ

∣∣∣∣∣ dµ(u)

≤

∥∥∥∥∥dµ∆,y

dµ
− dµ∆,y′

dµ

∥∥∥∥∥
L∞(µ)

(ˆ
X

‖u‖X dµ(u)

)
.

Estimating the last term using Lemma 6.2.7 and taking the supremum over all such Lipschitz continuous

Φ on the left-hand side, we obtain by Kantorovich duality:

W1(µ∆,y, µ∆,y′) ≤ C‖u‖L1(µ)|y − y′|Γe|y|
2
Γ+|y′|2Γ ,

where C is independent of ∆. In fact, we can choose

C = sup
∆>0

Ce
2‖L∆(u)‖2

L2(µ) = Ce2M2

,

with C the constant from Lemma 6.2.7.

Remark 6.2.10. The previous stability result only depends on the continuity properties of the noise

distribution ρ, and is independent of any continuity properties of the observable L(u). In the same spirit,

if dµy/dµ = 1/Z(y) exp
(
− 1

2 |y − L(u)|2Γ
)

is a posterior with Gaussian noise, and if ‖L(u)‖L2(µ) < ∞,

then we can show that for any φ(u) ∈ L1(µ) ( i.e. φ(u) is integrable with respect to the prior µ), we have

that

Rd → R, y 7→ Ey [φ] :=
1

Z(y)

ˆ
X

φ(u) dµy(u),

is real analytic; this follows from [HSZ20, Lemma 4.5]. In particular, this result is independent of any

smoothness properties of L(u). In section 6.3, we will show that the conclusion remains true even for

the time-dependent data assimilation (filtering) problem (cp. Remark 6.3.10).

6.2.3 Compactness properties

Having established the uniform equicontinuity of the measurement-to-posterior mapping, we next wish

to show that the posteriors µ∆,y, for fixed y ∈ Rd, form a compact sequence as ∆→ 0 in (P1,W1), and

that all limit points are absolutely continuous with respect to the prior µ. The proof of compactness

of µ∆,y will be based on the variational characterization of the posteriors to the BIP, in terms of the

Kullback-Leibler divergence with respect to the prior.

We now show pointwise compactness of the posteriors µ∆,y for fixed y ∈ Rd:

Theorem 6.2.11. Fix a prior µ ∈ P1(X). Fix y ∈ Rd. Assume that the log-likelihood Φ∆,y ≥ −C
is uniformly bounded from below, and that

´
X

Φ∆,y(u) dµ(u) ≤ C are uniformly bounded from above

for ∆ > 0. Then the family of posteriors {µ∆,y}∆>0 is pre-compact in P1(X), and any limit point

µ∗,y = lim∆k→0 µ
∆k,y is absolutely continuous with respect to the prior µ.

Proof. As remarked in the introduction to this section, the posterior µ∆,y can be characterized as the

unique minimizer µ∆,y = argminν∈P1(X) J
∆,y(ν) of the functional J∆,y (6.2.7). In particular, this vari-
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ational characterization implies that

DKL(µ∆,y||µ) = J∆,y(µ∆,y)−
ˆ
X

Φ∆,y(u)︸ ︷︷ ︸
≥−C

dµ∆,y(u) ≤ J∆,y(µ∆,y) + C

≤ J∆,y(µ) + C =

ˆ
X

Φ∆,y(u) dµ(u) + C ≤ 2C.

It follows that

{µ∆,y}∆>0 ⊂ {ν ∈ P1(X) | DKL(ν||µ) ≤ 2C}.

From the coercivity property of the Kullback-Leibler divergenceDKL, the sublevel set {ν ∈ P1(X) | DKL(ν||µ) ≤ 2C}
is compact with respect to the topology of weak convergence of probability measures. Furthermore, any

weak limit point µ∗,y = w − lim∆k→0 µ
∆k,y satisfies DKL(µ∗,y||µ) ≤ 2C < ∞, and hence is absolutely

continuous with respect to µ. This shows that {µ∆,y}∆>0 is precompact with respect to the weak topo-

logy on P(X). We finally want to show that if µ∗,y = w − lim∆k→0 µ
∆k,y is a weak limit of the family

{µ∆,y}∆>0, then in fact W1(µ∗,y, µ∆k,y)→ 0 converges with respect to the 1-Wasserstein distance. As a

consequence, we conclude that {µ∆,y}∆>0 is also pre-compact in the metric space (P1,W1).

To this end, suppose we are given a weakly convergent subsequence µ∆k,y ⇀ µ∗,y. By (B.0.5), in

order to show that W1(µ∗,y, µ∆k,y)→ 0, it suffices to prove that

ˆ
X

‖u‖X dµ∆k,y(u)→
ˆ
X

‖u‖X dµ∗,y(u).

Let ε > 0 be arbitrary. We want to show that

lim sup
k→∞

∣∣∣∣ˆ
X

‖u‖X dµ∆k,y(u)−
ˆ
X

‖u‖X dµ∗,y(u).

∣∣∣∣ ≤ ε.
By Lemma 6.2.6, and the assumed uniform upper bound on

´
Φ∆,y(u) dµ(u), there exists a constant

C > 0, such that

dµ∆,y

dµ
≤ C, ∀∆ > 0.

As
´
X
‖u‖X dµ(u) <∞, we can choose M > 0 sufficiently large, so that

ˆ
‖u‖X≥M

‖u‖X dµ(u) < ε/(2C).

Then, clearly

ˆ
‖u‖X≥M

‖u‖X dµ∆k,y(u) =

ˆ
‖u‖X≥M

‖u‖X
dµ∆k,y

dµ
dµ(u) ≤ C

ˆ
‖u‖X≥M

‖u‖X dµ(u) < ε/2, (6.2.24)

for all k ∈ N, and by the lower semi-continuity of weak limits, a similar inequality holds for µ∗,y:

ˆ
‖u‖X≥M

‖u‖X dµ∗,y(u) ≤ lim inf
k→∞

ˆ
‖u‖X≥M

‖u‖X dµ∆k,y(u) ≤ ε/2. (6.2.25)
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Define FM (u) := min(‖u‖X ,M) ∈ Cb(X). Then,

lim sup
k→∞

∣∣∣∣ˆ
X

‖u‖X dµ∆k,y −
ˆ
X

‖u‖X dµ∗,y
∣∣∣∣

≤ lim sup
k→∞

∣∣∣∣ˆ
X

FM (u) [dµ∆k,y − dµ∗,y]

∣∣∣∣
+ lim sup

k→∞

ˆ
‖u‖X≥M

‖u‖X dµ∆k,y(u) +

ˆ
‖u‖X≥M

‖u‖X dµ∗,y(u)

≤ 0 + ε/2 + ε/2 = ε.

To pass to the last line, we used the upper bounds (6.2.24), (6.2.25) and the fact that
ˆ
X

FM (u) dµ∆k,y(u)→
ˆ
X

FM (u) dµ∗,y(u),

since FM ∈ Cb(X) and µ∆k,y ⇀ µ∗,y. Since ε > 0 was arbitrary, we conclude that
ˆ
X

‖u‖X dµ∆k,y(u)→
ˆ
X

‖u‖X dµ∗,y(u),

and hence W1(µ∆k,y, µ∗,y) → 0 (cp. (B.0.5)). In particular, this shows that any weak limit point of

{µ∆,y}∆>0 is also a limit point in P1(X) with respect to the 1-Wasserstein metric W1. Since {µ∆,y}∆>0

is weakly pre-compact, it follows that it is also pre-compact in P1(X) with respect to the W1-metric.

Finally, we can combine the uniform equicontinuity result of Theorem 6.2.9 with the point-wise

compactness established in Theorem 6.2.11 to prove the following general compactness theorem for

posteriors, now considered as mappings y 7→ µ∆,y:

Theorem 6.2.12. We make assumption 6.2.1 on the noise distribution. Fix a prior µ ∈ P1(X). Let

{L∆}∆>0 be a uniformly L2(µ0)-bounded family of measurable mappings L∆ : X → Rd. Then the

corresponding family of posterior measures y 7→ µ∆,y is pre-compact with respect to the topology of locally

uniform convergence on Liploc(Rd;P1(X)): For any sequence ∆→ 0, there exists a subsequence ∆k → 0

and a y-parametrized probability measure y 7→ µ∗,y ∈ Liploc(Rd;P1(X)), such that for any R > 0, there

exists C = C(R,Γ, µ), such that

W1(µ∗,y, µ∗,y
′
) ≤ C|y − y′|Γ, ∀ y, y′ ∈ BR(0),

and we have

sup
|y|Γ≤R

W1

(
µ∆k,y, µ∗,y

)
→ 0, as k →∞.

Furthermore, any such limit µ∗,y is absolutely continuous with respect to the prior µ, and can be written

in the form dµ∗,y(u) = Z(y)−1 exp(−Φ∗(u; y)) dµ(u).

Proof. This theorem is a direct consequence of the Arzelà-Ascoli Theorem A.2.1, the pointwise compact-

ness Theorem 6.2.11 and the uniform equicontinuity Theorem 6.2.9.

Remark 6.2.13. The last theorem shows that under quite general conditions, we can assign a set of

“solutions” of a BIP (or at least candidate solutions) to a family of posteriors µ∆,y solving the discretized

BIP at resolution ∆ > 0. This set of candidate solutions of the BIP in the limit ∆→ 0 is given by

S =

{
µ∗,y

∣∣∣∣∃∆k → 0, s.t. µ∗,y = lim
k→∞

µ∆k,y

}
,
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or equivalently, we can write

S =
⋂

∆>0

cl
({
y 7→ µ∆,y

∣∣∆ ≤ ∆
})
,

where cl denotes the closure in Liploc(Rd;Pp(X)). We note that the set S is non-empty: This follows

from the fact that finite intersections are clearly non-empty and that each of the sets is a compact subset of

Liploc(Rd;Pp(X)) (finite intersection property of compact sets). So under these very general assumptions,

there always exists at least one candidate solution.

One possible selection criterion to find the “best” solution among the candidate solutions S of Remark

6.2.13 is by minimizing the Kullback-Leibler divergence with respect to the prior µ (with the idea of this

being the most conservative estimate):

µ∗,y = argmin
ν∈S

DKL(ν||µ).

6.2.4 Consistency with the canonical posterior

In the previous section, we have shown that under very general assumptions on the observables L∆(u),

we can define a set of candidate solutions S for the BIP in the limit ∆→ 0. In this section, we show that

if L∆(u) → L(u) converges to a unique limit (even in an average sense), then µ∆,y → µy converges to

the unique solution of the BIP with measurement L(u) with respect to the Wasserstein distance W1. In

particular, the set of candidate solutions S identified in Remark 6.2.13 is in this case given by S = {µy}.

Theorem 6.2.14. Under the noise assumption 6.2.1. Fix a prior µ ∈ P2(X). Let µ∆,y and µy denote

the posteriors for the BIP with observables L∆ and L, respectively. Assume that there exists a constant

M > 0, such that ∥∥L∆(u)
∥∥
L2(µ)

, ‖L(u)‖L2(µ) ≤M. ∀∆ > 0.

Then, we have the estimate

W1

(
µ∆,y, µy

)
≤ C‖L∆(u)− L(u)‖L2(µ),

where C = C(Γ, µ, y,M) depends on the prior µ, the measurement y ∈ Rd and the upper bound M , but

is independent of ∆.

Proof. For any Φ ∈ Lip, such that ‖Φ‖Lip ≤ 1, we find
ˆ
X

Φ(u)
[
dµ∆,y(u)− dµy(u)

]
=

ˆ
X

[Φ(u)− Φ(0)]
[
dµ∆,y(u)− dµy(u)

]
=

ˆ
X

[Φ(u)− Φ(0)]

[
dµ∆,y

dµ
− dµy

dµ

]
dµ(u)

≤
ˆ
X

‖u‖X
∣∣∣∣dµ∆,y

dµ
− dµy

dµ

∣∣∣∣ dµ(u)

≤ ‖u‖L2(µ)

∥∥∥∥dµ∆,y

dµ
− dµy

dµ

∥∥∥∥
L2(µ)

.

By Lemma 6.2.8, we have∥∥∥∥dµ∆,y

dµ
− dµy

dµ

∥∥∥∥
L2(µ)

≤ C
∥∥L∆(u)− L(u)

∥∥
L2(µ)

e
|y|2+‖L∆(u)‖2

L2(µ)
+‖L(u)‖2

L2(µ)

≤ C
∥∥L∆(u)− L(u)

∥∥
L2(µ)

e|y|
2+2M2

,
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for a constant C = C(Γ). Using this estimate, we can now boundˆ
X

Φ(u)
[
dµ∆,y(u)− dµy(u)

]
≤ C

∥∥L∆(u)− L(u)
∥∥
L2(µ)

,

where C = Ce|y|
2+2M2 (´

X
‖u‖2X dµ(u)

)1/2
. Taking the supremum over all Lipschitz continuous Φ(u),

with Lipschitz semi-norm ‖Φ‖Lip ≤ 1 on the left, we obtain the claimed estimate.

6.3 Data assimilation

6.3.1 Problem setting

In the context of time-evolution equations, one is often not only interested in obtaining an estimate for

the (initial) state given individual measurements y, but to track the temporal evolution of a system,

given measurements y1, y2, ... acquired over time. The data assimilation problem seeks to provide a best

estimate for the state u of the system at time t, expressed in terms of a posterior probability measure

νyt (u), given the available measurements y1, y2, . . . . There are at least two types of data assimilation

problems: Following standard terminology, we call filtering, the problem of determining the posterior

νyt (u) at time t ∈ [0, T ] from the measurements available up to time t, i.e. from measurements in the time-

interval [0, t). The filtering problem thus provides the best prediction given a set of past measurements.

On the other hand, if the posterior νyt (u) at t ∈ [0, T ] is obtained “after the fact”, i.e. given a set of

measurements acquired during the whole time-interval [0, T ], then we speak of the smoothing problem.

The generic data assimilation problem is schematically illustrated in Figure 6.1.

Figure 6.1: Schematic illustration of the data assimilation problem: Measurements (red circles) are used

at times t = t0, t1, ..., to periodically update the posterior measure νyt (indicated by its confidence interval

in blue), combining all available information from the deterministic evolution and noisy measurements.

In the following, we will focus on the filtering problem, for which we provide a precise formulation

below; however, most of the results should apply mutatis mutandis also to the smoothing problem. Due

to the weak temporal and spatial regularity properties of the fluid dynamics applications of interest in the

present work, simple pointwise measurements of the form L(u) = u(xk, tk) are not well-defined. Thus,

we will first discuss an appropriate notion of observables. We make the following definition

Definition 6.3.1 (Eulerian Observables). A mapping G : L1(0, T ;L2
x) → Rd, u(x, t) 7→ G(u) =

(G1(u), . . . ,Gd(u)), with Gk(u) of the form

Gk(u) =

ˆ T

0

ˆ
D

φ(k)(x, t)g(k)(u(x, t)) dx dt, (6.3.1)
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for u(x, t) ∈ L1(0, T ;L2
x), is called an Eulerian observable (or simply observable), provided that, for

all k = 1, . . . , d, we have φ(k)(x, t) ∈ L∞(D × [0, T ]) and g(k)(u) is Lipschitz continuous with

|g(k)(u)− g(k)(u′)| ≤ C|u− u′|. (6.3.2)

To simplify notation in the following, instead of (6.3.1) we shall simply write

G(u) =

ˆ T

0

ˆ
D

φ(x, t)g(u(x, t)) dx dt, (6.3.3)

where φ(x, t) := (φ(1)(x, t), . . . , φ(d)(x, t)), g(u) = (g(1)(u), . . . , g(d)(u)), and it is understood that the

multiplication in (6.3.3) is carried out componentwise.

It is then straightforward to prove the following result.

Proposition 6.3.2. An Eulerian observable G(u) is Lipschitz continuous on L1
t ([0, T ];L2

x), i.e., there

exists a constant C > 0, such that

|G(u)− G(u′)| ≤ C
ˆ T

0

‖u− u′‖L2
x
dt, ∀u, u′ ∈ L1([0, T ];L2

x).

Proof. This follows immediately from the definition (6.3.3) of G(u) and the assumed bound (6.3.2).

Assumption 6.3.3 (standing assumption). In the present section, we will make the standing assumption

that the approximate solution operators S ∆
t : L2

x → L2
x (as well as a possible limit St : L2

x → L2
x, if it

exists) satisfy uniform bounds of the following form:

• Energy admissibility: For any u ∈ L2
x, we have

‖S ∆
t (u)‖L2

x
≤ C‖u‖L2

x
, ∀u ∈ L2

x,

• Weak time-regularity: There exist constants L,C > 0, such that

‖S ∆
t (u)−S ∆

t′ (u)‖H−Lx ≤ C|t− t′|, ∀u ∈ L2
x, t, t

′ ∈ [0, T ],

i.e. t 7→ S ∆
t (u) is Lipschitz continuous with values in some negative index Sobolev space.

Given a sequence of measurement times 0 = t0 < t1 < t2 < · · · < tN = T for N ∈ N, we denote

δtj = tj − tj−1. Given observables of the form

Gj : L1
t ([0, δtj);L

2
x)→ R, Gj(u) =

ˆ δtj

0

ˆ
D

φj(x, t)gj (u(x, t)) dx dt (6.3.4)

the filtering problem at grid scale ∆ > 0 is described as follows: The temporal evolution of the system

state u(x, t) is modeled by the approximate solution operator S ∆
t , i.e. u(x, t) = S ∆

t (u), where u =

u(x, 0). We fix a prior µprior ∈ P(L2
x) at the initial time t = t0, representing our best estimate of the

state of the system in the absence of measurements. For a sequence of measurements y1, . . . , yN , we

denote Yj = (y1, . . . , yj) the vector of partial measurements up to time tj . We wish to find a sequence of

probability measures ν∆,Y1

t1 , ν∆,Y2

t2 , . . . , ν∆,YN
tN , where ν

∆,Yj
tj provides a best (probabilistic) estimate of the

state of the system at times tj , given the measurements Yj = (y1, . . . , yj) available up to that time. The

measurements are modeled as

yj = L∆
j (u) + ηj , ηj ∼ ρj(y) dy, (6.3.5)
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where for each j, the noise distribution ρj is required to satisfy the assumption 6.2.1 with a matrix

Γj ∈ Rd×d and observable L∆
j (u) = Gj(S ∆

tj−1+t(u)), i.e.,

L∆
j (u) =

ˆ δtj

0

ˆ
D

φj(x, t)gj (u(x, tj−1 + t)) dx dt, (6.3.6)

where u(x, t) = S ∆
t (u) is the approximate solution corresponding to S ∆

t , with initial data u = u(x, 0).

Remark 6.3.4. More generally, given all measurements Yj = (y1, . . . , yj) obtained in the time interval

[0, tj ], we might be interested in ν
∆,Yj
t , the best probabilistic Bayesian estimate of the state u at arbitrary

time t ∈ [0, T ], i.e. we can formally consider the conditional probabilities

ν
∆,Yj
t (du) = Prob[u( · , t) ∈ du |Yj ] = Prob[u( · , t) ∈ du | y1, . . . , yj ],

for t ∈ [0, T ]. The filtering problem thus considers the case for which all available information at time t =

tj is incorporated in ν
∆,Yj
tj , providing the best prediction of the state u at time tj, given all measurements

made during the time-interval [0, tj ].

We note that, under assumption 6.3.3, Proposition 6.3.2 implies in particular that

‖L∆
j (u)‖L2(µprior) ≤ C

(
1 + ‖u‖L2(µprior)

)
,

‖L∆
j (u)− L∆′

j (u)‖L2(µprior) ≤ C
ˆ tj

tj−1

‖S ∆
t (u)−S ∆′

t (u)‖L2(µprior) dt,
(6.3.7)

where C = C(Gj , T ) > 0.

We will denote the log-likelihood function corresponding to the observable Gj(u) on the j-th time

interval [tj−1, tj ] by

Φ
∆,yj
j (u) = − log ρj(yj − Gj(S ∆

t (u))), ∀u ∈ L2
x. (6.3.8)

We formalize the filtering problem as follows:

Definition 6.3.5 (Filtering). At the initial time t = 0, we fix a prior measure µprior, and define

ν∆,Y0

t0 := S ∆
0,#µprior. (6.3.9)

We note that S ∆
0 ≈ Id is an approximation to the identity. Given times 0 = t0 < t1 < · · · < tN = T

and measurements y1, . . . , yN , the filtering problem involves the following two recursive steps.

1. Correction step: Given ν
∆,Yj−1

tj−1
as a prior at time tj−1, solve the Bayesian inverse problem with

new measurement yj = Gj(S ∆
t (u)) + ηj , for t ∈ [0, δtj ], to obtain a corrected Bayesian estimate

dν
∆,Yj
tj−1

(u) =
1

Z∆
j (yj)

exp
(
−Φ

∆,yj
j (u)

)
dν

∆,Yj−1

tj−1
(u). (6.3.10)

2. Prediction step: Based on this corrected estimate, predict the probability distribution at time tj,

as the push-forward:

ν
∆,Yj
tj = S ∆

δtj ,#ν
∆,Yj
tj−1

, (6.3.11)

where we recall that δtj = tj − tj−1.
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. . . ν
∆,Yj−1

tj−1
ν
∆,Yj

tj ν
∆,Yj+1

tj+1
. . .

ν
∆,Yj

tj−1
ν
∆,Yj+1

tj

yj yj+1

Figure 6.2: Schematic for the filtering problem: (orange) the correction step incorporates the measure-

ment yj = L∆
j (u)+ηj to update the current best estimate, (blue) the updated estimate is used to predict

the next state.

Remark 6.3.6. Informally, we can write the correction step (6.3.10) of the filtering problem as follows:

Prob [u(tj−1) ∈ du |Yj ] = Prob
[
yj = Gj(S ∆

t (u(tj−1))) |u(tj−1)
]

× Prob [u(tj−1) ∈ du |Yj−1] ,

The prediction step (6.3.11) can be expressed intuitively as

Prob [u(tj) ∈ du |Yj ] = Prob
[
S ∆
δtj (u(tj−1)) ∈ du |Yj

]
= S ∆

δtj ,#Prob [u(tj−1) ∈ du |Yj ] .

The filtering problem is thus defined by recursion, and provides a sequence of best-estimates ν
∆,Yj
tj

given the time sequence 0 = t0, t1, . . . , tN and measurements y1, . . . , yN , and based on a fixed prior µprior

at the initial time t = 0.

Although the filtering problem is most naturally expressed in terms of the above recursive pre-

diction/correction scheme, it turns out to be beneficial for the analysis of this problem to discuss an

equivalent alternative formulation. To this end, we consider µ∆,Yj ∈ P(L2
x) for j = 0, . . . , N , informally

given by

µ∆,Yj (du) = Prob [u( · , 0) ∈ du |Yj ] , (6.3.12)

i.e. the probability of the initial state u( · , 0) ∈ du, given the measurements Yj = (y1, . . . , yj). More

precisely, we define µ∆,Yj (du) as the solution of the BIP with prior µprior and given the measurement

Yj = (L∆
1 (u),L∆

2 (u), . . . ,L∆
j (u)) + (η1, η2, . . . , ηj),

and (η1, η2, . . . , ηj) the measurement noise. For simplicity, we will assume that the random variables

η1, . . . , ηj at different time-steps are independent. In this case, the law of (η1, . . . , ηj) is a simple product,

(η1, . . . , ηj) ∼ ρ1(y1) dy1 ⊗ · · · ⊗ ρj(yj) dyj ,

and the solution of the above BIP with prior µprior is given by

dµ∆,Yj (u) =
1

Z∆
j (Yj)

exp

(
−

j∑
k=1

Φ∆,yk
k ◦S ∆

tk−1
(u)

)
dµprior(u), (6.3.13)

where we note that, by (6.3.8) and the definition of L∆
k (u) = Gj(S ∆

tk−1+t(u)), we have that

Φ∆,yk
k ◦S ∆

tk−1
(u) = − log ρk

(
yk − Gk(S ∆

t+tk−1
(u))

)
= − log ρk

(
yk − L∆

k (u)
)
, ∀u ∈ L2

x,
(6.3.14)
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i.e. Φ∆,yk
k ◦ S ∆

tk−1
is the log-likelihood function corresponding to the measurement yk = Lk(u) + ηk,

and starting from the initial data u ∈ L2
x at time t = 0. In (6.3.13), Z∆

j (Yj) is a suitable normalization

constant, defined by

Z∆
j (Yj) =

ˆ
L2
x

exp

(
−

j∑
k=1

Φ∆,yk
k ◦S ∆

tk−1
(u)

)
dµprior(u),

for Yj = (y1, . . . , yj). We note that L∆
k (u) = Gj(S ∆

tk−1+t(u)) (cp. equation (6.3.6)) can be written as

L∆
k (u) =

ˆ tk

tk−1

ˆ
D

φk(x, t− tk−1)gk
(
S ∆
t (u)

)
dx dt,

i.e. Lk provides a measurement of the solution S ∆
t (u) with initial data u (at t = 0) over the time

interval [tk−1, tk]. Consistent with the above identity for µ∆,Yj (which is valid for j ≥ 1), we define

µ∆,Y0 := µprior, (6.3.15)

corresponding to the empty sum in (6.3.13).

We can now state the following proposition, providing an alternative formulation of the filtering

problem. We refer to [LMW21, Proposition 4.7] for the detailed proof.

Proposition 6.3.7. Let ν
∆,Yj
tj denote the recursively computed sequence of probability measures in the

filtering problem (cp. Definition 6.3.5). Let µ∆,Yj be given by (6.3.13). Then, we have the identity

ν
∆,Yj
tj = S ∆

tj ,#µ
∆,Yj , (6.3.16)

i.e. ν
∆,Yj
tj is given by the push-forward of µ∆,Yj to time t = tj.

Remark 6.3.8. The content of Proposition 6.3.7 is intuitively clear: The measure µ∆,Yj (u) provides

the best Bayesian estimate for the initial state u( · , t) at t = 0 given the measurements Yj = (y1, . . . , yj)

acquired over the interval [0, tj ]. Proposition 6.3.7 expresses the fact that the best Bayesian estimate for

the state u(x, tj) at time tj should simply be given by evolving the best initial estimate µ∆,Yj (given Yj),

forward in time to t = tj, via the solution operator S ∆
tj .

Remark 6.3.9. Proposition 6.3.7 also indicates a consistent definition of ν
∆,Yj
t for any t ∈ [0, T ].

Indeed, the best Bayesian estimate for u( · , t) given the measurements Yj is simply given by

ν
∆,Yj
t = S ∆

t,#µ
∆,Yj , (6.3.17)

Remark 6.3.10. We recall that by Remark 6.2.10, for any φ ∈ L1(µprior), the mapping

Yj 7→
ˆ
L2
x

φ(u) dµ∆,Yj (u),

is analytic in Yj, for Gaussian measurement noise. As a consequence of Proposition 6.3.7, it follows that

also

Yj 7→
ˆ
L2
x

φ(u) dν
∆,Yj
t (u) =

ˆ
L2
x

φ(S ∆
t (u)) dµ∆,Yj (u),

is analytic in Yj, independently of the smoothness of the solution operator S ∆
t .
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6.3.2 Stability with respect to measurements

In this section, we investigate the stability properties of the solution of the filtering problem with re-

spect to the measurements y1, . . . , yN . Our analysis will be based on the representation (6.3.13) of

the previous section and the stability results for the BIP in section 6.2. Due to the low a priori

time-regularity of the time-dependent mapping t 7→ ν
∆,Yj
t , we will formulate the stability in the space

L1
t (P) = L1([0, T ];P(L2

x)), defined as the set of all weak-∗ measurable mappings [0, T ]→ P(L2
x), t 7→ νt,

such that ˆ T

0

‖u‖L2
x
dνt(u) dt <∞,

with metric

dT (νt, ν
′
t) :=

ˆ T

0

W1(νt, ν
′
t) dt, ∀ νt, ν′t ∈ L1([0, T ];P(L2

x)).

This space has been introduced in chapter 3, Definition 3.2.3; it is not difficult to prove that (L1
t (P), dT )

is a complete metric space (cp. Proposition 3.2.4).

We can now state the following lemma:

Lemma 6.3.11. Let T > 0. Let µprior ∈ P1(L2
x) be a prior such that ‖u‖L1(µprior) < ∞. Let ν

∆,Yj
t

be given by (6.3.17) for t ∈ [0, T ], so that, formally, ν
∆,Yj
t (du) = Prob [u(·, t) ∈ du |Yj ]. Then for any

R > 0, there exists C = C(R) > 0, such that for any t, δt ≥ 0, we have

ˆ t+δt

t

W1

(
ν∆,Yj
τ , ν∆,Yj

′
τ

)
dτ ≤ Cδt

(
j∑

k=1

|yk − y′k|
2
Γk

)1/2

, (6.3.18)

for all Yj = (y1, . . . , yj), Y
′
j = (y′1, . . . , y

′
j) such that

√∑j
k=1 |yk|

2
Γk
≤ R,

√∑j
k=1 |y′k|

2
Γk
≤ R.

Proof. To simplify the notation in the following, we set

|Yj |Γ :=

(
j∑

k=1

|yk|2Γk

)1/2

.

By (6.3.17), we have ν
∆,Yj
t = S ∆

t,#µ
∆,Yj , where µ∆,Yj solves a BIP and is given by (6.3.13). Since µ∆,Yj

is the solution of a standard BIP with noise η = (η1, . . . , ηj) satisfying assumption 6.2.1, then by Lemma

6.2.7, we obtain ∥∥∥∥∥dµ∆,Yj

dµprior
− dµ∆,Y ′j

dµprior

∥∥∥∥∥
L∞(µprior)

≤ C|Yj − Y ′j |Γ. (6.3.19)

Let Φ(u) ∈ Lip(L2
x) be a function with Lipschitz constant ≤ 1. Then there exists g(u) such that

Φ(u)− Φ(0) = g(u)‖u‖L2
x
, |g(u)| ≤ 1.
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Now note that
ˆ
L2
x

Φ(u)
[
dν

∆,Yj
t − dν∆,Y ′j

t

]
=

ˆ
L2
x

[Φ(u)− Φ(0)]
[
dν

∆,Yj
t − dν∆,Y ′j

t

]
=

ˆ
L2
x

g(u)‖u‖L2
x
S ∆
t,#

[
dµ∆,Yj − dµ∆,Y ′j

]
=

ˆ
L2
x

g(S ∆
t (u))‖S ∆

t (u)‖L2
x

[
dµ∆,Yj

dµprior
− dµ∆,Y ′j

dµprior

]
dµprior(u)

≤
ˆ
L2
x

∣∣g(S ∆
t (u))

∣∣ ‖S ∆
t (u)‖L2

x

∣∣∣∣∣dµ∆,Yj

dµprior
− dµ∆,Y ′j

dµprior

∣∣∣∣∣ dµprior(u).

Using the fact that |g(u)| ≤ 1, and that ‖S ∆
t (u)‖L2

x
≤ C‖u‖L2

x
, by assumption 6.3.3, we can further

estimate the last expression

ˆ
L2
x

∣∣g(S ∆
t (u))

∣∣ ‖S ∆
t (u)‖L2

x

∣∣∣∣∣dµ∆,Yj

dµprior
− dµ∆,Y ′j

dµprior

∣∣∣∣∣ dµprior(u)

≤ C
ˆ
L2
x

‖u‖L2
x

∣∣∣∣∣dµ∆,Yj

dµprior
− dµ∆,Y ′j

dµprior

∣∣∣∣∣ dµprior(u)

≤ C

(ˆ
L2
x

‖u‖L2
x
dµprior(u)

)∥∥∥∥∥dµ∆,Yj

dµprior
− dµ∆,Y ′j

dµprior

∥∥∥∥∥
L∞(µprior)

.

Taking the supremum over all Φ(u) such that ‖Φ‖Lip ≤ 1 on the left, and noting the upper bound (6.3.19)

on the last term, we find

W1

(
ν

∆,Yj
t , ν

∆,Yj
′

t

)
≤ C|Yj − Y ′j |Γ,

where the constant C > 0 is independent of Yj , Y
′
j . Integrating in time, we obtain the claimed inequality

ˆ t+δt

t

W1

(
ν

∆,Yj
t , ν

∆,Yj
′

t

)
dt ≤ Cδt|Yj − Y ′j |Γ.

We will finally state a general stability theorem for the solution of the filtering problem. To this end,

we introduce the following notation

Definition 6.3.12. Given times 0 = t0 < t1 < · · · < tN = T , and measurements y1, . . . , yN , we denote

by ν∆,y, with y = (y1, . . . , yN ) the solution of the associated filtering problem, i.e.,

ν∆,y
t :=



ν∆,Y0

t , t ∈ [0, t1),

ν∆,Y1

t , t ∈ [t1, t2),
...

ν
∆,YN−1

t , t ∈ [tN−1, tN ),

ν∆,YN
t , t ≥ tN ,

(6.3.20)
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Theorem 6.3.13. Let ν∆,y
t denote the solution of the filtering problem with prior µprior ∈ P1(L2

x), and

measurements y = (y1, . . . , yN ). Then for any R > 0, there exists C = C(R, T ), such that

ˆ T

0

W1

(
ν∆,y
t , ν∆,y′

t

)
dt ≤ C|y − y′|Γ, (6.3.21)

for all y,y′ such that |y|Γ, |y′|Γ ≤ R. Here, we use the norm

|y|Γ :=

(
N∑
k=1

|yk|2Γk

)1/2

.

Proof. The claimed stability estimate follows readily from Lemma 6.3.11: Indeed, ν∆,y
t is defined piece-

wise in time, for t ∈ [0, T ) = [t0, tN ), as

ν∆,y
t =

N∑
k=1

1[tk−1,tk)(t) ν
∆,Yk−1

t .

Thus, by the estimate of Lemma 6.3.11, we find for some C = C(R):

ˆ T

0

W1

(
ν∆,y
t , ν∆,y′

t

)
dt =

N∑
k=1

ˆ tk

tk−1

W1

(
ν

∆,Yk−1

t , ν
∆,Y ′k−1

t

)
dt

≤ C
N∑
k=1

δtk|Yk−1 − Y ′k−1|Γ

≤ CT |y − y′|Γ.

6.3.3 Compactness properties

Our second main result for the filtering problem is a conditional compactness result, motivated by the

study of statistical solutions of the compressible and incompressible Euler equations in chapters 3 and

4 (see also [FLMW20]). In chapter 3, we have studied the forward problem for statistical initial data

µ a probability measure on L2
x. We proved that under Assumption 6.3.3, the sequence of discretized

approximate solutions µ∆
t := (S ∆

t )#µ (push-forward by the discretized solution operator) is compact in

P1(L2
x), provided that the following measure of average two-point correlations

ST2 (µ∆
t ; r) :=

(ˆ T

0

ˆ
L2
x

S2(u; r)2 dµ∆
t (u) dt

)1/2

, (6.3.22)

are uniformly bounded as ∆→ 0, where

S2(u; r) :=

(ˆ
D

 
Br(0)

|u(x+ h)− u(x)|2 dh dx

)1/2

, (6.3.23)

measures the average of two-point correlations of u: More precisely, if µ∆
t is of the form µ∆

t = S ∆
t,#µ0,

µ0 ∈ P2(L2
x), with S ∆

t : L2
x → L2

x satisfying assumption 6.3.3, and if we have ST2 (µ∆
t ; r) ≤ φ(r), for some

modulus of continuity φ(r) uniformly in ∆, then µ∆
t is compact in L1

t (P). The quantity r 7→ ST2 (µ∆
t ; r)
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is referred to as the (time-integrated) structure function of µ∆
t . For simplicity, we will state the following

results in the periodic setting with domain D = Td. Numerical evidence for the uniform boundedness

of these structure functions for the statistical forward problem has been presented for a variety of initial

probability measures µ supported on rough initial data of the two-dimensional incompressible Euler

equations in [LMPP21b, LMPP21a], and in the context of hyperbolic conservation laws in [FLMW20].

We formulate this observation motivated by the numerical experiments in [FLMW20, LMPP21b,

LMPP21a] abstractly as the following assumption:

Assumption 6.3.14. The prior µprior has finite second moments,

ˆ
L2
x

‖u‖2L2
x
dµprior(u) <∞,

and there exists a modulus of continuity φ(r), such that

ST2 (S ∆
t,#µprior; r) ≤ φ(r), ∀r > 0, t ∈ [0, T ], (6.3.24)

uniformly for all ∆ > 0. Here S ∆
t,#µprior denotes the push-forward measure of the prior µprior by the

discretized solution operator S ∆
t .

Remark 6.3.15. Let µ = µprior ∈ P(L2
x) be a probability measure with finite second moments. We note

that under our standing Assumption 6.3.3 on the uniform boundedness of the S ∆
t , and if S ∆

t converges

to St in L1([0, T ];L1(µ)), then Assumption 6.3.14 is automatically satisfied. Indeed, for any Φ ∈ Lip(L2
x)

with ‖Φ‖Lip ≤ 1, we have

ˆ
L2
x

Φ(u)
[
d
(
S ∆
t,#µ

)
− d (St,#µ)

]
=

ˆ
L2
x

[
Φ(S ∆

t (u))− Φ(St(u))
]
dµ(u)

≤
ˆ
L2
x

‖S ∆
t (u)−St(u)‖L2

x
dµ(u).

Taking the supremum over all such Φ and integrating over [0, T ], we obtain

ˆ T

0

W1

(
S ∆
t,#µ,St,#µ

)
dt ≤

ˆ
L2
x

ˆ T

0

‖S ∆
t (u)−St(u)‖L2

x
dt dµ(u).

Thus, the assumption that S ∆
t (u)→ St(u) in L1([0, T ];L1(µ)) implies that

ˆ T

0

W1(S ∆
t,#µ,St,#µ) dt→ 0, (∆→ 0),

i.e., that S ∆
t,#µ→ St,#µ in L1

t (P) = L1([0, T ];P(L2
x)). In particular, S ∆

t,#µ is compact in L1
t (P), from

which it follows (cp. [LMW21, Prop. A.2]) that there exists a modulus of continuity φ(r), such that

ST2 (S ∆
t,#µ; r) ≤ φ(r).

We also note that if there exists a set A ⊂ L2
x, such that µ(A) = 1, and S ∆

t (u)→ St(u) point-wise

for all u ∈ A, and almost all t ∈ [0, T ], then S ∆
t (u) → St(u) in L1([0, T ];L1(µ)). Indeed, this follows

from the point-wise bound

‖S ∆
t (u)−St(u)‖L2

x
≤ ‖S ∆

t (u)‖L2
x

+ ‖St(u)‖L2
x
≤ 2‖u‖L2

x
,

the fact that
´
‖u‖L2

x
dµ(u) <∞, and the dominated convergence theorem.



136 CHAPTER 6. BAYESIAN INVERSION FOR FLUID FLOWS

Conditional on Assumption 6.3.14, we can prove a compactness result for the filtering problem:

Lemma 6.3.16. Let ν∆,y
t be the solution of the filtering problem with prior µprior ∈ P2(L2

x), such that

‖u‖L2(µprior) < ∞, and measurements y = (y1, . . . , yN ). If assumption 6.3.14 holds, then ν∆,y
t is a

compact sequence in L1
t (P), as ∆→ 0.

The proof of this lemma is based on proving a uniform upper bound on the structure function

ST2 (ν∆,y
t ; r) ≤ CST2 (S ∆

t,#µprior; r) ≤ φ(r). For the details of the argument, we refer to [LMW21, Lemma

4.6]. Combining the uniform stability result, Theorem 6.3.13 with the point-wise compactness result,

Lemma 6.3.16, we can formulate the following theorem:

Theorem 6.3.17. Fix a prior µprior ∈ P1(L2
x), such that ‖u‖L2(µprior) < ∞. Let 0 = t0 < t1 < · · · <

tN = T be a strictly increasing sequence of times for fixed N ∈ N. Let y = (y1, y2, . . . , yN ) ∈ Rd×N be

a sequence of measurements. Let ν∆,y
t , j = 0, . . . , N , be the solution of the associated filtering problem.

If assumption 6.3.14 holds, then the sequence ν∆,y
t is pre-compact in Cloc(Rd×N ;L1

t (P)), as ∆→ 0. In

fact, there exists a subsequence ∆k → 0, and µ∗,yt with

y 7→ ν∗,yt ∈ Liploc

(
RN×d;L1

t (P)
)
,

such that

dT

(
ν∆k,y
t , ν∗,yt

)
=

ˆ T

0

W1

(
ν∆k,y
t , ν∗,yt

)
dt→ 0,

converges locally uniformly in y.

Proof. By Theorem 6.3.13, the mapping

Rd×N 3 y 7→ ν∆,y
t ∈ L1

t (P),

is uniformly bounded on any compact subset K ⊂ Rd×N and uniformly equicontinuous on K. By Lemma

6.3.16, the sets {
ν∆,y
t

∣∣∣∆ > 0
}
⊂ L1

t (P),

are pre-compact for any fixed y ∈ Rd×N (pointwise compactness). By the Arzelá-Ascoli Theorem A.2.1,

the claimed compactness result follows.

Remark 6.3.18. In practice, a very popular choice of priors are Gaussian priors µprior ∼ N (m,Γ) on

function spaces, i.e. priors µprior such that each finite-dimensional projection is Gaussian. We point out

in passing that Theorems 6.2.9, 6.2.12, 6.3.13 and 6.3.17 on the stability and compactness properties of

approximate posteriors apply in particular, when the prior is Gaussian.

6.3.4 Consistency with the canonical solution

We finally discuss the consistency of the above convergence result for the approximate filtering problems

based on the discretized solution operator S ∆
t , and the limiting filtering problem with solution operator

St. More precisely, we show that if S ∆
t (u) → St(u) converges in a suitable sense, then ν∆,y

t → νyt in

L1
t (P), where νyt denotes the solution of the limiting filtering problem.

Theorem 6.3.19. Assume that µprior ∈ P1(L2
x) is such that ‖u‖L2(µprior) < ∞. Then there exists a

constant C > 0, independent of ∆, such that
ˆ T

0

W1

(
ν∆,y
t , νyt

)
dt ≤ C

ˆ T

0

‖S ∆
t (u)−St(u)‖L2(µprior) dt.

In particular, if S ∆
t (u)→ St(u) in L1([0, T ];L2(µprior)), then ν∆,y

t → νyt in L1
t (P).
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Proof. Fix t ∈ [0, T ] and j ∈ {0. . . . , N − 1}, such that t ∈ [tj , tj+1]. Then, by the definition of ν∆,y
t , we

have

ν∆,y
t = ν

∆,Yj
t = S ∆

t,#µ
∆,Yj ,

where the last equality follows form (6.3.17). Given Φ ∈ Lip, with ‖Φ‖Lip ≤ 1 and Φ(0) = 0, we findˆ
L2
x

Φ(u)
[
dν∆,y
t (u)− dνyt (u)

]
=

ˆ
L2
x

Φ(u)
[
S ∆
t,#dµ

∆,Yj (u)−St,#dµ
Yj (u)

]
=

ˆ
L2
x

Φ(u)
[
S ∆
t,#dµ

∆,Yj (u)−S ∆
t,#dµ

Yj (u)
]

+

ˆ
L2
x

Φ(u)
[
S ∆
t,#dµ

Yj (u)−St,#dµ
Yj (u)

]
=: (I) + (II).

We can estimate the two last terms individually as follows: For the first term, we obtain

(I) =

ˆ
L2
x

Φ(u)
[
S ∆
t,#dµ

∆,Yj (u)−S ∆
t,#dµ

Yj (u)
]

=

ˆ
L2
x

Φ(S ∆
t (u))

[
dµ∆,Yj

dµprior
− dµYj

dµprior

]
dµprior(u)

≤ C
ˆ
L2
x

‖u‖L2
x

∣∣∣∣dµ∆,Yj

dµprior
− dµYj

dµprior

∣∣∣∣ dµprior(u)

≤ C‖u‖L2(µprior)

∥∥∥∥dµ∆,Yj

dµprior
− dµYj

dµprior

∥∥∥∥
L2(µprior)

.

The last term can be estimated using Lemma 6.2.8, recalling that µ∆,Yj is defined as the posterior with

prior µprior and given the measurements (L∆
1 , . . . ,L∆

j ) of the form (6.3.6). Lemma 6.2.8 therefore yields∥∥∥∥dµ∆,Yj

dµprior
− dµYj

dµprior

∥∥∥∥
L2(µprior)

≤ C

(
j∑
`=1

‖L∆
` (u)− L`(u)‖2L2(µprior)

)1/2

,

for some constant C > 0 depending only on the prior µprior; here, we have used the fact that Yj is fixed,

and that ‖L∆
` (u)‖L2(µprior), ‖L`(u)‖L2(µprior) ≤ C(1 + ‖u‖L2(µprior)) < ∞ are bounded independently of

∆ > 0, which allows us to bound the additional exponential factor in Lemma 6.2.8 uniformly in ∆.

Continuing, we note that the observables are Lipschitz continuous by assumption; Indeed, by (6.3.7), we

have

‖L∆
` (u)− L`(u)‖L2(µprior) ≤ C

ˆ t`

t`−1

‖S ∆
t (u)−St(u)‖L2(µprior) dt.

It follows that

(I) ≤ C

 j∑
`=1

[ˆ t`

t`−1

∥∥S ∆
t (u)−St(u)

∥∥
L2(µprior)

dt

]2
1/2

.

Denoting F (t, `) := 1[t`−1,t`)(t)‖S ∆
t (u)−St(u)‖L2(µprior), we can estimate the last term as follows, using

Minkowski’s integral inequality: j∑
`=1

[ˆ T

0

F (t, `) dt

]2
1/2

≤
ˆ T

0

(
j∑
`=1

|F (t, `)|2
)1/2

dt.
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Finally, recalling that all F (t, `), ` = 1, . . . , j, have disjoint supports in t, we conclude that

(I) ≤ C
ˆ T

0

(
j∑
`=1

|F (t, `)|2
)1/2

dt = C

j∑
`=1

ˆ t`

t`−1

|F (t, `)| dt

≤ C
ˆ T

0

‖S ∆
t (u)−St(u)‖L2(µprior) dt.

To estimate the second term, we note thatˆ
L2
x

Φ(u)
[
S ∆
t,#dµ

Yj (u)−St,#dµ
Yj (u)

]
=

ˆ
L2
x

[
Φ(S ∆

t (u))− Φ(St(u))
]
dµYj (u)

≤
ˆ
L2
x

∥∥S ∆
t (u)−St(u)

∥∥
L2
x
dµYj (u)

≤ C
ˆ
L2
x

∥∥S ∆
t (u)−St(u)

∥∥
L2
x
dµprior(u)

≤ C
∥∥S ∆

t (u)−St(u)
∥∥
L2(µprior)

.

Thus, employing the above estimates for (I) and (II), we conclude that for any Φ ∈ Lip, ‖Φ‖Lip ≤ 1,

and for any t ∈ [0, T ], we haveˆ
L2
x

Φ(u)
[
dν∆,y
t (u)− dνyt (u)

]
≤ C

∥∥S ∆
t (u)−St(u)

∥∥
L2(µprior)

+ C

ˆ T

0

∥∥S ∆
t (u)−St(u)

∥∥
L2(µprior)

dt.

Taking the supremum over all such Φ on the left, and integrating over t ∈ [0, T ], it follows thatˆ T

0

W1

(
ν∆,y
t , dνyt

)
dt ≤ C

ˆ T

0

∥∥S ∆
t (u)−St(u)

∥∥
L2(µprior)

dt,

where C > 0 is independent of ∆.

6.4 Applications

In the present section, we discuss several concrete applications of the abstract results obtained in the

previous sections.

6.4.1 Incompressible Euler

The incompressible Euler equations model the motion of an ideal inviscid fluid, and are given by the

following system of PDEs for the fluid velocity field u = u(x, t):{
∂tu+ div (u⊗ u) +∇p = 0,

div(u) = 0, u( · , 0) = u.
(6.4.1)

Here, p = p(x, t) is the scalar pressure, which can be determined from u(x, t) via solution of the elliptic

equation, −∆p = div (div (u⊗ u)).

In the following, we will focus on the periodic case with domain D = Td, and dimension d ∈ {2, 3}.
Physically meaningful solutions of (6.4.1) are required to satisfy an energy admissibility constraint of

the form ‖u(t)‖L2
x
≤ ‖u‖L2 for all t ∈ [0, T ], so that u(t) ∈ L2

x(Td;Rd) is uniformly bounded in time. In

particular, we consider solutions in the space u ∈ L∞t ([0, T ];L2
x).
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Spectral viscosity scheme

Popular numerical discretizations of the forward problem for the incompressible Euler equations on

periodic domains are spectral methods [DGO84, Cho68, KK00, Gho96]. We briefly recall the spectral

(hyper-)viscosity method, originally proposed by Tadmor [Tad89] in the context of scalar conservation

laws, and further detailed in chapter 1.4, in the context of the incompressible Euler equations.

Writing u∆(x, t) =
∑
|k|∞≤N û

∆
k (t)eik·x, where ∆ = 1/N , we consider the following discretization:{

∂tu
∆ + PN (u∆ · ∇u∆) = −εN |∇|2s(QN ∗ u∆),

div(u∆) = 0, u∆|t=0 = PNu.
(6.4.2)

Here PN is the truncated Leray projection operator onto divergence-free vector fields (1.4.3), introduced

in chapter 1.4, s ≥ 1 is the hyperviscosity parameter, and QN is a Fourier multiplier. The choice of

parameters mN →∞, εN → 0, and Fourier multiplier, and the intuition behind this scheme, are further

described in chapter 1.4.

A priori estimates and consistency for the SV scheme

Multiplying the evolution equation (6.4.2) by u∆ and integrating by parts, we recall the following energy

balance from chapter 1.4,

‖u∆(t)‖2L2
x

+ 2εN (2π)d
∑
|k|∞≤N

ˆ t

0

Q̂k|k|2σ|û∆
k (τ)|2 dτ ≤ ‖u‖2L2

x
.

In particular, for any admissible choice of the parameters of the SV scheme, we obtain the a priori energy

bound

‖u∆(t)‖L2
x
≤ ‖u‖L2

x
, ∀ t ∈ [0, T ]. (6.4.3)

We also recall [LM15, Lemma 3.2] that the SV scheme is consistent with the incompressible Euler

equations, in the sense that for any initial data u ∈ L2
x, the sequence u∆ converges (up to a subsequence)

in the sense of Young measures to an energy admissible measure-valued solution [LM15], as ∆ → 0. In

fact, we have the following simple Lemma:

Lemma 6.4.1. The approximate solution operator S ∆
t : L2

x → L2
x obtained from the SV scheme (6.4.2)

at grid scale ∆ = 1/N satisfies assumption 6.3.3.

Proof. Energy admissibility has already been derived preceding (6.4.3). The simple argument to show

temporal Lipschitz continuity with values in a sufficiently negative Sobolev space H−Lx has e.g. been

provided in [LM15, Remark 3.3].

It is known (cp. the weak-strong uniqueness Theorem 1.3.11) that if there exists a strong solution

u ∈ C([0, T ];L2
x) for given initial data u, such that

ˆ T

0

‖∇u(t)‖L∞x dt <∞, (6.4.4)

then this strong solution u is unique in the class of energy admissible measure-valued solutions. As a

consequence of this weak-strong uniqueness result and the convergence to measure-valued solutions of

the SV scheme 6.4.2, we conclude that u∆ → u converges e.g. in L2
t ([0, T ];L2

x) (in fact, Lpt ([0, T ];L2
x) for

all p <∞), if u is a strong (Lipschitz) solution. We collect this observation in the following proposition.
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Proposition 6.4.2. Let u ∈ L2
x be given initial data for the incompressible Euler equations. If there

exists a unique strong solution u = St(u) of (6.4.1) with initial data u and such that (6.4.4) holds, then

the approximate solution u∆ = S ∆
t (u) computed by the SV scheme converges to St(u). More precisely,

we have ˆ T

0

‖S ∆
t (u)−St(u)‖2L2

x
dt→ 0, as ∆→ 0.

In the two-dimensional case, d = 2, the vorticity is known to be advected by the flow, implying that,

at least formally, Lp-norms of ω = curl(u) can be controlled. The SV scheme ensures Lp-control on the

vorticity ω∆ = curl(u∆) for p = 2: In the two-dimensional case, we have the following enstrophy bound

(see e.g. [LM20, Proposition 4.2])

‖ω∆(t)‖L2
x
≤ ‖ω‖L2

x
, ∀ t ∈ [0, T ], (6.4.5)

where ω = curl(u) is the vorticity of the initial data. If the initial vorticity ω ∈ L∞x is bounded, it has

been shown by Yudovich [Yud63], that there exists a solution u = St(u) of the incompressible Euler

equations with uniformly bounded vorticity ‖curl(u)‖L∞x ≤ ‖ω‖L∞x . Furthermore, this solution St(u) is

unique in the class of solution with bounded vorticity [Yud63]. Later, it has been pointed out by Liu and

Xin [LX95], that the proof of uniqueness in [Yud63, Yud95] actually extends to provide a weak-strong

uniqueness result in a wider class: If v is another weak solution of the incompressible Euler equations

with vorticity bound ‖curl(v(t))‖Lpx ≤ C, for any p > 4/3, then v ≡ u is the unique Yudovich solution.2

As a consequence of this weak-strong uniqueness result and the enstrophy bound (6.4.5), we obtain

Proposition 6.4.3. If u is initial data for the two-dimensional incompressible Euler equations with

bounded vorticity, ‖ω‖L∞x < ∞, then the approximate solutions u∆ = S ∆
t (u) converge strongly in

L2
t ([0, T ];L2

x) to the unique Yudovich solution St(u), i.e.

ˆ T

0

‖S ∆
t (u)−St(u)‖L2

x
dt→ 0, as ∆→ 0.

A second consequence of the enstrophy bound (6.4.5) is a uniform estimate on the structure function:

Proposition 6.4.4. If u ∈ L2
x is initial data for the two-dimensional incompressible Euler equations

with bounded enstrophy, ‖ω‖L2
x
<∞ with ω = curl(u), then there exists a constant C > 0, such that for

any ∆ > 0, the structure function obeys the bound

S2(S ∆
t (u); r) ≤ Cr‖ω‖L2

x
, ∀ t ∈ [0, T ], r ≥ 0.

Proof. By definition, we have for any u ∈ H1
x:

S2(u; r)2 =

 
Br(0)

ˆ
D

|u(x+ h)− u(x)|2 dx dh =

 
Br(0)

‖u( · + h)− u( · )‖2L2
x
dh.

The estimate ‖u( · + h)− u( · )‖L2
x
≤ C‖∇u‖L2

x
|h| is classical. Furthermore, it follows from the incom-

pressibility of u that ‖∇u‖L2
x

= ‖curl(u)‖L2
x
. Hence,

S2(u; r)2 =

 
Br(0)

‖u( · + h)− u( · )‖2L2
x
dh ≤

 
Br(0)

C‖curl(u)‖2L2
x
|h|2 dh ≤ C‖curl(u)‖2L2

x
r2.

2In fact, the Yudovich-class weak-strong uniqueness result of [LX95] can be slightly extended to prove that Yudovich
solutions are unique in the class of weak solutions with a Lpx vorticity bound for any p > 1. Since this extension is not
necessary in the present case, we do not provide a detailed proof here.
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Setting u = S ∆
t (u), we thus find

S2(S ∆
t (u); r) ≤ Cr‖curl(S ∆

t (u))‖L2
x
≤ Cr‖ω‖L2

x
,

where the last inequality follows from (6.4.5).

The well-posed case

Combining the general results for the Bayesian inverse and filtering problems in sections 6.2 and 6.3, and

the above convergence results for the spectral viscosity scheme, we can now prove:

Theorem 6.4.5. If µprior ∈ P(L2
x) is a prior, and if there exists M > 0, s > d/2 + 2, such that

µprior(B
s
M ) = 1, where

BsM :=
{
u ∈ L2

x ∩Hs
x

∣∣ ‖u‖Hsx ≤M} ⊂ L2
x,

then there exists a time interval [0, T ] with T = T (M, s) > 0, such that the BIP and filtering problems

for the incompressible Euler equations are well-posed on [0, T ]: Given measurements in the time-interval

[0, T ], there exists a unique solution µy for the BIP and νyt for the filtering problem. The posteriors µy

and νyt are W1-stable with respect to measurements, in the sense of (6.2.23) and (6.3.21), respectively.

Furthermore, the approximations µ∆,y and ν∆,y
t obtained by the numerical discretization with the SV

scheme converge to this solution as ∆→ 0, in the 1-Wasserstein norm W1.

Proof. We first observe that there exists a T > 0, such that the initial value problem for the incompressible

Euler equations is well-posed on [0, T ], for all initial data u ∈ BsM . In fact, by Sobolev embedding, there

exists T > 0 such that the quantity (6.4.4) is finite. In particular, by Proposition 6.4.2, S ∆
t (u)→ St(u)

converges to the unique solution for all initial data u ∈ BsM and t ∈ [0, T ]. From this point-wise

convergence and the following uniform bound on the measurements

|L∆(u)|Γ = |G(S ∆
t (u))|Γ ≤ C‖S ∆

t (u)‖2L2
x
≤ C‖u‖2L2

x
≤ CM2,

for all u ∈ BsM , it now follows from dominated convergence that

‖L∆(u)− L(u)‖L2(µprior) → 0, (∆→ 0).

In particular, by the consistency Theorem 6.2.14 for the BIP, it follows that the approximate posterior

of the BIP µ∆,y → µy converges wrt. to the 1-Wasserstein metric to the unique solution in the limit

∆ → 0. Furthermore, by Theorem 6.2.9, the posteriors µ∆,y are uniformly stable with respect to the

measurements y (cp. equation (6.2.23)).

We next discuss the filtering problem. By Lemma 6.4.1, the SV scheme satisfies Assumption 6.3.3.

Theorem 6.3.13 implies that the posteriors νyt are uniformly stable with respect to the measurements y.

Due to the pointwise convergence S ∆
t (u)→ St(u) for all u ∈ BsM and the uniform bound

‖S ∆
t (u)−St(u)‖L2

x
≤ 2M,

Lebesgue’s dominated convergence theorem implies that

lim
∆→0

ˆ T

0

‖S ∆
t (u)−St(u)‖L2(µprior) dt = 0.

The consistency Theorem 6.3.19 therefore shows that ν∆,y
t → νyt in L1(P).
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In the two-dimensional case, the above result can be improved:

Theorem 6.4.6. If µprior ∈ P(L2
x) is a prior for the two-dimensional incompressible Euler equations,

such that ˆ
‖curl(u)‖2L∞x dµprior(u) <∞,

then the BIP and filtering problems for the incompressible Euler equations are well-posed and the numer-

ical solutions converge as in the conclusion of Theorem 6.4.5 on [0, T ], for any T > 0.

Proof. The condition ˆ
‖curl(u)‖2L∞x dµprior(u) <∞,

implies that µprior is concentrated on Yudovich initial data. The strong convergence S ∆
t (u)→ St(u) to

the unique Yudovich solution for such initial data u has been shown in Proposition 6.4.3. The remainder

of the proof follows verbatim as in the proof of Theorem 6.4.5.

The ill-posed case

Beyond the short-time existence, uniqueness and stability results for the incompressible Euler equations

with smooth initial data there are currently no general a priori well-posedness results for the forward

problem in the three-dimensional case. In the two-dimensional case, existence results are known for

initial data with vorticity ω ∈ Lp, p ≥ 1, as well as for less regular initial data with a essential sign

restriction, of the form ω = ω0 + ω1, such that ω0 ∈ M+, ω0 ≥ 0 a bounded Radon measure and

ω1 ∈ L1 [Del91, VW93]. Uniqueness remains unknown for such rough flows beyond the class considered

by Yudovich, even if ω ∈ Lp, for p <∞.

Thus, the forward problem may be ill-posed for general initial data u ∈ L2
x for the incompressible Euler

equations, in both two and three dimensions. Despite this possible lack of stability and compactness for

the forward problem, the general results of Section 6.2 imply that the Bayesian inverse problem is stable

with respect to measurements and compact in the 1-Wasserstein norm for approximations obtained from

the SV scheme.

Theorem 6.4.7. If µprior ∈ P1(L2
x) is any prior for the incompressible Euler equations in either two or

three dimensions, then the posteriors µ∆,y of the BIP (6.2.3) for the incompressible Euler equations are

uniformly stable in y, in the sense of (6.2.23), for any ∆ > 0. Furthermore, the posteriors µ∆,y form a

compact sequence in P1, as ∆→ 0.

For the filtering problem, we have the following result:

Theorem 6.4.8. If µprior ∈ P1(L2
x) is a prior for the incompressible Euler equations for d = 2 or d = 3,

then the approximate solutions ν∆,y
t of the filtering problem computed by the SV scheme are uniformly

stable with respect to the measurements y, in the sense of (6.3.21), for any ∆ > 0. In addition, if either

(a) there exists a modulus of continuity such that

ST2 (S ∆
t,#µprior; r) ≤ φ(r), ∀∆ > 0, r ≥ 0,

or

(b) d = 2 and µprior satisfies ˆ
‖curl(u)‖2L2

x
dµprior(u) <∞,
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then the posteriors ν∆,y
t form a compact sequence in L1

t (P).

Remark 6.4.9. Numerical evidence that assumption (a) of Theorem 6.4.8 is verified for a large range

of priors supported on rough initial data, at least in the two-dimensional case, has been presented in

[LMPP21b, LMPP21a].

Remark 6.4.10. We emphasize that the proof of the uniform local Lipschitz-stability

dT

(
ν∆,y
t , ν∆,y′

t

)
≤ C|y − y′|Γ,

has been rigorously established from a priori estimates, and is not conditional on any assumptions on

the structure functions. We believe this stability result to be of particular importance to practitioners in

data assimilation.

6.4.2 Incompressible Navier-Stokes

We consider the incompressible Navier-Stokes equations (cp. (1.2.3) in chapter 1), with viscosity ν > 0.

For simplicity we shall again focus on the case of periodic boundary conditions. It is well-known that

in the two-dimensional case, the Navier-Stokes are well-posed on L2
x, for any fixed value of the viscosity

ν > 0 (cp. Theorem 1.3.13). In the three-dimensional case, it has been shown in the celebrated work

of Leray [Ler34] that energy admissible solutions exist, but their uniqueness remains an open challenge.

Again, we consider the numerical approximation by spectral methods, analogous to (6.4.2), leading now

to the discretized system {
∂tu

∆ + PN (u∆ · ∇u∆) = ν∆u∆,

div(u∆) = 0, u∆|t=0 = PNu.
(6.4.6)

Multiplying the first equation of (6.4.6) by u∆ and integrating over space and the time interval [0, t], we

find the a priori energy estimate

1

2
‖u∆(t)‖2L2

x
+ ν

ˆ t

0

‖∇u∆‖2L2
x
dt =

1

2
‖u∆(0)‖2L2

x
≤ 1

2
‖u‖2L2

x
. (6.4.7)

Furthermore, from (6.4.6), we have

∂tu
∆ = −PNdiv

(
u∆ ⊗ u∆

)
+ ν∆u∆.

Due to the uniform L2-bound ‖u∆‖L2
x
≤ ‖u‖L2

x
, it is not hard to see that the terms on the right hand

side are uniformly bounded in H−Lx for sufficiently large L > 0, with an upper bound depending only

on ‖u‖L2
x

(cp. the corresponding derivation for the SV scheme on page 19). Thus, it follows that

u∆(t) = S ∆
t (u) ∈ Lip([0, T ];H−Lx ) for some L > 0. In particular, we conclude that assumption 6.3.3 is

satisfied for the spectral numerical approximants of the Navier-Stokes equations. Owing to the energy

estimate (6.4.7), and in particular, the a priori estimate
´ T

0
‖∇u‖2L2 dt ≤ ν−1‖u‖2L2

x
, one can also show

(cp. [LMW21, Lemma 5.12]):

Lemma 6.4.11. Let µprior ∈ P(L2
x) be a prior for the incompressible Navier-Stokes equations (7.3.5),

such that
´
L2
x
‖u‖2L2

x
dµprior(u) < ∞. Let S ∆

t : L2
x → L2

x denote the approximate solution operator

obtained from the spectral scheme (6.4.6). Then we have the following structure function estimate:

ST2 (S ∆
t,#µprior; r) ≤

r√
2ν

(ˆ
L2
x

‖u‖2L2
x
dµprior(u)

)1/2

.

In particular, ST2 (S ∆
t,#µprior; r) ≤ Cr is uniformly bounded by a modulus of continuity as ∆→ 0.
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As a result of these a priori estimates for the incompressible Navier-Stokes equations and the general

compactness results for Bayesian inverse problems derived in the present work, we can now state:

Theorem 6.4.12. If µprior ∈ P1(L2
x) is any prior for the incompressible Navier-Stokes equations with

viscosity ν > 0, then the posteriors µ∆,y of the BIP (6.2.3) are uniformly stable in y, in the sense of

(6.2.23), for any ∆ > 0. Furthermore, the posteriors µ∆,y form a compact sequence in P1 and any limit

point µ∗,y is absolutely continuous with respect to the prior µprior.

For the filtering problem, we obtain the following result:

Theorem 6.4.13. If µprior ∈ P1(L2
x) is a prior for the incompressible Navier-Stokes equations (7.3.5)

with fixed viscosity ν > 0 (for d = 2 or d = 3), and if µprior has finite second moment

ˆ
‖u‖2L2

x
dµprior(u) <∞,

then the approximate solutions ν∆,y
t of the filtering problem for the Navier-Stokes equations computed

by the spectral scheme (6.4.6) are uniformly stable with respect to the measurements y, in the sense of

(6.3.21) and the posteriors ν∆,y
t form a compact sequence in L1

t (P1).

6.5 Discussion

Inverse problems are usually considered for models with a well-posed forward problem, for which exist-

ence, uniqueness and stability can be shown. However, ill-posed forward PDEs arise in a wide variety

of contexts of central importance to physics and engineering, including turbulent dynamics encountered

in fluid dynamics, oceanography and meteorology. For many of the PDEs encountered in this context,

proofs of existence and uniqueness, or indeed stability, of the forward problem are still unresolved issues.

Intimately related to these many outstanding problems in analysis are open questions in the numerical

approximation of solutions for such PDEs. Indeed, from the numerical point of view, many models in

fluid dynamics are known to exhibit a very strong sensitivity to perturbations in the initial data, and thus

cannot be stably approximated, at least in a deterministic sense. As shown in a number of numerical ex-

periments [FKMT17, FLMW20, GGL+01, LM15, Leo18, LMPP21b], as well as in chapters 2 and 3 of the

present thesis, the high sensitivity and the formation of ever smaller scales due to turbulence precludes

the convergence of state-of-the-art numerical schemes to a limiting solution upon mesh refinement. The

observed lack of convergence of numerical approximants could be termed as a practical ill-posedness, i.e.

the convergence of numerical approximations is not observed (at presently attainable mesh sizes).

Due to the importance of inverse problems in engineering and physics, and confronted with the

practical ill-posedness of the forward problem for many models, it is then natural to ask, whether the

numerical approximation of the inverse or data assimilation problem suffers from a similar ill-posedness.

Of particular relevance in this context are the general stability properties with respect to perturbations in

the measurements and the compactness and convergence properties of numerical approximations. In the

present work, we have investigated these questions from the point of view of Bayesian inverse problems.

While several general results for abstract Bayesian inverse problems were discussed in Section 6.2, a

particular focus and the main motivation for the present work stem from the data assimilation (filtering)

problem in the context of fluid mechanics, presented in Section 6.3.

For the numerical approximation of the abstract Bayesian inverse problem in the limit of infinite

mesh refinement ∆ → 0, the main results of this work concern the approximate posteriors µ∆,y at grid

size ∆ > 0 with finite-dimensional measurement y. We prove:
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• (stability) uniform in ∆ > 0 stability of µ∆,y with respect to the measurements y in the 1-

Wasserstein norm,

• (compactness) compactness of the approximate solution sequence {µ∆,y}∆>0 in the space of prob-

ability measures P1(X) with respect to the Wasserstein norm,

• (consistency) convergence in P1(X) to the canonical posterior µ∗,y, provided that the observables

converge in an average L2-sense.

All of these results are obtained under only mild boundedness assumptions on the approximate ob-

servables and on the measurement noise (e.g. satisfied by Gaussian noise). The general compactness

properties allow us to define a set of candidate solutions to the BIP, generated by the numerical scheme.

As this set can be shown to be non-empty a priori, this potentially opens up the possibility of identifying

the correct solution among these candidates by a suitable selection criterion (cf. Remark 6.2.13).

Building upon these general considerations for the abstract BIP, a derivation of similar stability,

compactness and consistency properties for the filtering problem has been given in Section 6.3. In this

case, the approximate posterior measures t 7→ µ∆,y
t are time-dependent, and are updated at discrete

times to incorporate information obtained from measurements. In contrast to the abstract BIP, the

filtering problem as formulated in Section 6.3 involves a recursive process, alternating between evolving

the current posterior to the next discrete time step, where it serves as a prior for the new measurements,

and using the new measurements to obtain the next posterior. In a suitable space of time-parametrized

probability measures, we show that a similar uniform stability result with respect to the measurements as

for the abstract BIP also holds for this formulation of the filtering problem. Perhaps astonishingly, even

though perturbations to the measurement y perturb µ∆,y
ti at each time-step and the filtering problem

involves a successive application of a push-forward S ∆
t,#µ

∆,y
ti by the discretized solution operator S ∆

t ,

our stability result holds under a mere boundedness assumption on S ∆
t , and does not require any uniform

continuity of the mapping µ 7→ S ∆
t,#µ. In practice, the boundedness assumption usually corresponds

to a discrete energy or entropy inequality, which is satisfied by suitably designed numerical schemes.

In addition to this general stability result, we prove compactness of the approximate solution sequence

µ∆,y
t for the filtering problem, under the assumption of a uniform bound on the second-order structure

function. The structure function measures two point-correlations in the flow, and is a very natural

quantity in the study of turbulence. If the solution of the forward problem possesses unique solutions

almost surely with respect to the prior, then we prove that the numerically obtained solutions of the

filtering problem (obtained by a consistent numerical scheme) converge to expected canonical solution

of the filtering problem.

The applicability of the abstract results of sections 6.2 and 6.3 to the numerical approximation of

Bayesian inverse problems encountered in practice is discussed in Section 6.4. We consider two model

problems: the incompressible Euler equations (in 2d and 3d) and the incompressible Navier-Stokes

equations (in 3d). For the incompressible Euler equations, we consider the numerical approximation by

spectral schemes and verify the sufficient conditions for stability, compactness and consistency by a priori

analysis for a class of priors in 2d. In 3d, the general stability and consistency properties continue to hold

by the same a priori considerations; the compactness property holds under the additional assumption of

a physically motivated bound on the structure functions. For the incompressible Navier-Stokes equations

(in 3d), we prove the conditions for stability and compactness by a priori analysis, for numerical solutions

obtained by spectral schemes. We point out that numerical evidence that the required bound on the

structure function holds, has been demonstrated by numerical experiments for a number initial priors in

[FLMW20, LMPP21b, LMPP21a], and is further motivated by physical considerations.

The (partial) well-posedness results in the context of Bayesian inversion presented in this work, even

for models for which the forward problem may be ill-posed, have been derived under mild assumptions
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and are applicable to a wide range of models encountered in practice. The stability results should be of

particular significance to practitioners, as they demonstrate that under mild conditions on the numerical

scheme, the approximate solutions of the BIP and data assimilation problems are stable with respect to

perturbations of the measurements, independently of the numerical resolution. The general compactness

results presented in this work could be of importance in determining suitable selection criteria to single

out a “canonical” posterior amongst the set of candidate solutions.



Chapter 7

Surrogate models and operator

learning for fluid flows

In the previous chapter, we have discussed a Bayesian approach to state estimation, and have shown

that this approach exhibits remarkable robustness and stability properties, even under very minimal

assumptions on the underlying forward model. In the time-dependent setting, this approach combines

measurement data with prior (domain) knowledge specified via the prior µprior ∈ P(L2
x), to provide

an estimate of the current state of the physical system at time t in the form of a probability measure

νyt ∈ P(L2
x) (the filtering distribution). In practice, computing relevant statistical quantities from this

probability measure νyt is a difficult task, requiring many (costly) forward solves of the underlying model

when employing Markov chain Monte-Carlo methods. In large-scale fluid dynamics applications such as

weather prediction and climate science, the high computational cost often rules out a principled Bayesian

approach to state estimation, at present. To overcome these present limitations, a new approach to

many query problems, employing neural network based surrogate models has recently been proposed by

a number of authors [LJK19, BHKS21, LKA+20, LKA+21]. In this approach, suitable neural network ar-

chitectures have been proposed to approximate operators, such as the solution operator of a PDE. In this

context, the task of approximating an operator is referred to as “operator learning”. Numerical experi-

ments have shown empirically that the resulting “neural operator networks” can be successfully trained

to approximate operators arising in a variety of contexts, including Darcy flow [BHKS21], the Navier-

Stokes equations [LKA+21], high-speed boundary layers [DLLM+21], electro-convection [CWL+21] and

hypersonics applications [MLM+20]. Neural operator networks are thus promising candidates to com-

plement more traditional numerical methods in the form of surrogate models in many-query problems

such as Bayesian data assimilation. The problem is here split into an (expensive) offline phase, where a

conventional numerical solver is used to generate data and the neural operator is trained, and a (cheap)

online phase, where the trained neural operator is used for the sampling of the posterior. First numerical

results based on such a surrogate model approach have been reported in [LKA+21], considering the 2D

Navier-Stokes equations as a model problem. The results based on the surrogate were shown to have

comparable accuracy to results obtained with a spectral solver. However, the online phase of the com-

putation via the surrogate model was orders of magnitude (x500) faster than the spectral solver. In fact,

even including the offline training phase, the surrogate approach was found to significantly speed up the

computation. In the present chapter, we will discuss first results on the theoretical foundations of the

surrogate model approach proposed in [LKA+21]. This chapter is based on the recent work [KLM21].

147
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7.1 Introduction

Deep neural networks have been extremely successful in diverse fields of science and engineering including

image classification, speech recognition, natural language understanding, autonomous systems, game in-

telligence and protein folding, [LBH15] and references therein. Moreover, deep neural networks are being

increasingly used successfully in scientific computing, particular in simulating physical and engineering

systems modeled by partial differential equations (PDEs). Examples include the use of physics informed

neural networks [RK18, RPK19, MM20a, MM20b] for solving forward and inverse problems for PDEs

and supervised learning algorithms for high-dimensional parabolic PDEs [EHJ17] and parametric elliptic

[KPS19, SZ19] and hyperbolic [LMR20, LMCR20] PDEs, among others.

The success of deep neural networks at a wide variety of learning tasks can be attributed to a

confluence of several factors such as the availability of massive labeled data sets, the design of novel

architectures and training algorithms as well as the abundance of high-end computing platforms such

as GPUs [GBC16]. Still, it is fair to surmise that this edifice of success partly rests on the foundation

of universal approximation [Bar93, Cyb89, HSW89], i.e., the ability of neural networks to approximate

any continuous (even measurable) function, mapping a finite-dimensional input space into another finite-

dimensional output space, to arbitrary accuracy.

However, many interesting learning tasks entail learning operators i.e., mappings between an infinite-

dimensional input Banach space and (possibly) an infinite-dimensional output space. A prototypical

example in scientific computing is provided by nonlinear operators that map the initial datum into the

(time series of) solution of a nonlinear time-dependent PDE such as the Navier-Stokes equations of

fluid dynamics. A priori, it is unclear if neural networks can be successfully employed for learning such

operators from data, given that their universality only pertains to finite-dimensional functions.

The first successful use of neural networks in the context of such operator learning was provided

in [CC95], where the authors proposed a novel neural network based learning architecture, which they

termed as operator networks and proved that these operator networks possess a surprising universal

approximation property for infinite-dimensional nonlinear operators. Operator networks are based on

two different neural networks, a branch net and a trunk net, which are trained concurrently to learn

from data. More recently, the authors of [LJK19] have proposed using deep, instead of shallow, neural

networks in both the trunk and branch net and have christened the resulting architecture as a DeepOnet.

In a recent article [LMK21], the universal approximation property of DeepOnets was extended, making

it completely analogous to universal approximation results for finite-dimensional functions by neural

networks. The authors of [LMK21] were also able to show that DeepOnets can break the curse of

dimensionality for a large variety of PDE learning tasks. Hence, in spite of the underlying infinite-

dimensional setting, DeepOnets are capable to approximating a large variety of nonlinear operators

efficiently. This is further validated by the success of DeepOnets in many interesting examples in scientific

computing [MLM+20, CWL+21, LLL+21] and references therein.

An alternative operator learning framework is provided by the concept of neural operators, first

proposed in [AAB+20]. Just as canonical artificial neural networks are a concatenated composition of

multiple hidden layers, with each hidden layer composing an affine function with a scalar nonlinear activ-

ation function, neural operators also compose multiple hidden layers, with each hidden layer composing

an affine operator with a local, scalar nonlinear activation operator. The infinite-dimensional setup is re-

flected in the fact that the affine operator can be significantly more general than in the finite-dimensional

case, where it is represented by a weight matrix and bias vector. On the other hand, for neural operators,

one can even use non-local linear operators, such as those defined in terms of an integral kernel. The

evaluation of such integral kernels can be performed either with graph kernel networks [AAB+20] or with

multipole expansions [LKA+20].
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More recently, the authors of [LKA+21] have proposed using convolution-based integral kernels within

neural operators. Such kernels can be efficiently evaluated in the Fourier space, leading to the resulting

neural operators being termed as Fourier Neural Operators (FNOs). In [LKA+21], the authors discuss

the advantages, in terms of computational efficiency, of FNOs over the other neural operators mentioned

above. Moreover, they present several convincing numerical experiments to demonstrate that FNOs can

very efficiently approximate a variety of operators that arise in simulating PDEs.

However, the theoretical basis for neural operators has not yet been properly investigated. In par-

ticular, it is unclear if neural operators such as FNOs are universal i.e., if they can approximate a large

class of nonlinear infinite-dimensional operators. Moreover in this infinite-dimensional setting, universal-

ity does not suffice to indicate computational viability or efficiency as the size of the underlying neural

networks might grow exponentially with respect to increasing accuracy, see discussion in [LMK21] on this

issue. Hence in addition to universality, it is natural to ask if neural operators can efficiently approximate

a large class of operators, such as those arising in the simulation of parametric PDEs.

The investigation of these questions is the main rationale for the work summarized in the current

chapter. We focus our attention here on FNOs as they appear to be the most promising of the neural

operator based operator learning frameworks. The main result of this work is to show that FNOs are

universal in possessing the ability to approximate a very large class of continuous nonlinear operators.

This result highlights the potential of FNOs in operator learning.

As argued before, a universality result is only a first step and by itself, does not constitute evidence

for efficient approximation by FNOs. In fact, we show that in the worst case, the network size might grow

exponentially with respect to accuracy, when approximating general operators. Hence, there is a need

to derive explicit bounds on the network size in terms of the desired error tolerance. In this context, we

consider a concrete computational realization of FNOs, that we term as pseudospectral FNO or Ψ-FNO

(for short). In addition to proving universality for Ψ-FNOs, we will suggest a mechanism through which

Ψ-FNOs can approximate operators arising from PDEs, efficiently. We also derive explicit error bounds

for this architecture in approximating PDEs: the incompressible Navier-Stokes and Euler equations

of fluid dynamics. In particular, we prove that the size of Ψ-FNOs in approximating the underlying

operators for both these PDEs, under suitable regularity hypotheses, only scales polynomially (log-

linearly) in the error. A similar analysis for another PDE, the stationary Darcy flow equations can be

found in [KLM21]. Thus, FNOs can approximate these operators efficiently and these results validate

some of the computational findings of [LKA+21]. Together, these results constitute the first theoretical

justification for the use of FNOs.

The rest of this chapter is organized as follows: in section 7.2, we introduce FNOs and state the

universality result. We also introduce Ψ-FNOs in this section. In section 7.3, we show that Ψ-FNOs can

efficiently approximate operators, stemming from the incompressible Navier-Stokes and Euler equations.

In section 7.4, we will provide a rationale for the use of (Ψ-)FNOs in the approximation of statistical

solutions. Since the contents of the present chapter concern neural networks and hence are somewhat

distinct from the remainder of this thesis, we refer the reader to Appendix A, where the notation employed

in the current chapter is reviewed in detail, and the list of mathematical symbols on page 175, for a handy

reference.

7.2 Approximation by Fourier Neural Operators

In this section, we present Fourier Neural Operators (FNOs) and discuss their approximation of a class

of nonlinear operators specified below:
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7.2.1 Setting for Operator Learning

Setting 7.2.1. We fix a spatial dimension d ∈ N, and denote by D ⊂ Rd a domain in Rd. We

consider the approximation of operators G : A(D;Rda) → U(D;Rdu), a 7→ u := G(a), where the input

a ∈ A(D;Rda), da ∈ N, is a function a : D → Rda with da components, and the output u ∈ U(D;Rdu),

du ∈ N, is a function u : D → Rdu with du components. Here A(D;Rda) and U(D;Rdu) are Banach

spaces (or suitable subsets of Banach spaces). Typical examples of A and U include the space of continuous

functions C(D;Rdu), or Sobolev spaces Hs(D;Rdu) of order s ≥ 0 (see Appendix A for definitions.).

Concrete examples for operators G, involving solution operators of PDEs, are given in section 7.3.

7.2.2 Neural Operators

With the above setting 7.2.1 and as defined in [AAB+20], a neural operator N : A(D;Rda)→ U(D;Rdu),

a 7→ N (a) is a mapping of the form

N (a) = Q ◦ LL ◦ LL−1 ◦ · · · ◦ L1 ◦ R(a),

for a given depth L ∈ N, where R : A(D;Rda) → U(D;Rdv ), dv ≥ du, is a lifting operator (acting

locally), of the form

R(a)(x) = Ra(x), R ∈ Rdv×da , (7.2.1)

and Q : U(D;Rdv )→ U(D;Rdu) is a local projection operator, of the form

Q(v)(x) = Qv(x), Q ∈ Rdu×dv . (7.2.2)

Remark 7.2.2. In practice, it has been found that improved results can be obtained if the simple linear

lifting and projection operators R (7.2.1) and Q (7.2.2) are replaced instead by non-linear mappings of

the form

R̂(a)(x) = R̂(a(x), x), Q̂(v)(x) = Q̂(v(x), x),

where R̂ : Rda ×D → Rdv and Q̂ : Rdv ×D → Rdu are neural networks with activation function σ. Our

error estimates will rely on the (more restrictive) linear choice of lifting and projection operators, given

by (7.2.1), (7.2.2). The linear choice has the theoretical benefit of ensuring compositionality, i.e. that

a composition of neural operators can again be represented by a neural operator (cf. [KLM21, Lemma

D.4] ). Despite this technical distinction, we emphasize that all of our error and complexity estimates

continue to hold also for neural operators with non-linear lifting and projections, since linear operators

can always be approximated by non-linear ones (cp. [KLM21, Lemma C.1]). In fact, in the non-linear

case, our results imply that Q̂, R̂ can be chosen to be shallow networks.

In analogy with canonical finite-dimensional neural networks, the layers L1, . . . ,LL are non-linear

operator layers, L` : U(D;Rdv )→ U(D;Rdv ), v 7→ L`(v), which we assume to be of the form

L`(v)(x) = σ

(
W`v(x) + b`(x) +

(
K(a; θ`)v

)
(x)

)
, ∀x ∈ D.

Here, the weight matrix W` ∈ Rdv×dv and bias b`(x) ∈ U(D;Rdv ) define an affine pointwise mapping

W`v(x)+ b`(x). The richness of linear operators in the infinite-dimensional setting can partly be realized

by defining the following non-local linear operator,

K : A×Θ→ L
(
U(D;Rdv ),U(D;Rdv )

)
,
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that maps the input field a and a parameter θ ∈ Θ in the parameter-set Θ to a bounded linear operator

K(a, θ) : U(D;Rdv )→ U(D;Rdv ), and the non-linear activation function σ : R→ R is applied component-

wise. As proposed in [AAB+20], the linear operators K(a, θ) are integral operators of the form(
K(a; θ)v

)
(x) =

ˆ
D

κθ(x, y; a(x), a(y))v(y) dy, ∀x ∈ D. (7.2.3)

Here, the integral kernel κθ : R2(d+da) → Rdv×dv is a neural network parametrized by θ ∈ Θ. Specific

examples of the integral kernel (7.2.3) include those evaluated with a graph kernel network as in [AAB+20]

or with a multipole expansion [LKA+20].

7.2.3 Fourier Neural Operators

As defined in [LKA+21], Fourier Neural operators (FNOs) are special cases of general neural operators

(7.2.3), in which the kernel κθ(x, y; a(x), a(y)) is of the form κθ = κθ(x− y). In this case, (7.2.3) can be

written as a convolution (
K(θ)v

)
(x) =

ˆ
D

κθ(x− y)v(y) dy, ∀x ∈ D. (7.2.4)

For concreteness, we consider the periodic domain D = Td (which we identify with the standard torus

Td = [0, 2π]d), although non-periodic, rectangular domains D can also be handled in a straightforward

manner.

Given this periodic framework, the convolution operator in (7.2.4) can be computed using the Fourier

transform F and the inverse Fourier transform F−1 (see Appendix A (A.1.1) and (A.1.2) for notation

and definitions), resulting in the following equivalent representation of the kernel (7.2.3),

(K(θ)v)(x) = F−1
(
Pθ(k) · F(v)(k)

)
(x), ∀x ∈ Td. (7.2.5)

Here, Pθ(k) ∈ Cdv×dv is a full matrix indexed by k ∈ Zd, and is related to the integral kernel κθ(x) in

(7.2.4) via the Fourier transform, Pθ(k) = F(κθ)(k). Note that we must impose that Pθ(−k) = Pθ(k)†

coincides with the Hermitian transpose for all k ∈ Zd, to ensure that the image function (K(θ)v)(x) is a

real-valued function for real-valued v(x). Consequently, the form of Fourier neural operators (FNOs) for

the periodic domain Td is that of a mapping N : A(D;Rda)→ U(D;Rdu), of the form

N (a) := Q ◦ LL ◦ LL−1 ◦ · · · ◦ L1 ◦ R(a), (7.2.6)

where the lifting and projection operators R and Q are given by (7.2.1) and (7.2.2), respectively, and

where the non-linear layers L` are of the form

L`(v)(x) = σ

(
W`v(x) + b`(x) + F−1

(
P`(k) · F(v)(k)

)
(x)

)
. (7.2.7)

Here, W` ∈ Rdv×dv and b`(x) define a pointwise affine mapping (corresponding to weights and biases),

and P` : Zd → Cdv×dv defines the coefficients of a non-local, linear mapping via the Fourier transform.

Remark 7.2.3. The simplest example for a FNO, as defined by (7.2.6),(7.2.4) is as follows; let N̂ :

Rda → Rdu be a canonical finite-dimensional neural network with activation function σ. We can associate

to N̂ the mapping N : L2(Td;Rda)→ L2(Td;Rdu), given by a(x) 7→ N̂ (a(x)). We easily observe that N
is a FNO as we can write it in the form,

N̂ = Q̂ ◦ L̂L ◦ · · · ◦ L̂1 ◦ R̂,
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where R̂(y) = Ry with R ∈ Rdv×da , and each layer L̂` is of the form L̂`(y) = σ(W`y + b`) for some

W` ∈ Rdv×dv , b` ∈ Rdv , with Q̂ being an affine output layer of the form Q̂(y) = Qy+ q with Q ∈ Rdu×dv ,

q ∈ Rdu . Replacing the input y by a function v(x), these layers clearly are a special case of the FNO

lifting layer (7.2.1), the non-linear layers (7.2.7) (with P` ≡ 0 and constant bias b`(x) ≡ b`), and the

projection layer (7.2.2). Thus, any finite-dimensional neural network can be identified with a FNO as

defined above.

For the remainder of this work, we make the following

Assumption 7.2.4 (Activation function). Unless explicitly stated otherwise, the activation function

σ : R→ R in (7.2.7) is assumed to be non-polynomial, (globally) Lipschitz continuous and σ ∈ C3.

7.2.4 Universal Approximation by FNOs

Next, we will show that FNOs (7.2.6) are universal i.e., given a large class of operators, as defined in

setting 7.2.1, one can find an FNO that approximates it to desired accuracy. To be more precise, we

have the following theorem,

Theorem 7.2.5 (Universal approximation). Let s, s′ ≥ 0. Let G : Hs(Td;Rda) → Hs′(Td;Rdu) be a

continuous operator. Let K ⊂ Hs(Td;Rda) be a compact subset. Then for any ε > 0, there exists a FNO

N : Hs(Td;Rda)→ Hs′(Td;Rdu), of the form (7.2.6), continuous as an operator Hs → Hs′ , such that

sup
a∈K
‖G(a)−N (a)‖Hs′ ≤ ε.

Sketch of proof. The detailed proof of this universal approximation theorem is provided in [KLM21,

Thm. 2.5]. We only provide an outline here. For notational simplicity, we set da = du = 1, and first

observe the following lemma, proved in [KLM21, Appendix D.1]:

Lemma 7.2.6. Assume that the universal approximation Theorem 7.2.5 holds for s′ = 0. Then it holds

for arbitrary s′ ≥ 0.

The main objective is thus to prove Theorem 7.2.5 for the special case s′ = 0; i.e. given a continuous

operator G : Hs(Td) → L2(Td), K ⊂ Hs(Td) compact, and ε > 0, we wish to construct a FNO

N : Hs(Td)→ L2(Td), such that supa∈K ‖G(a)−N (a)‖L2 ≤ ε.
To this end, we start by defining the following operator,

GN : Hs(Td)→ L2(Td), GN (a) := PNG(PNa), (7.2.8)

with PN being the orthogonal Fourier projection operator onto Fourier modes |k|∞ ≤ N . Thus, GN can

be thought of loosely as the Fourier projection of the continuous operator G.

Next, we can show that for any given ε > 0, there exists N ∈ N, such that

‖G(a)− GN (a)‖L2 ≤ ε, ∀ a ∈ K. (7.2.9)

Thus, the proof boils down to finding a FNO (7.2.6) that can approximate the operator GN to any desired

accuracy.

To this end, we introduce a set of Fourier wavenumbers k ∈ KN , by

KN :=
{
k ∈ Zd

∣∣ |k|∞ ≤ N}, (7.2.10)

and define a Fourier conjugate or Fourier dual operator of the form ĜN : CKN → CKN ,

ĜN (âk) := FN
(
GN
(
Re
(
F−1
N (âk)

)))
, (7.2.11)
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such that the identity

GN (a) = F−1
N ◦ ĜN ◦ FN (PNa), (7.2.12)

holds for all real-valued a ∈ L2(Td). Here, FN is the discrete Fourier transform and F−1
N is the discrete

inverse Fourier transform.

The next steps in the proof are to leverage the natural decomposition of the projection GN in (7.2.12)

in terms of the discrete Fourier transform FN ◦ PN , the discrete inverse Fourier transform F−1
N and the

Fourier conjugate operator ĜN and approximate each of these operators by Fourier neural operators.

We start by denoting,

R2KN =
(
R2
)KN

(' CKN ), (7.2.13)

as the set consisting of coefficients {(v1,k, v2,k)}k∈KN , where v`,k ∈ R are indexed by a tuple (`, k), ` ∈
{1, 2}, k ∈ KN , and interpreting the operator FN◦PN as a mapping FN◦PN : a 7→ {(Re(âk), Im(âk))}|k|≤N ,

with input a ∈ L2(Td) and the output {Re(âk), Im(âk)}|k|≤N ∈ R2KN is viewed as a constant function

in L2(Td;R2KN ). The approximation of this operator is a straightforward consequence of the following

Lemma, proved in [KLM21, Appendix D.2],

Lemma 7.2.7. Let B > 0 and N ∈ N be given. For all ε > 0, there exists a FNO N : L2(Td) →
L2(T d;R2KN ), v 7→ {N (v)`,k}, with constant output functions (constant as a function of x ∈ Td), and

such that
‖Re(v̂k)−N (v)1,k‖L∞ ≤ ε
‖Im(v̂k)−N (v)2,k‖L∞ ≤ ε

}
∀ k ∈ Zd, |k|∞ ≤ N,

for all ‖v‖L2 ≤ B, and where v̂k ∈ C denotes the k-th Fourier coefficient of v.

In the next step, we approximate the (discrete) inverse Fourier transform F−1
N by an FNO. We recall

that FNOs act on functions rather than on constants. Therefore, to connect F−1
N and FNOs, we are

going to interpret the mapping

F−1
N : [−R,R]2KN ⊂ R2KN → L2(Td),

as a mapping

F−1
N :

{
L2(Td; [−R,R]2KN )→ L2(Td),
{Re(v̂k), Im(v̂k)}|k|≤N 7→ v(x),

where the input {Re(v̂k), Im(v̂k)}|k|≤N ∈ [−R,R]2KN is identified with a constant function in L2(Td; [−R,R]2KN ).

The existence of a FNO of the form (7.2.6) that can approximate the inverse discrete Fourier transform

to desired accuracy is a consequence of the following lemma, proved in [KLM21, Appendix D.3],

Lemma 7.2.8. Let B > 0 and N ∈ N be given. For all ε > 0, there exists a FNO N : L2(Td;R2KN )→
L2(Td), such that for any v ∈ L2

N (Td) with ‖v‖L2 ≤ B, we have

‖v −N (w)‖L2 ≤ ε,

where w(x) := {(Re(v̂k), Im(v̂k))}k∈KN , i.e. w ∈ L2(Td;R2KN ) is a constant function collecting the real

and imaginary parts of the Fourier coefficients v̂k of v.
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Finally, by setting K̂ := FN (PNK) ⊂ CKN as the (compact) image of K under the continuous

mapping FN◦PN : L2(Td)→ CKN and identifying CKN ' R2KN , where v̂1,k := Re(v̂k) and v̂2,k := Im(v̂k)

for k ∈ KN , we can view ĜN as a continuous mapping

ĜN : K̂ ⊂ R2KN → R2KN ,

on a compact subset. Hence, by the universal approximation theorem for finite-dimensional neural

networks [Bar93, HSW89], one can readily show that there exists an FNO, with only local weights

(see remark 7.2.3), which will approximate this continuous mapping ĜN on compact subsets to desired

accuracy.

Hence, each of the component operators of the decomposition (7.2.12) can be approximated to desired

accuracy by FNOs and the universal approximation theorem follows by composing these FNOs and

estimating the resulting error, with details provided in [KLM21, Appendix D.4].

In the following theorem, we will show that the universal approximation Theorem 7.2.5 can be

extended to include operators defined on function spaces with Lipschitz domains. In fact, the Lipschitz

condition can be relaxed to include all locally uniform domains using ideas from [Rog06]; we will, however,

not pursue this for simplicity of the exposition. We show that one can construct a period extension of the

input function and a FNO so that the restriction of the FNO’s periodic output to the domain of interest

gives a suitable approximation to any continuous operator. Similar ideas have been pursued in the design

of numerical algorithms for solving PDEs and usually go by the name of Fourier continuations [BL10,

LB10]. A major challenge for these methods is designing a suitable periodic function whose restriction

gives the solution if interest. We show that FNOs can learn the output representation automatically.

Theorem 7.2.9. Let s, s′ ≥ 0 and Ω ⊂ [0, 2π]d be a domain with Lipschitz boundary. Let G :

Hs(Ω;Rda) → Hs′(Ω;Rdu) be a continuous operator. Let K ⊂ Hs(Ω;Rda) be a compact subset. Then

there exists a continuous, linear operator E : Hs(Ω;Rda) → Hs(Td;Rda) such that E(a)|Ω = a for all

a ∈ Hs(Ω;Rda). Furthermore, for any ε > 0, there exists a FNO N : Hs(Td;Rda) → Hs′(Td;Rdu) of

the form (7.2.6), such that

sup
a∈K
‖G(a)−N ◦ E(a)|Ω‖Hs′ ≤ ε.

Proof. Since Ω is open we have that dist(Ω, ∂[0, 2π]d) > 0 hence the conclusion of [KLM21, Lemma

B.3] follows with the hypercube B = [0, 2π]d, in particular, there exists a continuous, linear operator

E : Hs(Ω;Rda) → Hs([0, 2π]d;Rda) such that E(a)|Ω = a and E(a) is periodic on [0, 2π]d for all a ∈
Hs(Ω;Rda), i.e. under the identification [0, 2π]d ' Td, we have a continuous mapping E : Hs(Ω;Rda)→
Hs(Td;Rda). Similarly, we can construct an extension operator E ′ : Hs′(Ω;Rdu)→ Hs′(Td;Rdu).

We can then associate to G : Hs(Ω;Rda)→ Hs′(Ω;Rdu) another continuous operator G : Hs(Td;Rda)→
Hs′(Td;Rdu), by defining G(a) := E ′ ◦ G ◦ R(a). Here R(a) := a|Ω denotes the restriction to Ω which

is clearly linear and continuous. By the continuity of E , we have that K ′ := E(K) is compact in

Hs(Td;Rda). By the universal approximation Theorem 7.2.5, for any ε > 0, there exists a FNO

N : Hs(Td;Rda)→ Hs′(Td;Rdu), such that

sup
a′∈K′

‖G(a′)−N (a′)‖Hs′ ≤ ε.

But then, using the fact that R◦E = Id, R◦E ′ = Id, the mapping N : Hs(Ω;Rda)→ Hs′(Ω;Rdu), given
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by N := R ◦N ◦ E , satisfies

sup
a∈K
‖G(a)−N (a)‖Hs′ = sup

a∈K
‖R ◦ E ′ ◦ G ◦ R ◦ E(a)−R ◦ N ◦ E(a)‖Hs′

= sup
a∈K
‖R ◦ G ◦ E(a)−R ◦ N ◦ E(a)‖Hs′

≤ sup
a∈K
‖G ◦ E(a)−N ◦ E(a)‖Hs′

= sup
a′∈K′

‖G(a′)−N (a′)‖Hs′

≤ ε.

Remark 7.2.10. The form of the universal approximation Theorem 7.2.5 stated above, shows that any

continuous operator G : Hs → L2 can be approximated to arbitrary accuracy by a FNO, on a given

compact subset K ⊂ Hs. The restriction to compact subsets may not always be very natural. For

example, to train FNOs in practice, it might be more convenient to draw training samples from a measure

µ such as the law of a Gaussian random field, which does not have compact support. Furthermore, the

operator G may not always be continuous. To address these issues, one can follow the recent paper

[LMK21], where the authors prove a more general version for the universal approximation of operators

for DeepOnets; for any input measure µ, and a Borel measurable operator G, such that
´
‖G(a)‖2L2 dµ(a) <

∞, it is shown that for any ε > 0, there exists a DeepOnet N (a) ≈ G(a) such that

ˆ
‖G(a)−N (a)‖2L2 dµ(a) < ε.

In particular, there are no restrictions on the topological support of µ. The result of [LMK21] was for

the alternative operator learning framework of DeepOnets, but the ideas and the proof can be analogously

extended to FNOs.

7.2.5 Ψ-Fourier neural operators

In practice, one needs to compute the FNO, of form (7.2.6), both during training as well as for the

evaluation of the neural operator. Thus, given any input function a, one should be able to readily

calculate the FNO N (a), requiring the efficient computation of the Fourier transform F (A.1.1) and the

inverse Fourier transform F−1 (A.1.2). In general, this is not possible as evaluating the Fourier transform

(A.1.1) entails computing an integral exactly. Therefore, approximations are necessary to realize the

action of FNOs on functions. Following [LKA+21], one can efficiently approximate the Fourier transform

and its inverse by the discrete Fourier transform (A.1.14) and the discrete inverse Fourier transform

(A.1.15), respectively. This amounts to performing a pseudo(Ψ)-spectral Fourier projection between

successive layers of the FNO and leading to the following precise definition,

Definition 7.2.11 (Ψ-FNO). A Ψ-FNO (or Ψ-spectral FNO) is a mapping

N : A(Td;Rda)→ U(Td;Rdu), a 7→ N (a),

of the form

N (a) = Q ◦ IN ◦ LL ◦ IN ◦ · · · ◦ L1 ◦ IN ◦ R(a), (7.2.14)
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where IN denotes the pseudo-spectral Fourier projection onto trigonometric polynomials of degree N ∈ N
(A.1.11), the lifting operator R : A(Td;Rda) → U(Td;Rdv ), the projection Q : U(Td;Rdv ) → U(Td;Rdu)

are defined as in (7.2.1), (7.2.2), and the non-linear layers L`, for ` = 1, . . . , N , are of the form

L`(v)(x) = σ

(
W`v(x) + b`(x) + F−1

(
P`(k) · F(v)(k)

)
(x)

)
.

Here, W` ∈ Rdv×dv and b`(x) ∈ U(Td;Rdv ) define a pointwise affine mapping v 7→ W`v(x) + b`(x),

and the coefficients P`(k) ∈ Rdv×dv (k ∈ KN ) define a (non-local) convolution operator via the Fourier

transform.

Note that a Ψ-FNO N is uniquely defined, as an operator, by its restriction to the finite-dimensional

subspace L2
N (Td;Rda) ⊂ A(Td;Rda) (see Appendix A for the definition of L2

N ). Furthermore, we have

that the image Im(N ) ⊂ L2
N (Td;Rdu). To indicate that a Ψ-FNO is of the form 7.2.14, for some N ∈ N,

we shall thus more simply say that “N : L2
N (Td;Rda)→ L2

N (Td;Rdu) is a Ψ-FNO”.

At the level of numerical implementation, a Ψ-FNO can be naturally identified with a finite-

dimensional mapping

N̂ : Rda×JN → Rdu×JN , a 7→ N (a),

with input a = {aj}j∈JN ∈ Rda×JN corresponding to the point-values aj = a(xj) on the grid {xj}j∈JN ,

and JN := {0, . . . , 2N}d. Here, N̂ is of the form

N̂ (a) = Q̂ ◦ L̂L ◦ L̂L−1 ◦ · · · ◦ L̂1 ◦ R̂(a),

where the lifting operator R̂ : Rda×JN → Rdv×JN , a 7→ R̂(a), the projection Q̂ : Rdv×JN → Rdu×JN ,

v 7→ Q̂(v), are given by

R̂(a) = {Raj}j∈JN , (R ∈ Rdv×da),

Q̂(v) = {Qvj}j∈JN , (Q ∈ Rdu×dv ),

and the non-linear layers L̂`, for ` = 1, . . . , N , are of the form

L̂`(v)j = σ

(
W`vj + b`,j + F−1

N

(
P`(k) · FN (v)(k)

)
j

)
(7.2.15)

for j ∈ JN . Here, W` ∈ Rdv×dv , b`,j = b`(xj) ∈ Rdv×JN defines a pointwise affine mapping W`vj + b`,j ,

the coefficients P`(k) ∈ Rdv×dv , (k ∈ KN ) define a (non-local) convolution operator via the discrete

Fourier transform, and the non-linear activation function σ : R → R is extended componentwise to a

function Rdv×JN → Rdv×JN . Comparing N with the corresponding discretization N̂ , it is easy to see

that

N̂ ({a(xj)}j∈JN )j = N (a)(xj), ∀ j ∈ JN .

In particular, this implies that N (a)(x) can in practice be computed for any x ∈ Td via the Fourier

interpolation of the grid values N̂ ({a(xj)})j∈JN . In contrast to general FNOs, Ψ-FNOs therefore allow

for efficient numerical implementation. Furthermore, the discrete (inverse) Fourier transforms in each

hidden layer in (7.2.15) can be very efficiently computed using the fast Fourier transform (FFT).

The above discussion also leads to a very natural definition of the size of a Ψ-FNO below:

Definition 7.2.12 (Depth, width, lift and size). The depth and width of a Ψ-FNO N (cp. Definition

7.2.11), are defined by

depth(N ) := L, width(N ) := dv|JN | = dv|KN | = (2N + 1)ddv.
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We refer to the dimension dv, as the lift of N , i.e. we set

lift(N ) := dv.

The size of a Ψ-FNO N is defined as the total number of degrees of freedom in a Ψ-FNO. A simple

calculation shows that

size(N ) = dudv︸︷︷︸
size(Q)

+L
(
d2
v + dv|JN |+ d2

v|JN |
)︸ ︷︷ ︸

size(L`)

+ dadv︸︷︷︸
size(R)

.

The precise size of a Ψ-FNO will not be of any particular relevance for our asymptotic complexity

estimates. Instead, we will usually content ourselves with the simple estimate

size(N ) . depth(N ) width(N ) lift(N ),

where we assume that max(da, du) ≤ dv; under this condition, the above estimate follows from the fact

that size(N ) ∼ Ld2
v|JN |.

Given our discussion, it is natural to ask whether any FNO N̂ = Q ◦ LL ◦ LL−1 ◦ · · · ◦ L1 ◦ R can be

approximated to arbitrary accuracy by an associated Ψ-FNO N : L2
N → L2

N ,

N = Q ◦ IN ◦ LL ◦ IN ◦ · · · ◦ L1 ◦ IN ◦ R,

for sufficiently large N ∈ N? An affirmative answer can be given for a natural class of FNOs of finite

width, defined as follows.

Definition 7.2.13. A FNO N̂ : A(Td;Rda) → U(Td;Rdu) is said to be of finite width, if N̂ is a

composition N̂ = Q ◦ LL ◦ · · · ◦ L1 ◦ R, with layers L` of the form (7.2.7), and for which there exists a

“width” W ∈ N, such that the Fourier multiplier P`(k) ≡ 0, for |k|∞ > W .

We can now state the following theorem, which shows that Ψ-FNOs N provide an arbitrarily close

approximation of a given FNO N̂ :

Theorem 7.2.14. Assume that the activation function σ ∈ C∞ is globally Lipschitz continuous. Let

N̂ : Hs(Td;Rda) → L2(Td;Rdu) be a FNO of finite width, with s > d/2. Then for any ε, B > 0, there

exists N ∈ N and a Ψ-FNO N : L2
N (Td;Rda)→ L2

N (Td;Rdu), such that

sup
‖a‖Hs≤B

‖N̂ (a)−N (a)‖L2 ≤ ε.

For the proof, we refer to [KLM21, Appendix D.5]. In particular, the last theorem implies an exten-

sion of the universal approximation Theorem 7.2.5 to Ψ-FNOs, provided that the input functions have

sufficient regularity for the pseudo-spectral projection IN to be well-defined:

Theorem 7.2.15 (Universal approximation for Ψ-FNOs). Let s > d/2, and let s′ ≥ 0. Let G :

Hs(Td;Rda) → Hs′(Td;Rdu) be a continuous operator. And let K ⊂ Hs(Td;Rda) be a compact sub-

set. Then for any ε > 0, there exists N ∈ N and a Ψ-FNO N : L2
N (Td;Rda) → L2

N (Td;Rdu), such

that

sup
a∈K
‖G(a)−N (a)‖Hs′ ≤ ε.

Proof. Similar to the proof of the universal approximation theorem for FNOs, we again note that the

general case s′ ≥ 0 can be deduced from the statement of Theorem 7.2.15 for the special case s′ = 0.

This is the content of the following lemma, whose proof is provided in [KLM21, Appendix D.6]:
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Lemma 7.2.16. Assume that Theorem 7.2.15 holds for s′ = 0. Then it holds for arbitrary s′ ≥ 0.

The special case s′ = 0 follows immediately from Theorem 7.2.14 and the observation that the FNO

approximation constructed in the proof of the universal approximation theorem for FNOs, Theorem

7.2.5, has finite width.

Structure and properties of Ψ-FNOs

We conclude this section by pointing out some aspects of the structure of Ψ-FNOs (7.2.14) that will be

relevant in the following. To start with, we can simplify Ψ-FNOs by viewing them in terms of two types

of layers. which we will refer to as σ- and F-layers, respectively. A σ-layer L = Lσ of a Ψ-FNO is a

local, non-linear layer of the form Lσ(v)(x) = INσ (AINv(x) + b), or, in the numerical implementation

(cp. (7.2.15))

Lσ(v)j = σ (Avj + bj) , ∀ j ∈ JN ,

with A ∈ Rdv×dv , and bj ∈ RJN×dv defining an affine mapping. A F-layer L = LF of a Ψ-FNO

is a non-local, linear layer of the form LF (v)(x) = F−1(P (k) · F(INv)(k))(x), which in a practical

implementation corresponds to

LF (v)j = F−1
N

(
P (k) · FN (v)(k)

)
j
, ∀ j ∈ JN ,

where P : KN → Cdv×dv is a collection of complex weights, with P (−k) = P (k)† the Hermitian transpose

of P (k), and FN (F−1
N ) denotes the discrete (inverse) Fourier transform.

The main point of these definitions is that each Ψ-FNO can be decomposed into a finite number of

σ-layers and F-layers, and that the converse is also true; i.e. any composition of σ-layers and F-layers

can be represented by a Ψ-FNO. These statements are made precise in a series of technical Lemmas,

which are stated and proved in [KLM21, Appendix D.7].

7.3 Approximation of PDEs by Ψ-FNOs

We have shown in the previous section that FNOs (7.2.6) as well as their computational realizations

(Ψ-FNOs (7.2.14)) are universal i.e., they approximate any continuous operator, defined in the setting

7.2.1, to desired accuracy. However, as repeatedly discussed in the introduction, universality alone does

not suffice to claim that FNOs can approximate operators efficiently. In particular, it could happen that

the size of the FNO is unfeasibly large to ensure a given accuracy of the approximation. That this is

indeed the case is made precise in the following remark.

Remark 7.3.1. We observe from the proof of Theorem 7.2.5 that the desired FNO, approximating the

operator G, is constructed as NIFT ◦ N̂ ◦ NFT, with NFT,NIFT approximating the Fourier and Inverse

Fourier transforms, respectively, whereas N̂ : R2KN → R2KN is a canonical finite-dimensional neural

network approximation of the “Fourier conjugate operator” (7.2.11): ĜN : R2KN → R2KN . We note

that N herein has to be chosen sufficiently large in order to yield the desired error tolerance of ε. By

Theorem A.1.3, this depends on the smoothness of the input space, i.e., if the input a ∈ K ⊂ Hs, for

some s > 0, then we need to choose N such that N−s ∼ ε. Further assuming that the mapping G is

Lipschitz continuous, implies that the Fourier conjugate operator Ĝ is also Lipschitz continuous as a

mapping from R2KN to R2KN . Hence, neural network approximation results, such as those of [Yar17]

for ReLU activations or [DLM21] for tanh activations, yield that the width of the approximating neural



7.3. APPROXIMATION OF PDES BY Ψ-FNOS 159

network N̂ scales as width(N̂ ) & ε−D, where D is the dimension of the domain of ĜN . In the present

case, we have D = |KN | ∼ Nd ∼ ε−d/s, yielding that

width(N̂ ) & ε−ε
−d/s

. (7.3.1)

This scaling represents a super-exponential growth in the size of the FNO N , with respect to the error

ε, incurred in approximating the underlying operator G.

Given the above remark, we infer that in the worst case, a FNO approximating a generic Lipschitz

continuous operator G, can require extremely large sizes to achieve the desired accuracy, making it

unfeasible in practice. The same holds for Ψ-FNOs of the form (7.2.14). This super-exponential growth

appears as a form of curse of dimensionality i.e., exponential growth of complexity (measured here in

the size of the FNO), with respect to the error.

Hence, it is reasonable to ask how these extremely pessimistic complexity bounds on FNOs (Ψ-

FNOs), can be reconciled to their robust numerical performance for approximating PDEs, as reported

in [LKA+21]. The rest of the section investigates this fundamental question.

The starting point of our explanation for the robustness of FNOs in approximating PDEs is the

observation that operators which arise in the context of PDEs have a special structure and are not

merely generic continuous operators mapping one infinite-dimensional function space to another. To

see this, we point out that many time-dependent PDEs arising in physics can be written in the general

abstract form,

∂tu+∇ · F (u,∇u) = 0, (7.3.2)

where for any (t, x) ∈ [0, T ] × D ⊂ Rd, u(t, x) ∈ Rdu is a vector of physical quantities, describing e.g.

density, velocity or temperature of a fluid or other material at a given point x ∈ D in the domain D

and at time t ∈ [0, T ]. Equation (7.3.2) describes the general form of a conservation law for the physical

quantities u with a flux function F (u,∇u), which is typically non-linear, and can e.g. represent advection

or diffusion terms. The flux function F (u,∇u) may also depend on u in a non-local manner. For example,

for the incompressible Navier-Stokes equations in Rd, we have u ≡ u : Td → Rd, where

u(x, t) = (u1(x, t), . . . , ud(x, t)) ∈ Rd,

represent the fluid velocity at (x, t), and the flux is defined by

F (u,∇u) = −u⊗ u− p+ ν∇u,

where p = p(u) depends on u in a non-local manner:

p = R : (u⊗ u), R := (−∆)−1(∇⊗∇),

where R is a (non-local) Riesz transform.

A popular numerical method for time-dependent PDEs, of the form (7.3.2), particularly on periodic

domains D = Td, is the pseudo-spectral method [CHQZ07], wherein (7.3.2) is discretized as,

∂tuN +∇ · INF (uN ,∇uN ) = 0, (7.3.3)

where uN ∈ L2
N is a trigonometric polynomial of degree ≤ N .

The resulting system of ODEs (7.3.3) can be further discretized in time using a time-marching scheme.

For simplicity, the forward Euler discretization with time step τ leads to,

un+1
N = unN − τ∇ · INF (unN ,∇unN ). (7.3.4)
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One might prove that the system (7.3.4) provides a convergent approximation for the underlying time-

dependent PDE (7.3.2) for many different choices of the flux F . In order to connect the approximation

(7.3.4) with FNOs, we decompose the right hand side of (7.3.4) as,

unN
R7−→

{
unN

unN

}
F7−→

{
unN

∇unN

}
σ7→ . . .

σ7→

{
unN

FσN (unN ,∇unN )

}
F7−→

{
unN

∇ · FσN (unN ,∇unN )

}
7−→ unN − τ∇ · FσN (unN ,∇unN ).

Here, R is the lifting operator and σ, F are the σ- and F-layers, respectively, of a Ψ-FNO, that are defined

in section 7.2.5. The above representation suggests that the Fourier F-layers of a Ψ-FNO allow us to take

exact derivatives, and a composition of σ-layers of a Ψ-FNO allows us to approximate continuous func-

tions to any desired accuracy (via the standard universal approximation theorem for finite-dimensional

neural networks); in particular, a composition of σ-layers can provide an approximation

(u,∇u) 7→ FσN (u,∇u) ≈ INF (u,∇u).

Thus, by a suitable composition of σ- and F-layers, Ψ-FNOs can emulate pseudo-spectral methods,

providing a mechanism by which such neural operators can approximate solution operators for a large

class of PDEs efficiently.

We will make this intuition precise for the incompressible Navier-Stokes and Euler equations, the

following.

7.3.1 Incompressible Euler and Navier-Stokes equations

The motion of a viscous, incompressible Newtonian fluid is modeled by the incompressible Navier-Stokes

equations, {
∂tu+ u · ∇u+∇p = ν∆u,

div(u) = 0, u(t = 0) = u,
(7.3.5)

For simplicity, we assume periodic boundary conditions in the domain Td. The viscosity is denoted by

ν ≥ 0 and we would like to state that the subsequent analysis also applies for ν = 0, where (7.3.5) reduces

to the incompressible Euler equations modeling an ideal fluid.

We recall that if the initial data u of (7.3.5) belongs to L̇2(Td;Rd), i.e. if

ˆ
Td
u(x) dx = 0,

then we also have that the corresponding solution u(x, t) ∈ L̇2(Td;Rd) (reflecting momentum conser-

vation). Next, we recall that the Leray-projection operator P : L2(Td;Rd) → L̇2(Td; div), is defined as

the L2-orthogonal projection onto the subspace L̇2(Td; div) ⊂ L̇2(Td;Rd), consisting of divergence-free

vector fields; i.e. we have u ∈ L̇2(Td; div) if, and only if, u ∈ L̇2(Td;Rd) and

ˆ
Td
u(x) · ∇ϕ(x) dx = 0, ∀ϕ ∈ C∞(Td).
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In terms of Fourier series, the Leray projection P : L̇2(Td;Rd)→ L̇2(Td; div) is explicitly given by

P

∑
k∈Zd

ûke
ik·x

 =
∑

k∈Zd\{0}

(
1− k ⊗ k

|k|2

)
ûke

ik·x. (7.3.6)

In terms of the Leray projection P, we can now equivalently write the incompressible Navier-Stokes

equations (7.3.5) as the following equation on the Hilbert space L̇2(Td; div) as,{
∂tu = −P (u · ∇u) + ν∆u,

u(t = 0) = u.
(7.3.7)

Given this background, our main objective in this section is to construct a Ψ-FNO that will ap-

proximate the operator G which maps the initial data u to the solution u( · , T ) (at the final time T )

of the incompressible Navier-Stokes equations (7.3.5), (7.3.7). To this end, we will follow the general

program outlined at the beginning of this section and introduce a suitable pseudo-spectral method for

approximating the Navier-Stokes equations. Then, we construct a Ψ-FNO that can efficiently emulate

this pseudo-spectral method.

A fully-discrete Ψ-spectral approximation of the Navier-Stokes equations (7.3.5)

The form of the Leray-projected Navier-Stokes equations (7.3.7) naturally suggests the following fully-

discrete approximation of (7.3.5):
u∆,n+1 − u∆,n

τ
+ PN

(
u∆,n · ∇u∆,n+1

)
= ν∆u∆,n+1,

u∆,0 = INu(t = 0).

(7.3.8)

Here, we fix ∆ = 1/N , N ∈ N and introduce the space, L̇2
N (Td; div) := L̇2(Td; div) ∩ L̇2

N (Td;Rd). We

fix a time-step τ > 0 and let u∆,n ∈ L̇2
N (Td; div), for all n = 0, . . . , nT , with nT such that τnT = T .

Moreover, we use the following truncated Leray-Fourier projection operator PN : L2(Td)→ L̇2
N (Td; div)

in analogy with (7.3.6):

PN

∑
k∈Zd

ûke
ik·x

 :=
∑

0<|k|∞≤N

(
1− k ⊗ k

|k|2

)
ûke

ik·x, (7.3.9)

to complete the description of the scheme (7.3.8).

We observe that the scheme (7.3.8) is implicit i.e., at each time step n, one has to solve an operator

equation to compute the velocity field u∆,n+1 at the next time step. Thus, one needs to show the

solvability of this operator equation in order to ensure that the scheme (7.3.8) is well-defined. Under the

following CFL condition for choosing a small enough time step τ ,

τ‖u∆,n‖L∞N ≤
1

2
, (7.3.10)

it has been proved in [KLM21, Appendix F.1] that the scheme (7.3.8) is well-defined.

Next, in practice, one has to numerically approximate the solutions of the implicit equation (7.3.8) for

evaluating the velocity field u∆,n+1, at the next time-step. We choose to do so by recasting the solution

of the implicit equation (7.3.8) to finding a fixed point for the mapping,

wN 7→ F (wN ) := (1− ντ∆)−1u∆,n − τ(1− ντ∆)−1PN (u∆,n · ∇wN ). (7.3.11)
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In [KLM21, Appendix F.1, Lemma F.4], it is shown that a standard Picard-type iteration converges to

a fixed point for the map (7.3.11). This suggests the following numerical algorithm for approximating

strong solutions of the incompressible Navier-Stokes equations (7.3.5),

Algorithm 7.3.2 (Pseudo-spectral approximation of the Navier-Stokes equations (7.3.5)).
Input: U > 0, N ∈ N, T > 0, a time-step τ > 0, such that nT = T/τ ∈ N, and τUNd/2+1 ≤

1
2e , initial data u∆,0 ∈ L2

N (Td; div), such that ‖u∆,0‖L2 ≤ U .

Output: u∆,nT ∈ L2
N (Td; div) an approximation of the solution u∆,nT ≈ u(t = T ) of (7.3.5)

at time t = T .

1 Set

κ0 :=

⌈
log
(
T 2/τ2

)
log(2)

⌉
∈ N.

2 For n = 0, . . . , nT − 1:

i Set wn,0
N := 0,

ii For k = 1, . . . , κ0: Compute

wn,k
N := (1− ντ∆)−1u∆,n − τ(1− ντ∆)−1PN

(
u∆,n · ∇wn,k−1

N

)
,

iii Set u∆,n+1 := wn,κ0

N ,

The convergence of the algorithm 7.3.2, together with a convergence rate, to the strong solution of

the Navier-Stokes equations is summarized in the following theorem,

Theorem 7.3.3. Let U, T > 0. Consider the Navier-Stokes equations on Td, for d ≥ 2. Assume that

r ≥ d/2 + 2, and let u ∈ C([0, T ];Hr) ∩ C1([0, T ];Hr−2) be a solution of the Navier-Stokes equations

(7.3.5), such that ‖u‖L2 ≤ U . Choose a time-step τ , such that τUNd/2+1 ≤ (2e)−1. There exists a

constant

C = C(T, d, r, ‖u‖Ct(Hrx), ‖u‖C1
t (Hr−2

x )) > 0,

such that with u∆,0 := INu(0), and for the sequence u∆,1, . . . ,u∆,nT ∈ L2
N (Td; div) generated by Al-

gorithm 7.3.2, we have

max
n=0,...,nT

‖u∆,n − u(tn)‖L2 ≤ C
(
τ +N−r

)
,

where nT τ = T . In particular, choosing τ ∼ N−r, we have

max
n=0,...,nT

‖u∆,n − u(tn)‖L2 ≤ CN−r,

with nT ∼ Nr (and enlarging the constant C > 0 by a constant factor).

The proof of this theorem relies on several techniques from numerical analysis and has been presented

in detail in [KLM21, Appendix F.2].
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Approximation of algorithm 7.3.2 by Ψ-FNOs

Next, we are going to construct a Ψ-FNO of the form (7.2.14), which can efficiently emulate the pseudo-

spectral algorithm 7.3.2. To this end, we have the following result (proved in [KLM21, Appendix F.3])

on the efficient approximation of the non-linear term in the Navier-Stokes equations by FNOs,

Lemma 7.3.4. Assume that the activation function σ ∈ C3 is three times continuously differentiable

and non-linear. There exists a constant C > 0, such that for any N ∈ N, and for any ε, B > 0, there

exists a Ψ-FNO N : L2
2N (Td;Rd)× L2

2N (Td;Rd)→ L2
2N (Td;Rd), with

depth(N ), lift(N ) ≤ C, width(N ) ≤ CNd,

such that we have

‖PN (uN · ∇wN )−N (uN ,wN )‖L2
N
≤ ε,

for all trigonometric polynomials uN ,wN ∈ L2
N (Td;Rd) ⊂ L2

2N (Td;Rd) of degree |k|∞ ≤ N , satisfying

the bound ‖uN‖L2 , ‖wN‖L2 ≤ B.

Thus, from the preceding Lemma, we have that the nonlinearities in algorithm 7.3.2 can be efficiently

approximated by Ψ-FNOs. This paves the way for the following theorem on the emulation of the pseudo-

spectral algorithm 7.3.2 by Ψ-FNOs,

Theorem 7.3.5. Let U, T > 0 and viscosity ν ≥ 0. Consider the Navier-Stokes equations on Td, for

d ≥ 2. Assume that r ≥ d/2 + 2, and let V ⊂ C([0, T ];Hr)∩C1([0, T ];Hr−2) be a set of solutions of the

Navier-Stokes equations (7.3.5), such that supu∈V ‖u‖L2 ≤ U , and

U := sup
u∈V

{
‖u‖Ct(Hrx) + ‖u‖C1

t (Hr−2
x )

}
<∞.

For t ∈ [0, T ], denote Vt := {u(t) |u ∈ V}. Let G : V0 → VT denote the solution operator of (7.3.5),

mapping initial data u = u(t = 0), to the solution u(T ) at t = T of the incompressible Navier-Stokes

equations. There exists a constant

C = C(d, r, U, U, T ) > 0,

such that for N ∈ N there exists a Ψ-FNO N : L2
N (Td;Rd)→ L2

N (Td;Rd), such that

sup
u∈V0

‖G(u)−N (u)‖L2 ≤ CN−r,

and such that

width(N ) ≤ CNd, depth(N ) ≤ CNr log(N), lift(N ) ≤ C.

The proof of this theorem relies on standard ideas from numerical analysis and is provided in detail

in [KLM21, Appendix F.2].

Remark 7.3.6. It is straightforward to observe from Theorem 7.3.5 that the size of a Ψ-FNO to achieve

a desired error tolerance of ε > 0, scales (neglecting log-terms) as

size(N ) ≤ Cε−(1+ d
r ), (7.3.12)

Given that we need r ≥ d/2 + 2, we observe from (7.3.12) that the size of the Ψ-FNO, approximating

the initial data to solution operator G, for the Navier-Stokes equations (7.3.5), scales at most sub-

quadratically with respect to the error tolerance ε for the physically relevant values d = 2, 3. This

polynomial scaling should be compared with the super-exponential growth (see Remark 7.3.1) of the size

of FNOs in approximating a generic Lipschitz-continuous operator. Thus, we are able to demonstrate

that Ψ-FNOs can approximate the solutions of Navier-Stokes equations far more efficiently than what the

universal approximation Theorem 7.2.15 suggests.
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Remark 7.3.7. From the convergence Theorem 7.3.3, we observe that the underlying scheme (7.3.8) is

first-order in time. This low accuracy of the scheme necessitates a large number of time steps and affects

the overall complexity. We describe a second-order accurate time discretized version of the pseudo-spectral

method for approximating the Navier-Stokes equations (7.3.5) in [KLM21] and in complete analogy with

Theorem 7.3.5, we can construct a Ψ-FNO to emulate this second-order in time pseudo-spectral scheme,

resulting in a Ψ-FNO of

size(N ) ≤ Cε−( 1
2 + d

r ), (7.3.13)

to obtain a desired accuracy of ε. Thus, we can obtain a more efficient approximation of the underlying

operator than Ψ-FNO emulating the first-order time scheme (7.3.8). In particular for r ≥ 2d, we obtain

that the size of a Ψ-FNO only grows sub-linearly in terms of the desired accuracy.

For use in the next section, we note that Theorem 7.3.5 is based on the following precise emulation

result for Algorithm 7.3.2 by Ψ-FNOs:

Proposition 7.3.8. Let N ∈ N, define ∆ ≡ 1/N , and let S ∆
T : L2

N (Td;Rd) → L2
N (Td;Rd), u∆,0 7→

S ∆
T (u∆,0) = u∆,nT be the approximate solution operator defined by Algorithm 7.3.2. There exists a

constant C > 0, such that for any ε, B > 0, there exists a Ψ-FNO N : L2
2N (Td;Rd)→ L2

2N (Td;Rd), with

width(N ) ≤ CNd, depth(N ) ≤ CnT log(nT ), lift(N ) ≤ C,

such that

sup
‖u‖L2≤B

‖S ∆
T (u)−N (u)‖L2 ≤ ε,

where the supremum is taken over
{
u ∈ L2

N

∣∣ ‖u‖L2 ≤ B
}

.

7.4 Approximation of statistical solutions via surrogates

We now consider the problem of approximating a statistical solution t 7→ µt of the incompressible Euler

equations based on surrogates. The previous section shows that FNOs can efficiently emulate spectral

methods; in practice, and based on the encouraging initial results of numerical experiments in [LKA+21]

and similar work [LJK19, DLLM+21, CWL+21, MLM+20], we expect FNOs of much smaller size to be

able to provide accurate approximations of the solution operator of the incompressible Euler equations.

Hence, it is natural to attempt to replace the (costly) forward evaluation by spectral methods in the

computation of statistical solutions (cp. Algorithm 3.4.1, in chapter 3), by FNOs, whose evaluation is

computationally much cheaper. To this end, we propose the following (prototypical) algorithm:

Algorithm 7.4.1 (Statistical solution surrogate). Given an initial probability measure µ ∈ P(L2
x), a

resolution N ∈ N and a number of samples M ∈ N, we obtain a statistical solution surrogate µ∗t for

t ≥ 0:

1 Draw M iid samples u1, . . . ,uM ∼ µ,

2 For j = 1, . . . ,M , evaluate the corresponding solution based on the numerical discretization 7.3.8

of the previous section, u∆
j (t) := S ∆

t (uj), where ∆ = 1/N ,

3 Minimize the empirical loss L̂ over parameters θ ∈ Θ of the Ψ-FNO S θ
t : L2

N → L2
N , where

L̂ =
1

M

M∑
j=1

‖S θ
t (uj)− u∆

j (t)‖2L2
x
,

to obtain S ∗t := S θ∗
t : L2

N → L2
N , where θ∗ ∈ Θ is the optimized parameter,
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4 Define µ∗t := S ∗t,#µ as the push-forward measure under S ∗t .

Remark 7.4.2. Note that we are considering a surrogate approximation of the initial data-to-solution

mapping at a fixed t ∈ [0, T ], in Algorithm 7.4.1. This allows us to directly refer to the error and

complexity analysis carried out in the preceding section. In some cases, especially in the Bayesian context,

one might be interested in a time-parametrized approximation t 7→ S ∗t , for all t ∈ [0, T ]. In this case, we

propose to add a time-interval parameter ∆t > 0 to the input, which we assume to be small relative to

the time-scales of the evolution of statistical quantities, and train the surrogate recurrently to provide a

mapping

u 7→ S ∗∆t(u) 7→ S ∗2∆t(u) 7→ · · · 7→ S ∗n∆t(u),

where T = n∆t, and where S ∗k∆t = S ∗∆t ◦ · · · ◦ S ∗∆t is the k-fold composition of S ∗∆t. Values at

t ∈ (k∆t, (k + 1)∆t) can then be obtained by conventional interpolation.

From Proposition 7.3.8, we can now deduce the following error and complexity estimate for statistical

solution surrogates:

Theorem 7.4.3 (Error estimate for statistical solution surrogates). Let S ∆
t : L2

N → L2
N denote the

solution operator defined by Algorithm 7.3.2, where ∆ ≡ 1/N and with nT ∼ Nd/2+1 timesteps. Let

µ ∈ P(L2
x) be statistical initial data for the incompressible Navier-Stokes or Euler equations. Assume

that:

• There exists M > 0, such that µ is concentrated on BsM (0) :=
{
u ∈ Hs(Td;Rd)

∣∣ ‖u‖Hsx ≤M}, for

some s > d/2, so that the point-evaluation evx : u 7→ u(x) is well-defined, µ-almost surely.

• There exist constants C,α > 0, and a statistical solution µt ∈ C([0, T ];P(L2
x)), such that the

approximate statistical solution µ∆
t := S ∆

t,#µ satisfies

W1(µT , µ
∆
T ) ≤ C∆α,

i.e. that µ∆
T → µT converges at a convergence rate α > 0.

Then there exists a constant C̃ > 0, such that for any ε > 0, there exists a Ψ-FNO S ∗T : L2
N → L2

N , with

width (S ∗T ) ≤ C̃ε−d/α, depth (S ∗T ) ≤ C̃ε(d+2)/2α log(ε−1), lift (S ∗T ) ≤ C̃,

and such that the statistical solution surrogate µ∗T := S ∗T,#µ satisfies,

W1 (µT , µ
∗
T ) ≤ ε.

Proof. Fix N ∈ N, N even, for the moment, so that N/2 ∈ N. To derive a suitable estimate, we compare

the surrogate model with the corresponding approximation by the numerical scheme of Algorithm 7.3.2,

at resolution 2∆ = 2/N . We note that W1 (µT , µ
∗
T ) ≤W1(µT , µ

2∆
T ) +W1(µ2∆

T , µ∗T ). By assumption, the

first term is bounded by

W1(µT , µ
2∆
T ) ≤ CN−α. (7.4.1)

To estimate the second term, we note that for any 1-Lipschitz continuous function Φ : L2
x → R, we haveˆ

L2
x

Φ(u)[dµ2∆
T (u)− dµ∗T (u)] =

ˆ
L2
x

Φ(u)[d
(
S 2∆
T,#µ

)
(u)− d

(
S ∗T,#µ

)
(u)]

=

ˆ
L2
x

[
Φ(S 2∆

T (u))− Φ(S ∗T (u))
]
dµ(u)

≤
ˆ
L2
x

‖S 2∆
T (u)−S ∗T (u)‖L2

x
dµ(u).
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Taking the supremum over all such Φ, we conclude that

W1(µ2∆
T , µ∗T ) ≤

ˆ
L2
x

‖S 2∆
T (u)−S ∗T (u)‖L2

x
dµ(u).

Since we clearly have S 2∆
T (u) = S 2∆

T (INu), S ∗T (u) = S ∗T (INu), where IN denotes the pseudo-spectral

projection, we can further estimate this by

W1(µ2∆
T , µ∗T ) ≤ sup

u∈supp(µ)

‖S 2∆
T (INu)−S ∗T (INu)‖L2

x
.

Next, since µ is concentrated on BsM (0) by assumption, and since IN : Hs
x → L2

x is a bounded operator

for s > d/2 (cp. Theorem A.1.3 in Appendix A), it follows that there exists B > 0, such that

‖INu‖L2
x
≤ B, ∀u ∈ supp(µ).

We can thus estimate

W1(µ2∆
T , µ∗T ) ≤ sup

‖uN‖L2
x
≤B
‖S 2∆

T (uN )−S ∗T (uN )‖L2
x
,

where the supremum is over the (finite-dimensional) ball
{
uN ∈ L2

N

∣∣ ‖uN‖L2
x
≤ B

}
. By Proposition 7.3.8

and the fact that nT ∼ Nd/2+1, there thus exists a constant C0 > 0, such that for any ε̃, B > 0, there

exists a Ψ-FNO N : L2
N → L2

N , with width(N ) ≤ C0N
d, depth(N ) ≤ C0N

d/2+1 log(N), lift(N ) ≤ C0,

and such that

sup
‖uN‖≤B

‖S 2∆
T (uN )−N (uN )‖L2

x
≤ ε̃.

Applying this result for ε̃ = N−α, and defining S ∗T := N , we conclude that there exists a Ψ-FNO

S ∗T : L2
N → L2

N , such that width(S ∗T ) ≤ C0N
d, depth(S ∗T ) ≤ C0N

d/2+1 log(ε−1), lift(S ∗T ) ≤ C0, and

such that

W1(µ2∆
T , µ∗T ) ≤ sup

‖uN‖≤B
‖S 2∆

T (uN )−N (uN )‖L2
x
≤ N−α.

By (7.4.1), this implies that

W1(µT , µ
∗
T ) ≤ (C + 1)N−α.

In particular, we can choose N := d(ε/(C + 1))
−1/αe, to conclude that there exists a constant C̃ > 0,

independent of ε, and a Ψ-FNO S ∗T : L2
N → L2

N , such that width(S ∗T ) ≤ C̃ε−d/α, depth(S ∗T ) ≤
C̃ε−(d+2)/2α log(N), lift(S ∗T ) ≤ C̃, and

W1(µT , µ
∗
T ) ≤ ε.

This concludes the proof.

Remark 7.4.4. Theorem 7.4.3 shows that, assuming that the spectral scheme 7.3.2 converges to a

statistical solution µt, then with a sufficiently high resolution, there exists a Ψ-FNO S ∗T , for which the

corresponding statistical solution surrogate µ∗T = S ∗T,#µ provides an accurate approximation of µT in

the Wasserstein distance. Unfortunately, even if a surrogate S ∗T can be proven to exist, no theoretical

guarantees are currently available that a machine-learning (optimization) algorithm such as Algorithm

7.4.1 will actually find a good approximation. In the absence of such a priori guarantees, extensive

numerical experiments will be required to demonstrate the viability of Algorithm 7.4.1, in practice. We

will leave this interesting topic for future investigations.
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In practice, one is usually interested in statistical quantitites computed from the underlying statistical

solution µt. Following the general observation from chapter 3 that typical statistical quantities computed

from µt are generally very smooth, we will assume that the mapping t 7→
´
L2
x
G(u) dµt(u) is continuous

for all considered observables, in the following; and hence that point-wise evaluation of these quantitites

in time is well-defined. Algorithm 7.4.1 then naturally leads to the following algorithm for the estimation

of statistical quantities:

Algorithm 7.4.5 (Surrogate estimation of statistical quantitites). Given an initial probability measure

µ ∈ P(L2
x) for which there exists a unique statistical solution µt, given an observable G : L2

x → RK , a

resolution ∆ = 1/N , N ∈ N, and numbers M,M̃ ∈ N, corresponding to

• M surrogate training samples, and

• M̃ Monte-Carlo samples,

respectively, the following algorithm computes an approximation of the expected values with respect to the

statistical solution µt, i.e. of Et[G(u)] :=
´
L2
x
G(u) dµt(u).

1 Compute the statistical solution surrogate µ∗t by Algorithm 7.4.1, with initial data µ, resolution

∆ = 1/N , and based on M empirical samples.

2 Draw M̃ iid samples u∗1, . . . ,u
∗
M̃
∼ µ from the initial measure µ.

3 For each j = 1, . . . , M̃ , compute G(u∗j (t)) ∈ RK , where u∗j (t) := S ∗t (u∗j ), and estimate E∗t [G(u)] ≈
Et[G(u)] by

E∗t [G(u)] :=
1

M̃

M̃∑
j=1

G(u∗j (t)).

We next estimate the error of the output of Algorithm 7.4.5, for a Lipschitz continuous observable

G : L2
x → RK . To this end, let S ∆

t : L2
x → L2

x denote the solution operator associated with scheme

(7.3.8), and we assume that the approximate statistical solution µ∆
t := S ∆

t,#µ, converges µ∆
t → µt with

respect to the 1-Wasserstein distance to the limiting statistical solution µt (cp. chapter 3). We can then

decompose the error

Êtotal =
∣∣∣Et[G(u)]− E∗t [G(u)]

∣∣∣ =

∣∣∣∣∣∣
ˆ
L2
x

G(u) dµt(u)− 1

M̃

M̃∑
j=1

G(u∗j (t))

∣∣∣∣∣∣
≤

∣∣∣∣∣
ˆ
L2
x

G(u) dµt(u)−
ˆ
L2
x

G(u) dµ∆
t (u)

∣∣∣∣∣
+

∣∣∣∣∣
ˆ
L2
x

G(u) dµ∆
t (u)−

ˆ
L2
x

G(u) dµ∗t (u)

∣∣∣∣∣
+

∣∣∣∣∣∣
ˆ
L2
x

G(u) dµ∗t (u)− 1

M̃

M̃∑
j=1

G(u∗j (t))

∣∣∣∣∣∣
=: Êdiscretization + Êemulation + ÊMC,
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into the discretization error, the surrogate emulation error and the Monte-Carlo sampling error. An

upper bound for the discretization error is given by

Êdiscretization ≤ Lip(G)W1(µt, µ
∆
t ).

In particular, if we assume that µ∆
t → µt converges with respect to the 1-Wasserstein distance at a

convergence rate α > 0, then we have

Êdiscretization . ∆α.

Due to the still ill-understood convergence theory of neural network approximations obtained via an

optimization algorithm, such as Algorithm 7.4.1, a precise quantification of the emulation error appears

out of reach at present. Clearly, this emulation error should decay as a function of the number of training

samples M , and by Proposition 7.3.8, we also know that errors arbitrarily close to 0 can be obtained in

theory, provided that the Ψ-FNO neural network exceeds a certain minimal size. We will thus make the

assumption that we have an estimate of the form

Êemulation .
1

Mγ
,

for some convergence rate γ > 0. Extensive numerical experiments for model problems in [LJK19, Fig.

10] for a related neural operator architecture (“DeepONets”) have found convergence rates γ ∈ [1, 4],

albeit for simpler operators. Based on these early results, we will assume that γ > 1/2, in the following

discussion.

Finally, the Monte-Carlo error is expected (on average) to be of size

ÊMC .
1√
M̃
,

yielding an expected total error estimate Êtotal . ∆α +M−γ + (M̃)−1/2. If γ > 1/2 as may be expected

based on the results of [LJK19], then clearly, we must choose M̃ � M to achieve a given accuracy

Êtotal . ε, i.e. the number of Monte-Carlo samples required is much greater than the number of training

samples for the surrogate model. More precisely, the above estimate indicates a scaling M̃ ∼ ε−2,

M ∼ ε−1/γ . Denoting by C∗ > 0 the cost of a single forward evaluation of the surrogate model,

C∗train > 0 the training cost per training sample, and by C∆ a single forward solve of the numerical

discretization, the total computational cost to achieve an error of size ∼ ε, is thus estimated as follows:

Method Computational cost

direct sampling C∆ε−2

surrogate sampling
(
C∆ + C∗train

)
ε−1/γ︸ ︷︷ ︸

training

+ C∗ε−2︸ ︷︷ ︸
sampling

Table 7.1: Estimated computational cost for direct Monte-Carlo sampling based on traditional numerical

method, and surrogate sampling employing a Ψ-FNO surrogate – split into a training phase, followed by

a MC sampling phase.

Table 7.1 illustrates that surrogate sampling is expected to be more efficient than a direct sampling

approach, provided that the training convergence rate γ > 1/2: Indeed, it is reasonable to assume that

C∗train . C∆, since in practice, the neural network representing the Ψ-FNO should involve (considerably)

fewer neurons than the number of arithmetic operations required for one forward solve of the corres-

ponding numerical algorithm, resulting in the bound on the the computational cost. Hence, we expect
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that C∆ε−2 ∼ (C∆ + C∗)ε−2 � (C∆ + C∗train)ε−1/γ for small ε → 0. Furthermore, the evaluation of

the surrogate model, once trained, is in practice many orders of magnitude faster than the evaluation

of the numerical algorithm, i.e. we have C∗ � C∆, and hence also C∗ε−2 � C∆ε−2. In particular, this

indicates that surrogate sampling might achieve a saving in computational resources, compared to direct

sampling via “traditional” methods.

Thus, the (non-rigorous) estimates summarized in Table 7.1 provide a clear rationale for the potential

benefits of statistical solution surrogates based on operator learning, over straight-forward methods based

on direct sampling using traditional numerical solvers for uncertainty quantification tasks. This is also

in line with empirical observations from numerical experiments in [LMR20] and [LMCR20], where neural

network-based surrogate models (in a finite-dimensional setting) have been used successfully to speed up

similar many-query problems in uncertainty quantification and optimization, respectively.

7.5 Discussion

Many learning tasks, particularly, but not exclusively, in scientific computing, are naturally formulated

as learning operators mapping one infinite-dimensional space to another. Neural operators have recently

been proposed as a framework for operator learning. A particular form, the so-called Fourier Neural

Operators (FNOs) (7.2.6), have been shown to be efficient in approximating a wide variety of operators

that arise in PDEs [LKA+21]. Our main aim in the present work was to analyze FNOs and Ψ-FNOs

(7.2.14), which is a concrete computational realization of FNOs. To this end, we have presented the

following results, following [KLM21]:

• We showed in Theorem 7.2.5 and Theorem 7.2.15 that FNOs (resp. Ψ-FNOs) are universal i.e.,

they can approximate any continuous operator to desired accuracy. Our proof relies heavily on

the ability of FNOs to approximate the Fourier transform and its inverse, together with the neural

network approximation of the finite-dimensional Fourier conjugate operator (7.2.11). Thus, FNOs

have the same universal approximation property as canonical neural networks for finite-dimensional

functions and DeepOnets for operators [LMK21]. This universality result paves the way for the

widespread use of FNOs in the context of operator learning.

• However as stated in remark 7.3.1, in the worst case, the size of a FNO can grow super-exponentially

in terms of the desired error for approximating a general Lipschitz continuous operator. This might

inhibit the use of FNOs. On the other hand, we argue in the beginning of section 7.3 that Ψ-FNOs,

which are a concrete computational realization of FNOs, can approximate the nonlinearities and

differential operators that define PDEs, very efficiently. Hence, one can think of Ψ-FNOs as a new

form of pseudo-spectral methods for PDEs, which in practice are adapted to, and optimized based

on the given training data. Thus, one can expect that Ψ-FNOs can approximate PDEs efficiently.

• We consider the incompressible Navier-Stokes and Euler equations for fluid dynamics, and prove

rigorously that there exists a Ψ-FNO which can approximate the underlying nonlinear operators

efficiently, as we can show that the size of the Ψ-FNO only needs to grow polynomially in terms of

the error. A second application of Ψ-FNOs to the stationary Darcy flow is given in [KLM21]. These

two prototypical examples show that FNOs can approximate these widely used PDEs efficiently,

corroborating the empirical results presented in [LKA+21].

• We propose an algorithm for the approximation of statistical solutions, and the computation of

statistical quantities, based on neural network-based surrogate models. And we provide a clear

rationale for the benefits of the resulting statistical solution surrogates versus the straight-forward

Monte-Carlo evaluation of statistical quantities based on traditional numerical methods.
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Hence, our analysis provides very strong theoretical evidence that FNOs are an effective framework for

operator learning, and for their potential benefits in applications. Extending the analysis summarized

in this chapter to other neural operators can be readily envisaged. The use of FNOs for more general

operators, particularly those arising in non-scientific computing settings, such as images, text and speech,

also needs to be investigated.



Chapter 8

Conclusions and further research

The present thesis has focused on the approximation of the incompressible Euler equations (1.1.1), from

both a deterministic and a statistical point of view. Physically, these equations can be seen as an idealized

model of high Reynolds-number flows, in which effects due to viscosity are small compared to the typical

flow speeds and length scales. In such flows, non-linear terms describing the transport of momentum

dominate over regularizing terms due to viscosity, often leading to a very complex, turbulent behaviour.

Physical theories of turbulence predict that typical solutions in this regime possess very low (Hölder)

regularity. The mathematical theory for such rough solutions of the incompressible Euler equations is

still very far from complete, and many open questions regarding well-posedness and stability remain. At

the level of numerical approximations, the lack of stability with respect to perturbations in the initial

data results in a lack of rigorous convergence proofs. Furthermore, an absence of (strong) convergence

in any conventional deterministic sense is empirically observed in numerical experiments for initial data

with low regularity.

The first main result of this work is a (weak) convergence result for the approximation of rough

solutions of the two-dimensional Euler equations by the SV scheme, presented in chapter 2. This result

is based on compensated compactness methods, and its proof follows the most general available existence

result for solutions of the two-dimensional incompressible Euler equations, for initial data in the so-

called “Delort class”. The work summarized in chapter 2 closes a long-standing gap between available

existence theory and convergence results for general purpose numerical schemes. Despite these provable

compactness properties, numerical experiments reviewed in chapter 2 show that in practice, even for

carefully tuned parameters of the numerical scheme, the strong convergence of the SV scheme for such

rough initial data is prevented by the appearance of small-scale instabilities at high resolutions, which

are strongly amplified by the flow. This is in line with earlier computations of vortex sheets [FMT16,

LM15, Leo18]. These earlier investigations have found that while each deterministic simulation may be

unstable and cannot be robustly computed by state-of-the-art numerical schemes, statistical quantities

are much more stable and can be reliably approximated when considering ensembles of solutions.

The second main result of this thesis is the introduction and study of a statistical solution concept

for the incompressible Euler equations, presented in chapter 3. While a general (a priori) mathematical

well-posedness theory of statistical solutions remains out of reach at present, we study the convergence of

numerical approximations to a statistical solution and derive theoretical convergence criteria which can

be verified a posteriori from numerical experiments. These convergence criteria are either formulated

as uniform bounds (in resolution ∆ > 0) on the structure functions, or are based on a dual (Fourier

transformed) description, in terms of a uniform decay of the energy spectra of the flow. Both of these

quantities are closely related to physical theories of turbulence [Fri95], based on which the required

171
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uniform bounds would be expected to be satisfied in practice. Extensive numerical experiments carried

out for the two-dimensional Euler equations provide empirical evidence that the convergence criteria are

indeed satisfied for a wide range of initial data, and indicate the convergence of numerical approximations

to a well-defined limiting statistical solution.

The observed well-behaved evolution of structure functions in chapter 3, provides the motivation

for the detailed study of uniform bounds on these structure functions, in chapter 4. In particular, we

are interested in the question of anomalous energy dissipation in the zero-viscosity limit of the Navier-

Stokes equations. This research direction has lead to the third main result of the present thesis, which

shows that, in two spatial dimensions, any uniform bound on the second-order structure functions (in

the zero-viscosity limit) implies energy conservation of the limiting solution of the incompressible Euler

equations. The results summarized in chapter 4 go considerably beyond the well-known critical regularity

threshold identified by Onsager, which predicts energy-conservation for solutions with α-Hölder regularity

for α > 1/3, and clearly shows that solutions obtained in the zero-viscosity limit possess additional fine

properties which are not shared by general (energy-admissible) solutions.

Finally, in chapters 6 and 7, we make first steps towards addressing two limitations of statistical

solutions. The first limitation concerns the blending of statistical solutions with observational data;

combining the underlying mathematical model with observational data has proven pivotal in real-world

applications, such as numerical weather forecasting. In chapter 6, we thus study a statistical Bayesian

approach to state estimation for PDEs for which the forward problem is (potentially) ill-posed. We prove

compactness and uniform stability results for numerical approximations of Bayesian inverse problems and

data assimilation, under very mild assumptions, and show the existence of a limiting posterior obtained

in the high resolution limit (∆ → 0). Furthermore, we show convergence to the canonical posterior,

provided that the approximate solution operator S ∆
t (u) → St(u), ∆ → 0, merely converges almost

everywhere with respect to the prior probability measure µprior(du).

Finally, in chapter 7 we summarize approximation results for a recently proposed operator learning

framework termed Fourier neural operators (FNOs) [LKA+21], based on neural networks. We discuss

the first universal approximation theorems for this architecture, showing that FNOs can approximate

operators G : Hs → Hs′ , s, s′ ≥ 0, to arbitrary accuracy. Employing ideas from spectral methods, we

furthermore derive explicit complexity and error estimates for the FNO approximation of the solution

operator of the incompressible Euler and Navier-Stokes equations, proving that this infinite-dimensional

approximation task can be solved efficiently, and more precisely, that the overall complexity scales

at most algebraically in the desired approximation accuracy. These results provide the first theoretical

justification for the use of FNOs in applications. Based on this FNO architecture, we propose a surrogate

model approach for the evaluation of statistical quantities, by the use of a so-called statistical solution

surrogate. We provide empirical complexity estimates for the computation of statistical quantities based

on this surrogate approach, and show that they compare favourably in comparison with a direct evaluation

based on traditional numerical methods.

The results presented in the present thesis thus lay the mathematical foundations for statistical

solutions of the incompressible Euler equations and their numerical approximation, emphasizing the

central role played by structure functions in their convergence theory, as well as making initial steps

toward the incorporation of observational data in a Bayesian approach, and addressing the theoretical

underpinnings of a novel neural network based approach to many-query problems, within the general

framework of “operator learning” architectures.

Future research directions

While the theoretical results on statistical solutions presented in chapter 3 apply also to the three-

dimensional Euler equations, more numerical experiments are needed to investigate whether the obser-
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vations presented for the two-dimensional case also apply in the three-dimensional case. Corresponding

work on statistical solutions of the compressible Euler equations and related hyperbolic conservation laws

strongly indicates that similar conclusions will apply also in three spatial dimensions. Due to the high

computational cost of three-dimensional simulations, to render such numerical experiments feasible, fur-

ther developments will be required in the numerical implementation, taking full advantage of accelerated

computing capabilities based on GPUs. In particular, these experiments can numerically investigate the

more intricate question of three-dimensional anomalous energy dissipation, and will allow for a direct

comparison of two- and three-dimensional turbulence.

The rigorous theoretical justification for many of the empirical observations presented in the present

work remains unknown. For example, more work is needed to explain the observed stability of statistical

quantities and the apparently well-defined evolution of statistical solutions, even in situations where the

underlying deterministic evolution is very unstable, and potentially ill-posed. Progress in the understand-

ing of this distinction between the stability of statistical quantities versus the instability of deterministic

predictions, possibly in the context of simpler model equations, would mark a major contribution towards

the understanding of high Reynolds number flows, in the opinion of the present author.

In this context, we point out a potentially interesting analogy that can be made between the theory

of statistical solutions investigated in the present thesis and related work [FW18, LMS16, FLMW20,

VF77, FRT10, PP21], and the well-posedness theory of finite-dimensional ODEs with rough coefficients

initiated by DiPerna and Lions [DL89]: The authors of [DL89] studied solutions of ODEs of the form

dX

dt
= b(X), X(t = 0) = x ∈ Rd, (8.0.1)

for vector-fields b which possess only Sobolev regularity, e.g. for b ∈ W 1,1(Rd;Rd), with distributional

divergence div(b) = 0 (in fact, much more general vector fields are considered in [DL89]). Classical

existence and uniqueness results for (8.0.1) require considerably more regularity on the vector field b,

such as Lipschitz continuity, to guarantee well-posedness for solutions of (8.0.1). The main idea of [DL89]

is that while the ODE (8.0.1) is generally ill-posed, the associated transport equation (PDE)

∂tρ+ b · ∇ρ = 0, ρ(t = 0) = ρ ∈ L1(Rd), (8.0.2)

can nevertheless be well-posed; in fact, it can be used to study and shed light on the initial value problem

(8.0.1), and can be used to define a unique flow X ∈ C(R;L1(Rd;Rd)) providing solutions of the ODE.

DiPerna-Lions theory Statistical solutions
dX

dt
= b(X),

X(t = 0) = x.
←→

{
∂tu = −Pdiv(u⊗ u),

u(t = 0) = u.

{
∂tρ+ b · ∇ρ = 0,

ρ(t = 0) = ρ.
←→

{
(Statistical sol. µt),

µt|t=0 = µ.

Table 8.1: Analogy between DiPerna-Lions theory [DL89] and statistical solutions.

To make the analogy to statistical solutions apparent, we now interpret non-negative initial data

ρ ∈ L1 of (8.0.2) as a probability distribution µ on initial data x to the ODE (8.0.1), so that for
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measurable A ⊂ Rd, we have

µ(A) = Prob[x ∈ A] =

´
A
ρ(x) dx´

Rd ρ(x) dx
.

In this analogy, the solution t 7→ ρ( · , t) of the transport PDE (8.0.2) corresponds to a “statistical

solution”,

µt(A) =

´
A
ρ(x, t) dx´

Rd ρ(x, t) dx
∈ P(Rd),

describing the evolution of the uncertain (statistical) initial data µ to (8.0.1). By the results of the

DiPerna-Lions theory, there thus exists a class of “statistical initial data” for which the evolution of the

corresponding statistical solution is well-defined, even though the deterministic problem (8.0.1) (corres-

ponding to Dirac initial data µ = δx) is ill-posed.

Extensive numerical experiments conducted in the context of statistical solutions for PDEs arising

in fluid dynamics suggest that there might exist a similar class of statistical initial data for which

the (infinite-dimensional) statistical evolution is well-posed, even though the problem at the level of

deterministic solutions is ill-posed. We have summarized this analogy in Table 8.1. Future work could

attempt to make progress towards making this analogy more precise. A key element that is currently

missing in the PDE context is a better understanding of the well-posedness theory for the infinite-

dimensional analogue of the transport equation (8.0.2), describing the evolution of statistical solutions

µt ∈ P(L2
x). We have proposed a description of the evolution of µt in Definition 3.3.1, formulated in

terms of a hierarchy of equations, relying on the duality between the probability measure µt ∈ P(L2
x)

and the corresponding correlation marginals νkt,x ∈ P(Uk), k ∈ N, on state-space U .

The theoretical benefit of this hierarchy of equations for statistical solutions is its linearity, similar

to (8.0.2); the main drawback is the formulation as a infinite hierarchy of coupled PDEs. Currently, it is

not clear to what extent this hierarchy is amenable to direct mathematical analysis, and future work is

needed to better understand the mathematical properties of this hierarchy, and to what extent it might

allow to make the analogy with finite-dimensional transport equations, indicated in Table 8.1, precise.

In chapter 6, we have presented a theoretical discussion of the numerical approximation of Bayesian

inversion and data assimilation for prototypical models of fluid dynamics, the incompressible Euler and

Navier-Stokes equations. The theoretical results of chapter 6 should be complemented by numerical

experiments, investigating the practical convergence of approximate posteriors obtained by numerical

discretizations, as ∆→ 0.

The approximation theory developed in chapter 7 for Fourier neural operators represents the first

steps in the analysis of neural network architectures for operator learning, with potential for applications

to many-query problems including uncertainty quantification, Bayesian inversion and PDE constrained

optimization. Many open questions and challenges remain in establishing the mathematical foundations

of this emerging field; Open research directions include the numerical investigation and comparison

of different operator learning frameworks, demonstrating the practical viability of neural network based

surrogate models, as well as extensions of the approximation theory, in particular for statistical solutions.

The author hopes that the work presented in this thesis may serve as a starting point for future

work in a variety of interesting and fruitful research directions, with potential for impact on problems in

science and engineering.



List of symbols

Throughout this work, we follow the convention that constants C appearing in estimates may change

their value from line to line. The dependency of the constant C on the given data (e.g. parameters

α, β, γ) should usually be clear from the context and will be indicated by writing C = C(α, β, γ). For

the convenience of the reader, we provide a list of the most common symbols used in this work, below:

Frequently used symbols

Td periodic torus, identified with [0, 2π]d p. 3

d spatial dimension of domain p. 3

u (flow) vector field u : Td × [0, T ]→ Rd p. 3

u initial data u : Td → Rd (for incompressible Euler) p. 3

ûk (spatial) Fourier coefficient of u p. 7

ω (scalar) curl of u, ω = curl(u) ∈ R (for d = 2) p. 8

∆ grid scale parameter ∆ ≡ 1/N , N ∈ N p. 16

u∆ discretized velocity, u∆ =
∑
|k|∞≤N û

∆eik·x p. 16

ω∆ (scalar) curl of u∆, ω∆ = curl(u∆) ∈ R (for d = 2) p. 23

P(X), (P(L2
x)) space of Borel probability measures on Banach space X (L2

x) p. 185

Pp(X) set of µ ∈ P(X) with finite p-th moment p. 185

M set of bounded Radon measures on Td p. 21

M+ set of non-negative Radon measures on Td p. 22

ν viscosity parameter in Navier-Stokes equations p. 5

µt time-parametrized probability measure (or statistical solution) p. 50

µ statistical initial data, µ ∈ P(L2
x)

µ∆
t approximate statistical solution p. 50

S2(µ; r) statistical (second-order) structure function p. 49

ST2 (µt; r) time-integrated statistical structure function p. 51

W1(µ, ν) 1-Wasserstein distance between µ, ν ∈ P1(L2
x) p. 185

dT (µt, νt) time-integrated 1-Wasserstein distance p. 50

L1
t (P) space of time-parametrized probability measures, s.t. dT (µt, δ0) <∞ p. 50

S2(u; r) deterministic structure function p. 84

ST2 (u; r) time-integrated structure function p. 84

u 7→ St(u) solution operator

u 7→ S ∆
t (u) approximate solution operator (from discretization)

φ(r) modulus of continuity

Banach spaces

L2 Space of square-integrable functions

L̇2 L̇2 ⊂ L2 square-integrable functions with zero mean p. 180

175
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L2
N L2

N ⊂ L2 trigonometric polynomials of degree ≤ N p. 180

L̇2
N L̇2

N = L̇2 ∩ L2
N trigonometric polynomials with zero mean p. 180

Hs Sobolev space of smoothness s ≥ 0, with norm ‖ · ‖Hs p. 179

H−s dual of Hs

Ḣs Sobolev space with zero mean, with norm ‖ · ‖Ḣs p. 180

Projection operators

PN L2-orthogonal Fourier projection PN : L2 → L2
N p. 180

ṖN Fourier projection ṖN : L2 → L̇2
N with zero mean p. 181

IN Pseudo-spectral Fourier projection, i.e. trigonometric interpolation on

regular grid {xj}j∈JN
p. 181

P Leray projection onto divergence-free vector fields p. 161

PN Leray projection followed by projection PN ; PN = PN ◦ P p. 161

Bayesian inversion

L∆(u), L(u) observable p. 117

y measurement, y ∈ Rd p. 117

η measurement noise p. 117

dµ∆,y(u) posterior probability measure p. 117

Φ∆,y(u) log-likelihood function p. 117

Gj(u) Eulerian observable p. 128

Yj measurements Yj = (y1, . . . , yj) in time interval [0, tj ] p. 129

ν
∆,Yj
t (du) Bayesian estimate at time t, given measurements Yj p. 129

ν∆,y
t filtering distribution, Bayesian estimate given past measurements p. 133

Neural networks

σ activation function

da, du, dv number of components of input, output and lifting p. 150

A(D;Rda) input function space p. 150

U(D;Rdu) output function space p. 150

F , F−1 Fourier transform and inverse Fourier transform p. 179

FN , F−1
N discrete Fourier transform and inverse p. 182

{xj}j∈JN regular periodic grid, xj = 2πj/(2N + 1) p. 182

JN grid point indices, JN = {0, . . . , 2N}d p. 182

KN Fourier wavenumbers KN =
{
k ∈ Zd

∣∣ |k|∞ ≤ N}
R lifting operator p. 150

L` neural operator layer p. 151

Q projection operator p. 150

F-layer linear, non-local layer; v(x) 7→ F−1(PFv)(x) p. 158

σ-layer non-linear, local layer; v(x) 7→ σ(Wv(x) + b(x)) p. 158
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Appendix A

Mathematical complements

In this appendix, we summarize frequently used notation in the thesis main text, summarize some

essential facts about Fourier analysis and recall two well-known theorems in analysis.

A.1 Fourier analysis

In the main text, we focus on functions defined on the periodic torus Td, identified as Td = [0, 2π]d.

Following standard practice, we denote by L2(Td) the space of square-integrable functions. For any such

function v ∈ L2(Td), we can define the Fourier transform as,

F(v)(k) :=
1

(2π)d

ˆ
Td
v(x)e−ik·x dx, ∀ k ∈ Zd. (A.1.1)

For any k ∈ Zd, the k-th Fourier coefficient of v is denoted by v̂k = F(v)(k).

Given a set of Fourier coefficients {v̂k}k∈Zd , the inverse Fourier transform is defined as,

F−1(v̂)(x) :=
∑
k∈Zd

v̂ke
ik·x, ∀x ∈ Td. (A.1.2)

We recall Parseval’s identity for u, v ∈ L2(Td):

〈u, v〉L2 :=

ˆ
Td
u(x)v(x) dx = (2π)d

∑
k∈Zd

ûkv̂k. (A.1.3)

Using the Fourier transform (A.1.1) and for s ≥ 0, we denote by Hs(Td) the Sobolev space of functions

v ∈ L2(Td), with Fourier coefficients {v̂k}k∈Zd , having a finite Hs-norm:

‖v‖Hs :=

(2π)d
∑
k∈Zd

(1 + |k|)2s|v̂k|2
1/2

<∞. (A.1.4)

Note that with this definition, we have from Parseval’s identity, that ‖v‖H0 = ‖v‖L2 , so that H0(Td) =

L2(Td). Furthermore, we note that for any s ≥ 0, the dual space H−s is the space of distributions

v ∈ D′(Td), with Fourier coefficients v̂k satisfying

‖v‖H−s =

(2π)d
∑
k∈Zd

1

(1 + |k|)2s
|v̂k|2

1/2

<∞.
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Furthermore, for any functions u, v ∈ L2(Td), we have from Parseval’s identity and the Cauchy-Schwarz

inequality:

〈u, v〉L2 ≤ ‖u‖Hs‖v‖H−s .

We also introduce the corresponding homogeneous Sobolev spaces Ḣs(Td) (and L̇2(Td) :=

Ḣ0(Td)), consisting of functions v(x) ∈ Hs(Td) and with zero mean
ffl
Td v(x) dx = v̂0 = 0. The space

Ḣs(Td) is endowed with the norm

‖v‖Ḣs :=

(2π)d
∑

k∈Zd\{0}

|k|2s|v̂k|2
1/2

. (A.1.5)

Given N ∈ N, throughout this work, we will denote by L2
N (Td), the space of trigonometric polynomials

vN : Td → R, of the form

vN (x) =
∑
|k|∞≤N

cke
ix·k, (A.1.6)

where the summation is over all k = (k1, . . . , kd) ∈ Zd such that

|k|∞ := max
i=1,...,d

|ki| ≤ N.

The space L2
N (Td) is viewed as a normed vector space with norm ‖ · ‖L2 . Similarly, for s ≥ 0, we denote

by Hs
N (Td) the normed vector space of trigonometric polynomials vN of degree ≤ N , with norm ‖ · ‖Hs .

We note that in order to ensure that vN (x) ∈ R is real-valued for all x ∈ Td, the coefficients ck ∈ C
must satisfy the relations c−k = ck for all |k|∞ ≤ N , and where ck denotes the complex conjugate of ck.

We denote by

PN : L2(Td)→ L2
N (Td), v 7→ PNv, (A.1.7)

the L2-orthogonal projection onto L2
N(Td); or more explicitly,

PN

∑
k∈Zd

cke
ik·x

 =
∑
|k|∞≤N

cke
ik·x, ∀ (ck)k∈Zd ∈ `2(Zd).

In fact, the mapping PN defines a projection Hs(Td) → Hs
N (Td) for any s ≥ 0. We have the following

spectral approximation estimate: Let s > 0 be given. There exists a constant C = C(s, d) > 0, such that

for any v ∈ Hs(Td), we have

‖v − PNv‖Hς ≤ CN−(s−ς)‖v‖Hs , for any ς ∈ [0, s]. (A.1.8)

We furthermore note that the norm of the projection PN : L1 → L1 is not uniformly bounded.

Instead, we have the following estimate:

Proposition A.1.1. Let N ∈ N, N ≥ 2. The norm of the Fourier projection PN : L1(Td) → L1(Td),
interpreted as an operator on L1, is bounded by ‖PN‖L1→L1 ≤ C log(N)d, where C > 0 is an absolute

constant, independent of N .
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Proof. Let D1
N : T → R be the (one-dimensional) Dirichlet kernel, D1

N (ξ) = (2π)−1
∑N
`=−N e

i`ξ. We

recall in passing that D1
N can be expressed in the closed form

D1
N (ξ) =

sin((N + 1/2)ξ)

2π sin(ξ)
.

Let DN (x) :=
∏d
k=1D

1
N (xk) be the d-fold tensor product of D1

N . We note that the projection PN can

be written as a convolution with DN , i.e. that PNu ≡ DN ∗ u for any u ∈ L1(Td). It follows that

‖PNu‖L1 = ‖DN ∗ u‖L1 ≤ ‖DN‖L1‖u‖L1 ,

and hence, ‖PN‖L1→L1 ≤ ‖DN‖L1 . The claim now follows from the well-known fact that ‖D1
N‖L1 ≤

C log(N) for some constant C > 0, and from the identity

‖DN‖L1 =

ˆ
Td

d∏
k=1

|D1
N (xk)| dx =

d∏
k=1

ˆ
T
|D1

N (xk)| dxk =

d∏
k=1

‖D1
N‖L1 ≤ Cd log(N)d.

We also define a natural projection

ṖN : L2(Td)→ L̇2
N (Td), (A.1.9)

by removing the mean, i.e. ṖNv = PNv −
ffl
Td v(x) dx, or equivalently:

ṖN

∑
k∈Zd

cke
ik·x

 =
∑

0<|k|∞≤N

cke
ik·x, ∀ (ck)k∈Zd ∈ `2(Zd).

Furthermore, we denote by by

IN : C(Td) 7→ L2
N (Td), u 7→ INu, (A.1.10)

the pseudo-spectral projection onto L2
N (Td); we recall that the pseudo-spectral projection INv of a

continuous function v is defined as the unique trigonometric polynomial INv ∈ L2
N (Td), such that

INv(xj) = v(xj), ∀ j ∈ JN , (A.1.11)

where {xj}j∈JN denotes the set of all regular grid points xj ∈ Zd of the form xj = 2πj/(2N + 1) ∈ Td,
j ∈ Zd (cp. equation (A.1.12)).

We also recall the following embedding theorem for the Sobolev spaces Hs(Td):

Theorem A.1.2 (Sobolev embedding). Let d ∈ N. For any s > d/2, we have a compact embedding

Hs(Td) ↪→ C(Td) into the space of continuous functions. In particular, there exists a constant C =

C(s, d) > 0, such that

‖v‖L∞ ≤ C‖v‖Hs , ∀ v ∈ Hs(Td).

The Sobolev embedding theorem implies in particular that the pseudo-spectral projection IN is well-

defined as an operator IN : Hs(Td) → L2
N (Td) for s > d/2. In the following theorem, we recall a

well-known approximation error estimate for the pseudo-spectral projection IN :
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Theorem A.1.3 (Pseudo-spectral approximation estimate). Let d ∈ N. For any s > d/2 and N ∈ N,

the spectral interpolation operator IN : Hs(Td) → L2
N (Td) is well-defined. Furthermore, there exists a

constant C = C(s, d) > 0, such that the following approximation error estimate holds

‖(1− IN )v‖Hς ≤ CN−(s−ς)‖v‖Hs , ∀ v ∈ Hs(Td),

for any ς ∈ [0, s].

Finally, for N ∈ N, we fix a regular grid {xj}j∈JN of values

xj =
2πj

2N + 1
, (A.1.12)

where the index j ∈ JN belong to the index set

JN := {0, . . . , 2N}d. (A.1.13)

Recall the set of Fourier wave numbers (7.2.10) and we define the discrete Fourier transform FN :

RJN → CKN by

FN (v)(k) :=
1

(2N + 1)d

∑
j∈JN

vje
−2πi(k·xj), (A.1.14)

with inverse F−1
N : CKN → RJN ,

F−1
N (v̂)(j) :=

∑
k∈KN

v̂ke
2πi(k·xj). (A.1.15)

We finally remark that all of the above notions are extended to functions u : Td → Rd′ in the obvious

way (with multiplication u(x)v(x) replaced by the dot-product u(x) · v(x)), leading to corresponding

spaces L2(Td;Rd′), Hs(Td;Rd′), Ḣs(Td;Rd′). We will use the same notation PN , ṖN , IN for the corres-

ponding projections defined on vector-fields u : Td → Rd′ . If the domain and co-domain are clear from

the context, we will occasionally write Hs, instead of Hs(Td;Rd′); in order to emphasize the fact that we

consider functions with a spatial dependence, we shall also use the short-hand notation Hs
x = Hs(Td;Rd′).

In particular, for a time-parametrized mapping u : [0, T ]→ Hs
x, we will write ‖u(t)‖Hsx for the Hs-norm

of u(t) ∈ Hs
x at time t ∈ [0, T ]. Corresponding Bochner spaces, such as Lp([0, T ];Hs(Td;Rd′)) will often

be written in the abbreviated form LptH
s
x.

A.2 Compactness theorems

We finally recall the following two mathematical facts, which will be used in the main text: The first is

the Arzela-Ascoli theorem, characterizing compactness in Cloc(X,Y ), for topological spaces X, Y :

Theorem A.2.1 (Arzela-Ascoli). Let X be a locally compact Hausdorff space. Let Y be a complete

metric space. A subset F ⊂ Cloc(X,Y ), of the space of continuous functions X → Y in the topology of

local uniform convergence, is relatively compact if, and only if, it is equi-continuous and for all x ∈ X,

the set {f(x) | f ∈ F} is relatively compact in Y .

We also recall the following characterization of weakly compact subsets of L1([0, T ]×Td), commonly

known as the Dunford-Pettis theorem (for a proof, see [DS58]).

Theorem A.2.2 (Dunford-Pettis). A subset K ⊂ L1([0, T ] × Td) is relatively compact in the weak

topology (induced by the duality pairing with L∞) if, and only if,
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• K is bounded in the L1-norm,

• for every ε > 0, there exists a δ > 0 such that for all Lebesgue-measurable A ⊂ [0, T ]× Td,

|A| < δ =⇒
ˆ
A

f(x, t) dx dt < ε, for all f ∈ K.
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Appendix B

Wasserstein distance

Here, we summarize a few elementary facts about the Wasserstein distance and the convergence of

measures. An excellent reference on this material (and much more) is [Vil08]. Given a separable Banach

space X, we denote by P(X) the space of Borel probability measures on X. The term “measurable” will

always refer to Borel measurability. A sequence µn ∈ P(X) is said to converge weakly to a limit µ,

denoted µn ⇀ µ, if

ˆ
X

φdµn →
ˆ
X

φdµ, ∀φ ∈ Cb(X), (B.0.1)

where Cb(X) denotes the space of bounded, continuous functions on X.

We call a family of probability measures {µ∆}∆>0 ⊂ P(X) tight, provided that for any ε > 0 there

exists a compact subset K ⊂ X such that

µ∆(K) ≥ 1− ε, ∀∆ > 0.

It is a classical result due to Prokhorov (see e.g. Theorems 8.6.7, 8.6.8 of the monograph [Bog07]) that

a family µ∆ ∈ P(X), with X a separable Banach space, is tight if and only if µ∆ is relatively compact

under the weak topology.

We denote by Pp(X) the space of Borel probability measures µ ∈ P(X), possessing finite p-th

moments,
´
X
‖u‖pX dµ(u) <∞, metrized by the p-Wasserstein distance Wp:

Wp(µ, ν) := inf
π∈Γ(µ,ν)

(ˆ
X×X

‖u− v‖pX dπ(u, v)

)1/p

. (B.0.2)

where the infimum is taken over all transfer plans π ∈ Γ(µ, ν) defined as,

Γ(µ, ν) :=

{
π ∈ P(X ×X)

∣∣∣∣ˆ
X×X

(F (u) +G(v))dπ(u, v) =

ˆ
X

F (u)dµ(u) +

ˆ
X

G(v)dν(v)

}
,

for all F,G ∈ Cb(X).

Given a measurable map F : X → Y , we denote by F#µ ∈ P(Y ) the push-forward of a probability

measure µ ∈ P(X) by F , defined by (F#µ)(A) := µ(F−1(A)) for measurable A ⊂ Y ; the push-forward

measure satisfies the relation ˆ
Y

φ(v) d (F#µ) (v) =

ˆ
X

(φ ◦ F )(u) dµ(u),

185
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for all measurable functions φ : Y → R such that φ ◦ F ∈ L1(µ). We recall that the 1-Wasserstein

distance W1(µ, ν) between measures µ, ν ∈ P1(X) can also be determined via the Kantorovich duality:

W1(µ, ν) = sup
Φ

ˆ
Φ(u) [dµ(u)− dν(u)] , (B.0.3)

where the supremum is taken over all Lipschitz continuous Φ ∈ Lip(X), with ‖Φ‖Lip ≤ 1, and we define

the semi-norm ‖ · ‖Lip by

‖Φ‖Lip := sup
u6=v

|Φ(u)− Φ(v)|
‖u− v‖X

. (B.0.4)

We also recall that for a sequence of measures µ∆ ∈ P1(X), ∆→ 0, and µ ∈ P1(X), we have

lim
∆→0

W1(µ∆, µ) = 0⇔


µ∆ ⇀ µ converges weakly andˆ

X

‖u‖X dµ∆(u)→
ˆ
X

‖u‖X dµ(u).

 (B.0.5)

We will denote the Kullback-Leibler (KL) divergence of a measure ν ∈ P(X) with respect to µ ∈ P(X)

by DKL(ν||µ); We recall that the Kullback-Leibler divergence is defined by

DKL(ν||µ) :=

{´
X

log
(
dν
dµ

)
dν, (ν � µ),

+∞, (ν 6� µ).
(B.0.6)

It is well-known that P(X)→ R, ν 7→ DKL(ν||µ) is a strictly convex, coercive and lower semi-continuous

function. In particular, for any α > 0 the set {ν ∈ P(X) | DKL(ν||µ) ≤ α} is compact in the weak

topology on P(X).
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